未验证 提交 58be0418 编写于 作者: P pk_hk 提交者: GitHub

[pico] add openvino infer (#5713)

上级 2e8a9361
# PicoDet OpenVINO Benchmark Demo # PicoDet OpenVINO Benchmark Demo
本文件夹提供利用[Intel's OpenVINO Toolkit](https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html)进行PicoDet测速的Benchmark Demo 本文件夹提供利用[Intel's OpenVINO Toolkit](https://software.intel.com/content/www/us/en/develop/tools/openvino-toolkit.html)进行PicoDet测速的Benchmark Demo与带后处理的模型Inference Demo。
## 安装 OpenVINO Toolkit ## 安装 OpenVINO Toolkit
...@@ -13,9 +13,9 @@ pip install openvino==2022.1.0 ...@@ -13,9 +13,9 @@ pip install openvino==2022.1.0
详细安装步骤,可参考[OpenVINO官网](https://docs.openvinotoolkit.org/latest/get_started_guides.html) 详细安装步骤,可参考[OpenVINO官网](https://docs.openvinotoolkit.org/latest/get_started_guides.html)
## 测试 ## Benchmark测试
- 准备测试模型:根据[PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet)中【导出及转换模型】步骤,采用不包含后处理的方式导出模型(`-o export.benchmark=True` ),并生成待测试模型简化后的onnx模型(可在下文链接中直接下载)。同时在本目录下新建```out_onnxsim```文件夹,将导出的onnx模型放在该目录下。 - 准备测试模型:根据[PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet)中【导出及转换模型】步骤,采用不包含后处理的方式导出模型(`-o export.benchmark=True` ),并生成待测试模型简化后的onnx模型(可在下文链接中直接下载)。同时在本目录下新建```out_onnxsim```文件夹,将导出的onnx模型放在该目录下。
- 准备测试所用图片:本demo默认利用PaddleDetection/demo/[000000014439.jpg](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/demo/000000014439.jpg) - 准备测试所用图片:本demo默认利用PaddleDetection/demo/[000000014439.jpg](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/demo/000000014439.jpg)
...@@ -30,7 +30,7 @@ python openvino_benchmark.py --img_path ..\..\..\..\demo\000000014439.jpg --onnx ...@@ -30,7 +30,7 @@ python openvino_benchmark.py --img_path ..\..\..\..\demo\000000014439.jpg --onnx
``` ```
- 注意:```--in_shape```为对应模型输入size,默认为320 - 注意:```--in_shape```为对应模型输入size,默认为320
### Inference images ### Inference images(w/o 后处理)
```shell ```shell
# Linux # Linux
...@@ -38,20 +38,38 @@ python openvino_benchmark.py --benchmark 0 --img_path ../../../../demo/000000014 ...@@ -38,20 +38,38 @@ python openvino_benchmark.py --benchmark 0 --img_path ../../../../demo/000000014
# Windows # Windows
python openvino_benchmark.py --benchmark 0 --img_path ..\..\..\..\demo\000000014439.jpg --onnx_path out_onnxsim\picodet_s_320_coco_lcnet.onnx --in_shape 320 python openvino_benchmark.py --benchmark 0 --img_path ..\..\..\..\demo\000000014439.jpg --onnx_path out_onnxsim\picodet_s_320_coco_lcnet.onnx --in_shape 320
``` ```
## Inference images(w/ 后处理, w/o NMS)
- 准备测试模型:根据[PicoDet](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.4/configs/picodet)中【导出及转换模型】步骤,采用**包含后处理****不包含NMS**的方式导出模型(`-o export.benchmark=False export.nms=False` ),并生成待测试模型简化后的onnx模型(可在下文链接中直接下载)。同时在本目录下新建```out_onnxsim_infer```文件夹,将导出的onnx模型放在该目录下。
- 准备测试所用图片:默认利用../../demo_onnxruntime/imgs/[bus.jpg](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/third_engine/demo_onnxruntime/imgs/bus.jpg)
```shell
# Linux
python openvino_infer.py --img_path ../../demo_onnxruntime/imgs/bus.jpg --onnx_path out_onnxsim_infer/picodet_s_320_postproccesed_woNMS.onnx --in_shape 320
# Windows
python openvino_infer.py --img_path ..\..\demo_onnxruntime\imgs\bus.jpg --onnx_path out_onnxsim_infer\picodet_s_320_postproccesed_woNMS.onnx --in_shape 320
```
- 结果:
<div align="center">
<img src="../../../../docs/images/res.jpg" height="500px" >
</div>
## 结果 ## 结果
测试结果如下: - 测速结果如下:
| 模型 | 输入尺寸 | ONNX | 预测时延<sup><small>[CPU](#latency)| | 模型 | 输入尺寸 | ONNX | 预测时延<sup><small>[CPU](#latency)|
| :-------- | :--------: | :---------------------: | :----------------: | | :-------- | :--------: | :---------------------: | :----------------: |
| PicoDet-XS | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_coco_lcnet.onnx) | 3.9ms | | PicoDet-XS | 320*320 | [( w/ 后处理;w/o NMS)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_lcnet_postproccesed_woNMS.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_coco_lcnet.onnx) | 3.9ms |
| PicoDet-XS | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_coco_lcnet.onnx) | 6.1ms | | PicoDet-XS | 416*416 | [( w/ 后处理;w/o NMS)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_lcnet_postproccesed_woNMS.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_coco_lcnet.onnx) | 6.1ms |
| PicoDet-S | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet.onnx) | 4.8ms | | PicoDet-S | 320*320 | [( w/ 后处理;w/o NMS)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_lcnet_postproccesed_woNMS.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet.onnx) | 4.8ms |
| PicoDet-S | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco_lcnet.onnx) | 6.6ms | | PicoDet-S | 416*416 | [( w/ 后处理;w/o NMS)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_lcnet_postproccesed_woNMS.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco_lcnet.onnx) | 6.6ms |
| PicoDet-M | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco_lcnet.onnx) | 8.2ms | | PicoDet-M | 320*320 | [( w/ 后处理;w/o NMS)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_lcnet_postproccesed_woNMS.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco_lcnet.onnx) | 8.2ms |
| PicoDet-M | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco_lcnet.onnx) | 12.7ms | | PicoDet-M | 416*416 | [( w/ 后处理;w/o NMS)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_lcnet_postproccesed_woNMS.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco_lcnet.onnx) | 12.7ms |
| PicoDet-L | 320*320 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco_lcnet.onnx) | 11.5ms | | PicoDet-L | 320*320 | [( w/ 后处理;w/o NMS)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_lcnet_postproccesed_woNMS.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco_lcnet.onnx) | 11.5ms |
| PicoDet-L | 416*416 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco_lcnet.onnx) | 20.7ms | | PicoDet-L | 416*416 | [( w/ 后处理;w/o NMS)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_lcnet_postproccesed_woNMS.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco_lcnet.onnx) | 20.7ms |
| PicoDet-L | 640*640 | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco.onnx) | 62.5ms | | PicoDet-L | 640*640 | [( w/ 后处理;w/o NMS)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_lcnet_postproccesed_woNMS.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco_lcnet.onnx) | 62.5ms |
- <a name="latency">测试环境:</a> 英特尔酷睿i7 10750H CPU。 - <a name="latency">测试环境:</a> 英特尔酷睿i7 10750H CPU。
...@@ -339,7 +339,7 @@ if __name__ == '__main__': ...@@ -339,7 +339,7 @@ if __name__ == '__main__':
parser.add_argument( parser.add_argument(
'--img_path', '--img_path',
type=str, type=str,
default='demo/000000014439.jpg', default='../../../../demo/000000014439.jpg',
help="image path") help="image path")
parser.add_argument( parser.add_argument(
'--onnx_path', '--onnx_path',
......
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
import argparse
from scipy.special import softmax
from openvino.runtime import Core
def image_preprocess(img_path, re_shape):
img = cv2.imread(img_path)
img = cv2.resize(
img, (re_shape, re_shape), interpolation=cv2.INTER_LANCZOS4)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = np.transpose(img, [2, 0, 1]) / 255
img = np.expand_dims(img, 0)
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
img -= img_mean
img /= img_std
return img.astype(np.float32)
def get_color_map_list(num_classes):
color_map = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
j += 1
lab >>= 3
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
return color_map
def draw_box(srcimg, results, class_label):
label_list = list(
map(lambda x: x.strip(), open(class_label, 'r').readlines()))
for i in range(len(results)):
color_list = get_color_map_list(len(label_list))
clsid2color = {}
classid, conf = int(results[i, 0]), results[i, 1]
xmin, ymin, xmax, ymax = int(results[i, 2]), int(results[i, 3]), int(
results[i, 4]), int(results[i, 5])
if classid not in clsid2color:
clsid2color[classid] = color_list[classid]
color = tuple(clsid2color[classid])
cv2.rectangle(srcimg, (xmin, ymin), (xmax, ymax), color, thickness=2)
print(label_list[classid] + ': ' + str(round(conf, 3)))
cv2.putText(
srcimg,
label_list[classid] + ':' + str(round(conf, 3)), (xmin, ymin - 10),
cv2.FONT_HERSHEY_SIMPLEX,
0.8, (0, 255, 0),
thickness=2)
return srcimg
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
"""
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
iou_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
candidate_size: only consider the candidates with the highest scores.
Returns:
picked: a list of indexes of the kept boxes
"""
scores = box_scores[:, -1]
boxes = box_scores[:, :-1]
picked = []
indexes = np.argsort(scores)
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = iou_of(
rest_boxes,
np.expand_dims(
current_box, axis=0), )
indexes = indexes[iou <= iou_threshold]
return box_scores[picked, :]
def iou_of(boxes0, boxes1, eps=1e-5):
"""Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def area_of(left_top, right_bottom):
"""Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
class PicoDetNMS(object):
"""
Args:
input_shape (int): network input image size
scale_factor (float): scale factor of ori image
"""
def __init__(self,
input_shape,
scale_x,
scale_y,
strides=[8, 16, 32, 64],
score_threshold=0.4,
nms_threshold=0.5,
nms_top_k=1000,
keep_top_k=100):
self.input_shape = input_shape
self.scale_x = scale_x
self.scale_y = scale_y
self.strides = strides
self.score_threshold = score_threshold
self.nms_threshold = nms_threshold
self.nms_top_k = nms_top_k
self.keep_top_k = keep_top_k
def __call__(self, decode_boxes, select_scores):
batch_size = 1
out_boxes_list = []
for batch_id in range(batch_size):
# nms
bboxes = np.concatenate(decode_boxes, axis=0)
confidences = np.concatenate(select_scores, axis=0)
picked_box_probs = []
picked_labels = []
for class_index in range(0, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > self.score_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = bboxes[mask, :]
box_probs = np.concatenate(
[subset_boxes, probs.reshape(-1, 1)], axis=1)
box_probs = hard_nms(
box_probs,
iou_threshold=self.nms_threshold,
top_k=self.keep_top_k, )
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if len(picked_box_probs) == 0:
out_boxes_list.append(np.empty((0, 4)))
else:
picked_box_probs = np.concatenate(picked_box_probs)
# resize output boxes
picked_box_probs[:, 0] *= self.scale_x
picked_box_probs[:, 2] *= self.scale_x
picked_box_probs[:, 1] *= self.scale_y
picked_box_probs[:, 3] *= self.scale_y
# clas score box
out_boxes_list.append(
np.concatenate(
[
np.expand_dims(
np.array(picked_labels),
axis=-1), np.expand_dims(
picked_box_probs[:, 4], axis=-1),
picked_box_probs[:, :4]
],
axis=1))
out_boxes_list = np.concatenate(out_boxes_list, axis=0)
return out_boxes_list
def detect(img_file, compiled_model, class_label):
output = compiled_model.infer_new_request({0: test_image})
result_ie = list(output.values())
decode_boxes = []
select_scores = []
num_outs = int(len(result_ie) / 2)
for out_idx in range(num_outs):
decode_boxes.append(result_ie[out_idx])
select_scores.append(result_ie[out_idx + num_outs])
image = cv2.imread(img_file, 1)
scale_x = image.shape[1] / test_image.shape[3]
scale_y = image.shape[0] / test_image.shape[2]
nms = PicoDetNMS(test_image.shape[2:], scale_x, scale_y)
np_boxes = nms(decode_boxes, select_scores)
res_image = draw_box(image, np_boxes, class_label)
cv2.imwrite('res.jpg', res_image)
cv2.imshow("res", res_image)
cv2.waitKey()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--img_path',
type=str,
default='../../demo_onnxruntime/imgs/bus.jpg',
help="image path")
parser.add_argument(
'--onnx_path',
type=str,
default='out_onnxsim_infer/picodet_s_320_postproccesed_woNMS.onnx',
help="onnx filepath")
parser.add_argument('--in_shape', type=int, default=320, help="input_size")
parser.add_argument(
'--class_label',
type=str,
default='coco_label.txt',
help="class label file")
args = parser.parse_args()
ie = Core()
net = ie.read_model(args.onnx_path)
test_image = image_preprocess(args.img_path, args.in_shape)
compiled_model = ie.compile_model(net, 'CPU')
detect(args.img_path, compiled_model, args.class_label)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册