提交 58482881 编写于 作者: L liaogang

Integrate doc en/cn into single doc

上级 0fd44c61
......@@ -169,5 +169,4 @@ add_subdirectory(paddle)
add_subdirectory(python)
if(WITH_DOC)
add_subdirectory(doc)
add_subdirectory(doc_cn)
endif()
......@@ -7,25 +7,50 @@ if(NOT DEFINED SPHINX_THEME_DIR)
endif()
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/_build")
set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR "${CMAKE_CURRENT_BINARY_DIR}/_doctrees")
set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
# HTML output directory
set(SPHINX_HTML_DIR "${CMAKE_CURRENT_BINARY_DIR}/html")
# HTML output director
set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.in"
"${BINARY_BUILD_DIR}/conf.py"
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.en.in"
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
sphinx_add_target(paddle_docs
html
${BINARY_BUILD_DIR}
${SPHINX_CACHE_DIR}
${BINARY_BUILD_DIR_EN}
${SPHINX_CACHE_DIR_EN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR})
${SPHINX_HTML_DIR_EN})
add_dependencies(paddle_docs
gen_proto_py)
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_doctrees")
# HTML output directory
set(SPHINX_HTML_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.cn.in"
"${BINARY_BUILD_DIR_CN}/conf.py"
@ONLY)
sphinx_add_target(paddle_docs_cn
html
${BINARY_BUILD_DIR_CN}
${SPHINX_CACHE_DIR_CN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
add_dependencies(paddle_docs_cn
gen_proto_py)
......@@ -15,23 +15,23 @@ MNIST的使用场景
MNIST是一个包含有70,000张灰度图片的数字分类数据集。样例数据 ``mnist_train.txt`` 如下:
.. literalinclude:: mnist_train.txt
.. literalinclude:: src/mnist_train.txt
其中每行数据代表一张图片,行内使用 ``;`` 分成两部分。第一部分是图片的标签,为0-9中的一个数字;第二部分是28*28的图片像素灰度值。 对应的 ``train.list`` 即为这个数据文件的名字:
.. literalinclude:: train.list
.. literalinclude:: src/train.list
dataprovider的使用
++++++++++++++++++
.. literalinclude:: mnist_provider.dict.py
.. literalinclude:: src/mnist_provider.dict.py
- 首先,引入PaddlePaddle的PyDataProvider2包。
- 其次,定义一个Python的 `Decorator <http://www.learnpython.org/en/Decorators>`_ `@provider`_ 。用于将下一行的数据输入函数标记成一个PyDataProvider2,同时设置它的input_types属性。
- `input_types`_:设置这个PyDataProvider2返回什么样的数据。本例根据网络配置中 ``data_layer`` 的名字,显式指定返回的是一个28*28维的稠密浮点数向量和一个[0-9]的10维整数标签。
.. literalinclude:: mnist_config.py
.. literalinclude:: src/mnist_config.py
:lines: 9-10
- 注意:如果用户不显示指定返回数据的对应关系,那么PaddlePaddle会根据layer的声明顺序,来确定对应关系。但这个关系可能不正确,所以推荐使用显式指定的方式来设置input_types。
......@@ -53,7 +53,7 @@ dataprovider的使用
在网络配置里,只需要一行代码就可以调用这个PyDataProvider2,如,
.. literalinclude:: mnist_config.py
.. literalinclude:: src/mnist_config.py
:lines: 1-7
训练数据是 ``train.list`` ,没有测试数据,调用的PyDataProvider2是 ``mnist_provider`` 模块中的 ``process`` 函数。
......@@ -80,7 +80,7 @@ dataprovider的使用
本例采用英文情感分类的数据,即将一段英文文本数据,分类成正面情绪和负面情绪两类(用0和1表示)。样例数据 ``sentimental_train.txt`` 如下:
.. literalinclude:: sentimental_train.txt
.. literalinclude:: src/sentimental_train.txt
dataprovider的使用
++++++++++++++++++
......@@ -90,7 +90,7 @@ dataprovider的使用
- 其中 ``input_types`` 和在 `@provider`_ 中配置的效果一致。本例中的输入特征是词ID的序列,因此使用 ``integer_value_sequence`` 类型来设置。
- 将 ``dictionary`` 存入settings对象,在 ``process`` 函数中使用。 dictionary是从网络配置中传入的dict对象,即一个将单词字符串映射到单词ID的字典。
.. literalinclude:: sentimental_provider.py
.. literalinclude:: src/sentimental_provider.py
网络配置中的调用
++++++++++++++++
......@@ -100,7 +100,7 @@ dataprovider的使用
* 在配置中需要读取外部字典。
* 在声明DataProvider的时候传入dictionary作为参数。
.. literalinclude:: sentimental_config.py
.. literalinclude:: src/sentimental_config.py
:emphasize-lines: 12-14
参考(Reference)
......
......@@ -24,18 +24,18 @@ of 28 x 28 pixels.
A small part of the original data as an example is shown as below:
.. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_train.txt
.. literalinclude:: src/mnist_train.txt
Each line of the data contains two parts, separated by :code:`;`. The first part is
label of an image. The second part contains 28x28 pixel float values.
Just write path of the above data into train.list. It looks like this:
.. literalinclude:: ../../../doc_cn/ui/data_provider/train.list
.. literalinclude:: src/train.list
The corresponding dataprovider is shown as below:
.. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_provider.py
.. literalinclude:: src/mnist_provider.dict.py
The first line imports PyDataProvider2 package.
The main function is the process function, that has two parameters.
......@@ -74,7 +74,7 @@ sample by using keywords :code:`yield`.
Only a few lines of codes need to be added into the training configuration file,
you can take this as an example.
.. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_config.py
.. literalinclude:: src/mnist_config.py
Here we specify training data by :code:`train.list`, and no testing data is specified.
The method which actually provide data is :code:`process`.
......@@ -83,7 +83,7 @@ User also can use another style to provide data, which defines the
:code:`data_layer`'s name explicitly when `yield`. For example,
the :code:`dataprovider` is shown as below.
.. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_provider.dict.py
.. literalinclude:: src/mnist_provider.dict.py
:linenos:
If user did't give the :code:`data_layer`'s name, PaddlePaddle will use
......@@ -119,11 +119,11 @@ negative sentiment (marked by 0 and 1 respectively).
A small part of the original data as an example can be found in the path below:
.. literalinclude:: ../../../doc_cn/ui/data_provider/sentimental_train.txt
.. literalinclude:: src/sentimental_train.txt
The corresponding data provider can be found in the path below:
.. literalinclude:: ../../../doc_cn/ui/data_provider/sentimental_provider.py
.. literalinclude:: src/sentimental_provider.py
This data provider for sequential model is a little more complex than that
for MINST dataset.
......@@ -141,7 +141,7 @@ initialized. The :code:`on_init` function has the following parameters:
To pass these parameters into DataProvider, the following lines should be added
into trainer configuration file.
.. literalinclude:: ../../../doc_cn/ui/data_provider/sentimental_config.py
.. literalinclude:: src/sentimental_config.py
The definition is basically same as MNIST example, except:
* Load dictionary in this configuration
......
API
===
DataProvider API
----------------
.. toctree::
:maxdepth: 1
data_provider/dataprovider_cn.rst
data_provider/pydataprovider2_cn.rst
.. _api_trainer_config:
Model Config API
----------------
.. toctree::
:maxdepth: 1
trainer_config_helpers/optimizers.rst
trainer_config_helpers/data_sources.rst
trainer_config_helpers/layers.rst
trainer_config_helpers/activations.rst
trainer_config_helpers/poolings.rst
trainer_config_helpers/networks.rst
trainer_config_helpers/evaluators.rst
trainer_config_helpers/attrs.rst
Applications API
----------------
.. toctree::
:maxdepth: 1
predict/swig_py_paddle_cn.rst
......@@ -7,7 +7,7 @@ DataProvider API
.. toctree::
:maxdepth: 1
data_provider/index_en.rst
data_provider/dataprovider_en.rst
data_provider/pydataprovider2_en.rst
.. _api_trainer_config:
......
......@@ -34,7 +34,7 @@ PaddlePaddle使用swig对常用的预测接口进行了封装,通过编译会
如下是一段使用mnist model来实现手写识别的预测代码。完整的代码见 ``src_root/doc/ui/predict/predict_sample.py`` 。mnist model可以通过 ``src_root\demo\mnist`` 目录下的demo训练出来。
.. literalinclude:: ../../../doc/ui/predict/predict_sample.py
.. literalinclude:: src/predict_sample.py
:language: python
:lines: 15-18,121-136
......
......@@ -13,7 +13,7 @@ Here is a sample python script that shows the typical prediction process for the
MNIST classification problem. A complete sample code could be found at
:code:`src_root/doc/ui/predict/predict_sample.py`.
.. literalinclude:: ./predict_sample.py
.. literalinclude:: src/predict_sample.py
:language: python
:lines: 15-18,90-100,101-104
......
......@@ -62,7 +62,7 @@ source_suffix = ['.rst', '.md', '.Rmd']
source_encoding = 'utf-8'
# The master toctree document.
master_doc = 'index'
master_doc = 'index_cn'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
......
......@@ -63,7 +63,7 @@ source_suffix = ['.rst', '.md', '.Rmd']
source_encoding = 'utf-8'
# The master toctree document.
master_doc = 'index'
master_doc = 'index_en'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.
......
####################
PaddlePaddle常见问题
FAQ
####################
.. contents::
......@@ -33,10 +33,9 @@ PyDataProvider使用的是异步加载,同时在内存里直接随即选取数
个内存池实际上决定了shuffle的粒度。所以,如果将这个内存池减小,又要保证数据是随机的,
那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为
.. literalinclude:: reduce_min_pool_size.py
.. literalinclude:: src/reduce_min_pool_size.py
这样做可以极大的减少内存占用,并且可能会加速训练过程,详细文档参考 `这里
<../ui/data_provider/pydataprovider2.html#provider>`_ 。
这样做可以极大的减少内存占用,并且可能会加速训练过程,详细文档参考 `这里 <../ui/data_provider/pydataprovider2.html#provider>`_ 。
神经元激活内存
++++++++++++++
......@@ -76,7 +75,7 @@ PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需
使用 :code:`pydataprovider`时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。
:code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。
.. literalinclude:: reduce_min_pool_size.py
.. literalinclude:: src/reduce_min_pool_size.py
同时 :code:`@provider` 接口有一个 :code:`cache` 参数来控制缓存方法,将其设置成 :code:`CacheType.CACHE_PASS_IN_MEM` 的话,会将第一个 :code:`pass` (过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 :code:`pass` 中,不会再从 :code:`python` 端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。
......@@ -90,11 +89,11 @@ PaddlePaddle支持Sparse的训练,sparse训练需要训练特征是 :code:`spa
使用一个词前两个词和后两个词,来预测这个中间的词。这个任务的DataProvider为\:
.. literalinclude:: word2vec_dataprovider.py
.. literalinclude:: src/word2vec_dataprovider.py
这个任务的配置为\:
.. literalinclude:: word2vec_config.py
.. literalinclude:: src/word2vec_config.py
更多关于sparse训练的内容请参考 `sparse训练的文档 <TBD>`_
......@@ -158,7 +157,7 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字
这里 :code:`hidden_a` 和 :code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`。
7. *-cp27mu-linux_x86_64.whl is not a supported wheel on this platform.
-----------------------------------------------------------------------
---------------------------------------------------------------------------
出现这个问题的主要原因是,系统编译wheel包的时候,使用的 :code:`wheel` 包是最新的,
而系统中的 :code:`pip` 包比较老。具体的解决方法是,更新 :code:`pip` 包并重新编译PaddlePaddle。
......@@ -220,7 +219,7 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字
10. CMake源码编译, 找到的PythonLibs和PythonInterp版本不一致
----------------------------------------------------------
----------------------------------------------------------------
这是目前CMake寻找Python的逻辑存在缺陷,如果系统安装了多个Python版本,CMake找到的Python库和Python解释器版本可能有不一致现象,导致编译PaddlePaddle失败。正确的解决方法是,
用户强制指定特定的Python版本,具体操作如下:
......
......@@ -58,6 +58,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
cost = regression_cost(input= ȳ, label=y)
outputs(cost)
这段简短的配置展示了PaddlePaddle的基本用法:
- 第一部分定义了数据输入。一般情况下,PaddlePaddle先从一个文件列表里获得数据文件地址,然后交给用户自定义的函数(例如上面的 `process`函数)进行读入和预处理从而得到真实输入。本文中由于输入数据是随机生成的不需要读输入文件,所以放一个空列表(`empty.list`)即可。
......
......@@ -111,7 +111,24 @@ cuda相关的Driver和设备映射进container中,脚本类似于
简单的含有ssh的Dockerfile如下:
.. literalinclude:: paddle_ssh.Dockerfile
.. code-block:: bash
FROM paddledev/paddle:cpu-latest
MAINTAINER PaddlePaddle dev team <paddle-dev@baidu.com>
RUN apt-get update
RUN apt-get install -y openssh-server
RUN mkdir /var/run/sshd
RUN echo 'root:root' | chpasswd
RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]
使用该Dockerfile构建出镜像,然后运行这个container即可。相关命令为\:
......
......@@ -17,7 +17,7 @@ CPU-only one and a CUDA GPU one. We do so by configuring
`dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_
automatically runs the following commands:
.. code-block:: base
.. code-block:: bash
docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile .
docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu .
......
......@@ -9,8 +9,8 @@ PaddlePaddle提供数个预编译的二进制来进行安装,包括Docker镜
.. toctree::
:maxdepth: 1
install/docker_install.rst
install/ubuntu_install.rst
docker_install_cn.rst
ubuntu_install_cn.rst
......@@ -24,4 +24,4 @@ PaddlePaddle提供数个预编译的二进制来进行安装,包括Docker镜
.. toctree::
:maxdepth: 1
cmake/index.rst
cmake/build_from_source_cn.rst
\ No newline at end of file
......@@ -38,7 +38,20 @@ PaddlePaddle提供了ubuntu 14.04 deb安装包。
安装完成后,可以使用命令 :code:`paddle version` 查看安装后的paddle 版本:
.. literalinclude:: paddle_version.txt
.. code-block:: shell
PaddlePaddle 0.8.0b1, compiled with
with_avx: ON
with_gpu: OFF
with_double: OFF
with_python: ON
with_rdma: OFF
with_glog: ON
with_gflags: ON
with_metric_learning:
with_timer: OFF
with_predict_sdk:
可能遇到的问题
--------------
......
GET STARTED
============
.. toctree::
:maxdepth: 2
build_and_install/index_cn.rst
basic_usage/index_cn.rst
......@@ -47,7 +47,7 @@ DataProvider是PaddlePaddle系统的数据提供器,将用户的原始数据
一个简单的训练配置文件为:
.. literalinclude:: trainer_config.py
.. literalinclude:: src/trainer_config.py
:linenos:
文件开头 ``from paddle.trainer_config_helpers import *`` ,是因为PaddlePaddle配置文件与C++模块通信的最基础协议是protobuf,为了避免用户直接写复杂的protobuf string,我们为用户定以Python接口来配置网络,该Python代码可以生成protobuf包,这就是`trainer_config_helpers`_的作用。因此,在文件的开始,需要import这些函数。 这个包里面包含了模型配置需要的各个模块。
......@@ -114,7 +114,7 @@ PaddlePaddle 可以使用 ``mixed layer`` 配置出非常复杂的网络,甚
PaddlePaddle多机采用经典的 Parameter Server 架构对多个节点的 trainer 进行同步。多机训练的经典拓扑结构如下\:
.. graphviz:: pserver_topology.dot
.. graphviz:: src/pserver_topology.dot
图中每个灰色方块是一台机器,在每个机器中,先使用命令 ``paddle pserver`` 启动一个pserver进程,并指定端口号,可能的参数是\:
......
How to Configure Deep Models
============================
.. toctree::
:maxdepth: 1
rnn/recurrent_group_cn.md
rnn/hierarchical_layer_cn.rst
rnn/hrnn_rnn_api_compare_cn.rst
rnn/hrnn_demo_cn.rst
......@@ -24,18 +24,18 @@
- 本例中的原始数据一共有10个样本。每个样本由两部分组成,一个label(此处都为2)和一个已经分词后的句子。这个数据也被单层RNN网络直接使用。
.. literalinclude:: ../../../paddle/gserver/tests/Sequence/tour_train_wdseg
.. literalinclude:: ../../../../paddle/gserver/tests/Sequence/tour_train_wdseg
:language: text
- 双层序列数据一共有4个样本。 每个样本间用空行分开,整体数据和原始数据完全一样。但于双层序列的LSTM来说,第一个样本同时encode两条数据成两个向量。这四条数据同时处理的句子数量为\ :code:`[2, 3, 2, 3]`\ 。
.. literalinclude:: ../../../paddle/gserver/tests/Sequence/tour_train_wdseg.nest
.. literalinclude:: ../../../../paddle/gserver/tests/Sequence/tour_train_wdseg.nest
:language: text
其次,对于两种不同的输入数据类型,不同DataProvider对比如下(`sequenceGen.py <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/gserver/tests/sequenceGen.py>`_)\:
.. literalinclude:: ../../../paddle/gserver/tests/sequenceGen.py
.. literalinclude:: ../../../../paddle/gserver/tests/sequenceGen.py
:language: python
:lines: 21-39
:linenos:
......@@ -43,10 +43,11 @@
- 这是普通的单层时间序列的DataProvider代码,其说明如下:
* DataProvider共返回两个数据,分别是words和label。即上述代码中的第19行。
- words是原始数据中的每一句话,所对应的词表index数组。它是integer_value_sequence类型的,即整数数组。words即为这个数据中的单层时间序列。
- label是原始数据中对于每一句话的分类标签,它是integer_value类型的。
.. literalinclude:: ../../../paddle/gserver/tests/sequenceGen.py
.. literalinclude:: ../../../../paddle/gserver/tests/sequenceGen.py
:language: python
:lines: 42-71
:linenos:
......@@ -63,7 +64,7 @@
首先,我们看一下单层RNN的配置。代码中9-15行(高亮部分)即为单层RNN序列的使用代码。这里使用了PaddlePaddle预定义好的RNN处理函数。在这个函数中,RNN对于每一个时间步通过了一个LSTM网络。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_layer_group.conf
.. literalinclude:: ../../../../paddle/gserver/tests/sequence_layer_group.conf
:language: python
:lines: 38-63
:linenos:
......@@ -84,7 +85,7 @@
* 至此,\ :code:`lstm_last`\ 便和单层RNN配置中的\ :code:`lstm_last`\ 具有相同的结果了。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_nest_layer_group.conf
.. literalinclude:: ../../../../paddle/gserver/tests/sequence_nest_layer_group.conf
:language: python
:lines: 38-64
:linenos:
......@@ -106,7 +107,7 @@
- 单层RNN:过了一个很简单的recurrent_group。每一个时间步,当前的输入y和上一个时间步的输出rnn_state做了一个全链接。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_rnn.conf
.. literalinclude:: ../../../../paddle/gserver/tests/sequence_rnn.conf
:language: python
:lines: 36-48
......@@ -115,7 +116,7 @@
- 内层inner_step的recurrent_group和单层序列的几乎一样。除了boot_layer=outer_mem,表示将外层的outer_mem作为内层memory的初始状态。外层outer_step中,outer_mem是一个子句的最后一个向量,即整个双层group是将前一个子句的最后一个向量,作为下一个子句memory的初始状态。
- 从输入数据上看,单双层序列的句子是一样的,只是双层序列将其又做了子序列划分。因此双层序列的配置中,必须将前一个子句的最后一个元素,作为boot_layer传给下一个子句的memory,才能保证和单层序列的配置中“每个时间步都用了上一个时间步的输出结果”一致。
.. literalinclude:: ../../../paddle/gserver/tests/sequence_nest_rnn.conf
.. literalinclude:: ../../../../paddle/gserver/tests/sequence_nest_rnn.conf
:language: python
:lines: 39-66
......@@ -151,14 +152,14 @@
* 单层RNN\:
.. literalinclude:: ../../../paddle/gserver/tests/sequence_rnn_multi_unequalength_inputs.py
.. literalinclude:: ../../../../paddle/gserver/tests/sequence_rnn_multi_unequalength_inputs.py
:language: python
:lines: 42-59
:linenos:
* 双层RNN\ \:
.. literalinclude:: ../../../paddle/gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.py
.. literalinclude:: ../../../../paddle/gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.py
:language: python
:lines: 41-80
:linenos:
......@@ -181,11 +182,11 @@ Memory
Memory是PaddlePaddle实现RNN时候使用的一个概念。RNN即时间递归神经网络,通常要求时间步之间具有一些依赖性,即当前时间步下的神经网络依赖前一个时间步神经网络中某一个神经元输出。如下图所示。
.. graphviz:: glossary_rnn.dot
.. graphviz:: src/glossary_rnn.dot
上图中虚线的连接,即是跨越时间步的网络连接。PaddlePaddle在实现RNN的时候,将这种跨越时间步的连接用一个特殊的神经网络单元实现。这个神经网络单元就叫Memory。Memory可以缓存上一个时刻某一个神经元的输出,然后在下一个时间步输入给另一个神经元。使用Memory的RNN实现便如下图所示。
.. graphviz:: glossary_rnn_with_memory.dot
.. graphviz:: src/glossary_rnn_with_memory.dot
使用这种方式,PaddlePaddle可以比较简单的判断哪些输出是应该跨越时间步的,哪些不是。
......
......@@ -42,7 +42,7 @@ Simple Gated Recurrent Neural Network
Recurrent neural network process a sequence at each time step sequentially. An example of the architecture of LSTM is listed below.
.. image:: ../../../tutorials/sentiment_analysis/bi_lstm.jpg
.. image:: ../../../tutorials/sentiment_analysis/src/bi_lstm.jpg
:align: center
Generally speaking, a recurrent network perform the following operations from :math:`t=1` to :math:`t=T`, or reversely from :math:`t=T` to :math:`t=1`.
......
HOW TO
=======
Usage
-------
.. toctree::
:maxdepth: 1
concepts/use_concepts_cn.rst
cluster/k8s/paddle_on_k8s_cn.md
cluster/k8s/distributed_training_on_k8s_cn.md
Development
------------
.. toctree::
:maxdepth: 1
write_docs/index_cn.rst
deep_model/index_cn.rst
Optimization
-------------
.. toctree::
:maxdepth: 1
......@@ -51,7 +51,7 @@ In this tutorial, we will focus on nvprof and nvvp.
:code:`test_GpuProfiler` from :code:`paddle/math/tests` directory will be used to evaluate
above profilers.
.. literalinclude:: ../../paddle/math/tests/test_GpuProfiler.cpp
.. literalinclude:: ../../../paddle/math/tests/test_GpuProfiler.cpp
:language: c++
:lines: 111-124
:linenos:
......@@ -77,7 +77,7 @@ As a simple example, consider the following:
1. Add :code:`REGISTER_TIMER_INFO` and :code:`printAllStatus` functions (see the emphasize-lines).
.. literalinclude:: ../../paddle/math/tests/test_GpuProfiler.cpp
.. literalinclude:: ../../../paddle/math/tests/test_GpuProfiler.cpp
:language: c++
:lines: 111-124
:emphasize-lines: 8-10,13
......@@ -124,7 +124,7 @@ To use this command line profiler **nvprof**, you can simply issue the following
1. Add :code:`REGISTER_GPU_PROFILER` function (see the emphasize-lines).
.. literalinclude:: ../../paddle/math/tests/test_GpuProfiler.cpp
.. literalinclude:: ../../../paddle/math/tests/test_GpuProfiler.cpp
:language: c++
:lines: 111-124
:emphasize-lines: 6-7
......
PaddlePaddle 文档
======================
.. toctree::
:maxdepth: 1
getstarted/index_cn.rst
tutorials/index_cn.md
howto/index_cn.rst
api/index_cn.rst
faq/index_cn.rst
......@@ -9,3 +9,4 @@ PaddlePaddle Documentation
howto/index_en.rst
api/index_en.rst
about/index_en.rst
\ No newline at end of file
# TUTORIALS
There are several examples and demos here.
## Quick Start
* [Quick Start](quick_start/index_cn.rst)
## Image
* TBD
## NLP
* [Sentiment Analysis](sentiment_analysis/index_cn.md)
* [Semantic Role Labeling](semantic_role_labeling/index_cn.rst)
## Recommendation
* TBD
## Model Zoo
* TBD
# TUTORIALS
There are serveral examples and demos here.
There are several examples and demos here.
## [Quick Start](quick_start/index_en.md)
## Quick Start
* [Quick Start](quick_start/index_en.md)
## Image
......
......@@ -21,7 +21,7 @@ PaddlePaddle快速入门教程
使用PaddlePaddle, 每一个任务流程都可以被划分为如下五个步骤。
.. image:: Pipeline.jpg
.. image:: src/Pipeline_cn.jpg
:align: center
:scale: 80%
......@@ -99,7 +99,7 @@ Python脚本读取数据
本小节我们将介绍模型网络结构。
.. image:: PipelineNetwork.jpg
.. image:: src/PipelineNetwork_cn.jpg
:align: center
:scale: 80%
......@@ -112,7 +112,7 @@ Python脚本读取数据
具体流程如下:
.. image:: NetLR.jpg
.. image:: src/NetLR_cn.jpg
:align: center
:scale: 80%
......@@ -176,7 +176,7 @@ embedding模型需要稍微改变提供数据的Python脚本,即 ``dataprovide
该模型依然使用逻辑回归分类网络的框架, 只是将句子用连续向量表示替换为用稀疏向量表示, 即对第三步进行替换。句子表示的计算更新为两步:
.. image:: NetContinuous.jpg
.. image:: src/NetContinuous_cn.jpg
:align: center
:scale: 80%
......@@ -207,7 +207,7 @@ embedding模型需要稍微改变提供数据的Python脚本,即 ``dataprovide
卷积网络是一种特殊的从词向量表示到句子表示的方法, 也就是将词向量模型进一步演化为三个新步骤。
.. image:: NetConv.jpg
.. image:: src/NetConv_cn.jpg
:align: center
:scale: 80%
......@@ -238,7 +238,7 @@ embedding模型需要稍微改变提供数据的Python脚本,即 ``dataprovide
时序模型
----------
.. image:: NetRNN.jpg
.. image:: src/NetRNN_cn.jpg
:align: center
:scale: 80%
......@@ -284,7 +284,7 @@ Momentum, RMSProp,AdaDelta,AdaGrad,ADAM,Adamax等,这里采用Adam优
在数据加载和网络配置完成之后, 我们就可以训练模型了。
.. image:: PipelineTrain.jpg
.. image:: src/PipelineTrain_cn.jpg
:align: center
:scale: 80%
......@@ -294,7 +294,7 @@ Momentum, RMSProp,AdaDelta,AdaGrad,ADAM,Adamax等,这里采用Adam优
./train.sh
``train.sh``中包含了训练模型的基本命令。训练时所需设置的主要参数如下:
``train.sh`` 中包含了训练模型的基本命令。训练时所需设置的主要参数如下:
.. code-block:: bash
......@@ -312,7 +312,7 @@ Momentum, RMSProp,AdaDelta,AdaGrad,ADAM,Adamax等,这里采用Adam优
当模型训练好了之后,我们就可以进行预测了。
.. image:: PipelineTest.jpg
.. image:: src/PipelineTest_cn.jpg
:align: center
:scale: 80%
......
......@@ -32,7 +32,7 @@ The monitor breaks down two months after purchase.
the classifier should output “negative“.
To build your text classification system, your code will need to perform five steps:
<center> ![](./Pipeline_en.jpg) </center>
<center> ![](./src/Pipeline_en.jpg) </center>
- Preprocess data into a standardized format.
- Provide data to the learning model.
......@@ -160,14 +160,14 @@ You can refer to the following link for more detailed examples and data formats:
## Network Architecture
You will describe four kinds of network architectures in this section.
<center> ![](./PipelineNetwork_en.jpg) </center>
<center> ![](./src/PipelineNetwork_en.jpg) </center>
First, you will build a logistic regression model. Later, you will also get chance to build other more powerful network architectures.
For more detailed documentation, you could refer to: <a href = "../../api/trainer_config_helpers/layers.html">layer documentation</a>. All configuration files are in `demo/quick_start` directory.
### Logistic Regression
The architecture is illustrated in the following picture:
<center> ![](./NetLR_en.png) </center>
<center> ![](./src/NetLR_en.png) </center>
- You need define the data for text features. The size of the data layer is the number of words in the dictionary.
......@@ -240,7 +240,7 @@ def process(settings, file_name):
```
This model is very similar to the framework of logistic regression, but it uses word embedding vectors instead of a sparse vectors to represent words.
<center> ![](./NetContinuous_en.png) </center>
<center> ![](./src/NetContinuous_en.png) </center>
- It can look up the dense word embedding vector in the dictionary (its words embedding vector is `word_dim`). The input is a sequence of N words, the output is N word_dim dimensional vectors.
......@@ -283,7 +283,7 @@ The performance is summarized in the following table:
### Convolutional Neural Network Model
Convolutional neural network converts a sequence of word embeddings into a sentence representation using temporal convolutions. You will transform the fully connected layer of the word embedding model to 3 new sub-steps.
<center> ![](./NetConv_en.png) </center>
<center> ![](./src/NetConv_en.png) </center>
Text convolution has 3 steps:
......@@ -324,7 +324,7 @@ The performance is summarized in the following table:
<br>
### Recurrent Model
<center> ![](./NetRNN_en.png) </center>
<center> ![](./src/NetRNN_en.png) </center>
You can use Recurrent neural network as our time sequence model, including simple RNN model, GRU model, and LSTM model。
......@@ -378,7 +378,7 @@ settings(batch_size=128,
## Training Model
After completing data preparation and network architecture specification, you will run the training script.
<center> ![](./PipelineTrain_en.png) </center>
<center> ![](./src/PipelineTrain_en.png) </center>
Training script: our training script is in `train.sh` file. The training arguments are listed below:
......@@ -395,7 +395,7 @@ We do not provide examples on how to train on clusters here. If you want to trai
## Inference
You can use the trained model to perform prediction on the dataset with no labels. You can also evaluate the model on dataset with labels to obtain its test accuracy.
<center> ![](./PipelineTest_en.png) </center>
<center> ![](./src/PipelineTest_en.png) </center>
The test script is listed below. PaddlePaddle can evaluate a model on the data with labels specified in `test.list`.
......
......@@ -149,7 +149,7 @@ paddle train \
训练后,模型将保存在目录`output`中。 我们的训练曲线如下:
<center>
![pic](./curve.jpg)
![pic](./src/curve.jpg)
</center>
### 测试
......
......@@ -41,13 +41,13 @@ Unlike Bidirectional-LSTM that used in Sentiment Analysis demo, the DB-LSTM ado
The following figure shows a temporal expanded 2-layer DB-LSTM network.
<center>
![pic](./network_arch.png)
![pic](./src/network_arch.png)
</center>
### Features
Two input features play an essential role in this pipeline: predicate (pred) and argument (argu). Two other features: predicate context (ctx-p) and region mark (mr) are also adopted. Because a single predicate word can not exactly describe the predicate information, especially when the same words appear more than one times in a sentence. With the predicate context, the ambiguity can be largely eliminated. Similarly, we use region mark m<sub>r</sub> = 1 to denote the argument position if it locates in the predicate context region, or m<sub>r</sub> = 0 if does not. These four simple features are all we need for our SRL system. Features of one sample with context size set to 1 is showed as following[2]:
<center>
![pic](./feature.jpg)
![pic](./src/feature.jpg)
</center>
In this sample, the coresponding labelled sentence is:
......@@ -148,7 +148,7 @@ paddle train \
After training, the models will be saved in directory `output`. Our training curve is as following:
<center>
![pic](./curve.jpg)
![pic](./src/curve.jpg)
</center>
### Run testing
......
# 语义角色标注教程 #
语义角色标注(Semantic role labeling, SRL)是浅语义解析的一种形式,其目的是在给定的输入句子中发现每个谓词的谓词参数结构。 SRL作为很多自然语言处理任务中的中间步骤是很有用的,如信息提取、文档自动分类和问答。 实例如下 [1]:
[ <sub>A0</sub> 他 ] [ <sub>AM-MOD</sub> 将 ][ <sub>AM-NEG</sub> 不会 ] [ <sub>V</sub> 接受] [ <sub>A1</sub> 任何东西 ] 从 [<sub>A2</sub> 那些他写的东西中 ]。
- V: 动词
- A0: 接受者
- A1: 接受的东西
- A2: 从……接受
- A3: 属性
- AM-MOD: 情态动词
- AM-NEG: 否定
给定动词“接受”,句子中的大部分将会扮演某些语义角色。这里,标签方案来自 Penn Proposition Bank。
到目前为止,大多数成功的SRL系统是建立在某种形式的解析结果之上的,其中在语法结构上使用了预先定义的特征模板。 本教程将介绍使用深度双向长短期记忆(DB-LSTM)模型[2]的端到端系统来解决SRL任务,这在很大程度上优于先前的最先进的系统。 这个系统将SRL任务视为序列标记问题。
## 数据描述
相关论文[2]采用 CoNLL-2005&2012 共享任务中设置的数据进行训练和测试。根据数据许可证,演示采用 CoNLL-2005 的测试数据集,可以在网站上找到。
用户只需执行以下命令就可以下载并处理原始数据:
```bash
cd data
./get_data.sh
```
`data `目录会出现如下几个新的文件:
```bash
conll05st-release:the test data set of CoNll-2005 shared task
test.wsj.words:the Wall Street Journal data sentences
test.wsj.props: the propositional arguments
feature: the extracted features from data set
```
## 训练
### DB-LSTM
请参阅情绪分析的演示以了解有关长期短期记忆单元的更多信息。
与在 Sentiment Analysis 演示中使用的 Bidirectional-LSTM 不同,DB-LSTM 采用另一种方法来堆叠LSTM层。首先,标准LSTM以正向处理该序列。该 LSTM 层的输入和输出作为下一个 LSTM 层的输入,并被反向处理。这两个标准 LSTM 层组成一对 LSTM。然后我们堆叠一对对的 LSTM 层后得到深度 LSTM 模型。
下图展示了时间扩展的2层 DB-LSTM 网络。
<center>
![pic](./network_arch.png)
</center>
### 特征
两个输入特性在这个管道中起着至关重要的作用:predicate(pred)和argument(arguments)。 还采用了两个其他特征:谓词上下文(ctx-p)和区域标记(mr)。 因为单个谓词不能精确地描述谓词信息,特别是当相同的词在句子中出现多于一次时。 使用谓词上下文,可以在很大程度上消除歧义。类似地,如果它位于谓词上下文区域中,则使用区域标记 m<sub>r</sub> = 1 来表示参数位置,反之则 m<sub>r</sub> = 0。这四个简单的特征是我们的SRL系统所需要的。上下文大小设置为1的一个样本的特征如下[2]所示:
<center>
![pic](./feature.jpg)
</center>
在这个示例中,相应的标记句子是:
[ <sub>A1</sub> A record date ] has [ <sub>AM-NEG</sub> n't ] been [ <sub>V</sub> set ] .
在演示中, 我们采用上面的特征模板, 包括: `argument`, `predicate`, `ctx-p (p=-1,0,1)`, `mark` 并使用 `B/I/O` 方案来标记每个参数。这些特征和标签存储在 `feature` 文件中, 用`\t`分割。
### 数据提供
`dataprovider.py` 是一个包装数据的 Python 文件。 函数 `hook()` 定义了网络的数据槽。六个特征和标签都是索引槽。
```
def hook(settings, word_dict, label_dict, **kwargs):
settings.word_dict = word_dict
settings.label_dict = label_dict
#all inputs are integral and sequential type
settings.slots = [
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(predicate_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(2),
integer_value_sequence(len(label_dict))]
```
相应的数据迭代器如下:
```
@provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size,
can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
with open(file_name, 'r') as fdata:
for line in fdata:
sentence, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, label = \
line.strip().split('\t')
words = sentence.split()
sen_len = len(words)
word_slot = [settings.word_dict.get(w, UNK_IDX) for w in words]
predicate_slot = [settings.predicate_dict.get(predicate)] * sen_len
ctx_n2_slot = [settings.word_dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [settings.word_dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [settings.word_dict.get(ctx_0, UNK_IDX)] * sen_len
ctx_p1_slot = [settings.word_dict.get(ctx_p1, UNK_IDX)] * sen_len
ctx_p2_slot = [settings.word_dict.get(ctx_p2, UNK_IDX)] * sen_len
marks = mark.split()
mark_slot = [int(w) for w in marks]
label_list = label.split()
label_slot = [settings.label_dict.get(w) for w in label_list]
yield word_slot, predicate_slot, ctx_n2_slot, ctx_n1_slot, \
ctx_0_slot, ctx_p1_slot, ctx_p2_slot, mark_slot, label_slot
```
函数 `process` 产出有8个特征和标签的9个表。
### 神经网络配置
`db_lstm.py` 是在训练过程中加载字典并定义数据提供程序模块和网络架构的神经网络配置文件。
九个 `data_layer` 从数据提供程序加载实例。八个特征分别转换为嵌入,并由`mixed_layer`混合。 深度双向LSTM层提取softmax层的特征。目标函数是标签的交叉熵。
### 训练
训练的脚本是 `train.sh`,用户只需执行:
```bash
./train.sh
```
`train.sh` 中的内容:
```
paddle train \
--config=./db_lstm.py \
--use_gpu=0 \
--log_period=5000 \
--trainer_count=1 \
--show_parameter_stats_period=5000 \
--save_dir=./output \
--num_passes=10000 \
--average_test_period=10000000 \
--init_model_path=./data \
--load_missing_parameter_strategy=rand \
--test_all_data_in_one_period=1 \
2>&1 | tee 'train.log'
```
- \--config=./db_lstm.py : 网络配置文件
- \--use_gpu=false: 使用 CPU 训练(如果已安装 PaddlePaddle GPU版本并想使用 GPU 训练可以设置为true,目前 crf_layer 不支持 GPU)
- \--log_period=500: 每20批(batch)输出日志
- \--trainer_count=1: 设置线程数(或 GPU 数)
- \--show_parameter_stats_period=5000: 每100批显示参数统计
- \--save_dir=./output: 模型输出路径
- \--num_passes=10000: 设置通过数,一次通过意味着PaddlePaddle训练数据集中的所有样本一次
- \--average_test_period=10000000: 每个 average_test_period 批次对平均参数进行测试
- \--init_model_path=./data: 参数初始化路径
- \--load_missing_parameter_strategy=rand: 随机初始不存在的参数
- \--test_all_data_in_one_period=1: 在一个周期内测试所有数据
训练后,模型将保存在目录`output`中。 我们的训练曲线如下:
<center>
![pic](./curve.jpg)
</center>
### 测试
测试脚本是 `test.sh`, 执行:
```bash
./test.sh
```
`tesh.sh` 的主要部分:
```
paddle train \
--config=./db_lstm.py \
--model_list=$model_list \
--job=test \
--config_args=is_test=1 \
```
- \--config=./db_lstm.py: 网络配置文件
- \--model_list=$model_list.list: 模型列表文件
- \--job=test: 指示测试任务
- \--config_args=is_test=1: 指示测试任务的标记
- \--test_all_data_in_one_period=1: 在一个周期内测试所有数据
### 预测
预测脚本是 `predict.sh`,用户只需执行:
```bash
./predict.sh
```
`predict.sh`中,用户应该提供网络配置文件,模型路径,标签文件,字典文件,特征文件。
```
python predict.py
-c $config_file \
-w $best_model_path \
-l $label_file \
-p $predicate_dict_file \
-d $dict_file \
-i $input_file \
-o $output_file
```
`predict.py` 是主要的可执行python脚本,其中包括函数:加载模型,加载数据,数据预测。网络模型将输出标签的概率分布。 在演示中,我们使用最大概率的标签作为结果。用户还可以根据概率分布矩阵实现集束搜索或维特比解码。
预测后,结果保存在 `predict.res` 中。
## 引用
[1] Martha Palmer, Dan Gildea, and Paul Kingsbury. The Proposition Bank: An Annotated Corpus of Semantic Roles , Computational Linguistics, 31(1), 2005.
[2] Zhou, Jie, and Wei Xu. "End-to-end learning of semantic role labeling using recurrent neural networks." Proceedings of the Annual Meeting of the Association for Computational Linguistics. 2015.
......@@ -109,7 +109,7 @@ dataset
在这步任务中,我们使用了循环神经网络(RNN)的 LSTM 架构来训练情感分析模型。 引入LSTM模型主要是为了克服消失梯度的问题。 LSTM网络类似于具有隐藏层的标准循环神经网络, 但是隐藏层中的每个普通节点被一个记忆单元替换。 每个记忆单元包含四个主要的元素: 输入门, 具有自循环连接的神经元,忘记门和输出门。 更多的细节可以在文献中找到[4]。 LSTM架构的最大优点是它可以在长时间间隔内记忆信息,而没有短时记忆的损失。在有新的单词来临的每一个时间步骤内,存储在记忆单元区块的历史信息被更新用来迭代的学习单词以合理的序列程现。
<center>![LSTM](../../../doc/demo/sentiment_analysis/lstm.png)</center>
<center>![LSTM](src/lstm.png)</center>
<center>图表 1. LSTM [3]</center>
情感分析是自然语言理解中最典型的问题之一。 它的目的是预测在一个序列中表达的情感态度。 通常, ,仅仅是一些关键词,如形容词和副词,在预测序列或段落的情感中起主要作用。然而有些评论上下文非常长,例如 IMDB的数椐集。 我们只所以使用LSTM来执行这个任务是因为其改进的设计并且具有门机制。 首先,它能够从词级到具有可变上下文长度的上下文级别来总结表示。 第二,它可以在句子级别利用可扩展的上下文, 而大多数方法只是利用n-gram级别的知识。第三,它直接学习段落表示,而不是组合上下文级别信息。
......@@ -120,13 +120,13 @@ dataset
图2是双向LSTM网络,后面连全连接层和softmax层。
<center>![BiLSTM](../../../doc/demo/sentiment_analysis/bi_lstm.jpg)</center>
<center>![BiLSTM](src/bi_lstm.jpg)</center>
<center>图 2. Bidirectional-LSTM </center>
#### Stacked-LSTM
图3是三层LSTM结构。图的底部是word embedding(对文档处理后形成的单词向量)。 接下来,连接三个LSTM隐藏层,并且第二个是反向LSTM。然后提取隐藏LSTM层的所有时间步长的最大词向量作为整个序列的表示。 最后,使用具有softmax激活的全连接前馈层来执行分类任务。 更多内容可查看参考文献 [5]。
<center>![StackedLSTM](../../../doc/demo/sentiment_analysis/stacked_lstm.jpg)</center>
<center>![StackedLSTM](src/stacked_lstm.jpg)</center>
<center>图 3. Stacked-LSTM for sentiment analysis </center>
**配置**
......
if(NOT DEFINED SPHINX_THEME)
set(SPHINX_THEME default)
endif()
if(NOT DEFINED SPHINX_THEME_DIR)
set(SPHINX_THEME_DIR)
endif()
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR "${CMAKE_CURRENT_BINARY_DIR}/_doctrees")
# HTML output directory
set(SPHINX_HTML_DIR "${CMAKE_CURRENT_BINARY_DIR}/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.in"
"${BINARY_BUILD_DIR}/conf.py"
@ONLY)
sphinx_add_target(paddle_docs_cn
html
${BINARY_BUILD_DIR}
${SPHINX_CACHE_DIR}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR})
add_dependencies(paddle_docs_cn
gen_proto_py)
使用cmake编译PaddlePaddle
=========================
.. toctree::
install_deps.rst
compile_options.rst
make_and_install.rst
安装编译PaddlePaddle需要的依赖
==============================
参见 `安装编译依赖 <../../../doc/build/build_from_source.html#install-dependencies>`_
make和make install
==================
参见 `make和make install <../../../doc/build/build_from_source.html#build-and-install>`_
FROM paddledev/paddle:cpu-latest
MAINTAINER PaddlePaddle dev team <paddle-dev@baidu.com>
RUN apt-get update
RUN apt-get install -y openssh-server
RUN mkdir /var/run/sshd
RUN echo 'root:root' | chpasswd
RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
EXPOSE 22
CMD ["/usr/sbin/sshd", "-D"]
PaddlePaddle 0.8.0b1, compiled with
with_avx: ON
with_gpu: OFF
with_double: OFF
with_python: ON
with_rdma: OFF
with_glog: ON
with_gflags: ON
with_metric_learning:
with_timer: OFF
with_predict_sdk:
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册