Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
577a92d9
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
577a92d9
编写于
12月 17, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use typename DeviceContext. test=develop
上级
0c4acc83
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
103 addition
and
216 deletion
+103
-216
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+8
-4
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+92
-209
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+3
-3
未找到文件。
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
577a92d9
...
...
@@ -204,7 +204,11 @@ namespace ops = paddle::operators;
REGISTER_OPERATOR
(
yolov3_loss
,
ops
::
Yolov3LossOp
,
ops
::
Yolov3LossOpMaker
,
ops
::
Yolov3LossGradMaker
);
REGISTER_OPERATOR
(
yolov3_loss_grad
,
ops
::
Yolov3LossOpGrad
);
REGISTER_OP_CPU_KERNEL
(
yolov3_loss
,
ops
::
Yolov3LossKernel
<
float
>
,
ops
::
Yolov3LossKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
yolov3_loss_grad
,
ops
::
Yolov3LossGradKernel
<
float
>
,
ops
::
Yolov3LossGradKernel
<
double
>
);
REGISTER_OP_CPU_KERNEL
(
yolov3_loss
,
ops
::
Yolov3LossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
Yolov3LossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
yolov3_loss_grad
,
ops
::
Yolov3LossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
Yolov3LossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
577a92d9
...
...
@@ -13,6 +13,7 @@
#include <algorithm>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -32,183 +33,6 @@ static inline bool isZero(T x) {
return
fabs
(
x
)
<
1e-6
;
}
template
<
typename
T
>
static
inline
void
CalcL1LossWithWeight
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
weight
,
const
T
loss_weight
,
T
*
loss
)
{
int
n
=
x
.
dims
()[
0
];
int
stride
=
x
.
numel
()
/
n
;
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
y_data
=
y
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
loss
[
i
]
+=
fabs
(
y_data
[
j
]
-
x_data
[
j
])
*
weight_data
[
j
]
*
loss_weight
;
}
x_data
+=
stride
;
y_data
+=
stride
;
weight_data
+=
stride
;
}
}
template
<
typename
T
>
static
void
CalcL1LossGradWithWeight
(
const
T
*
loss_grad
,
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
weight
)
{
int
n
=
x
.
dims
()[
0
];
int
stride
=
x
.
numel
()
/
n
;
T
*
grad_data
=
grad
->
data
<
T
>
();
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
y_data
=
y
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
grad_data
[
j
]
=
weight_data
[
j
]
*
loss_grad
[
i
];
if
(
x_data
[
j
]
<
y_data
[
j
])
grad_data
[
j
]
*=
-
1.0
;
}
grad_data
+=
stride
;
x_data
+=
stride
;
y_data
+=
stride
;
weight_data
+=
stride
;
}
}
template
<
typename
T
>
static
inline
void
CalcMSEWithWeight
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
weight
,
const
T
loss_weight
,
T
*
loss
)
{
int
n
=
x
.
dims
()[
0
];
int
stride
=
x
.
numel
()
/
n
;
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
y_data
=
y
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
loss
[
i
]
+=
pow
(
y_data
[
j
]
-
x_data
[
j
],
2
)
*
weight_data
[
j
]
*
loss_weight
;
}
x_data
+=
stride
;
y_data
+=
stride
;
weight_data
+=
stride
;
}
}
template
<
typename
T
>
static
void
CalcMSEGradWithWeight
(
const
T
*
loss_grad
,
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
weight
)
{
int
n
=
x
.
dims
()[
0
];
int
stride
=
x
.
numel
()
/
n
;
T
*
grad_data
=
grad
->
data
<
T
>
();
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
y_data
=
y
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
grad_data
[
j
]
=
2.0
*
weight_data
[
j
]
*
(
x_data
[
j
]
-
y_data
[
j
])
*
loss_grad
[
i
];
}
grad_data
+=
stride
;
x_data
+=
stride
;
y_data
+=
stride
;
weight_data
+=
stride
;
}
}
template
<
typename
T
>
static
inline
void
CalcSCEWithWeight
(
const
Tensor
&
x
,
const
Tensor
&
label
,
const
Tensor
&
weight
,
const
T
loss_weight
,
T
*
loss
)
{
int
n
=
x
.
dims
()[
0
];
int
stride
=
x
.
numel
()
/
n
;
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
label_data
=
label
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
T
term1
=
(
x_data
[
j
]
>
0
)
?
x_data
[
j
]
:
0
;
T
term2
=
x_data
[
j
]
*
label_data
[
j
];
T
term3
=
std
::
log
(
1.0
+
std
::
exp
(
-
std
::
abs
(
x_data
[
j
])));
loss
[
i
]
+=
(
term1
-
term2
+
term3
)
*
weight_data
[
j
]
*
loss_weight
;
}
x_data
+=
stride
;
label_data
+=
stride
;
weight_data
+=
stride
;
}
}
template
<
typename
T
>
static
inline
void
CalcSCEGradWithWeight
(
const
T
*
loss_grad
,
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
label
,
const
Tensor
&
weight
)
{
int
n
=
x
.
dims
()[
0
];
int
stride
=
x
.
numel
()
/
n
;
T
*
grad_data
=
grad
->
data
<
T
>
();
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
label_data
=
label
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
stride
;
j
++
)
{
grad_data
[
j
]
=
(
1.0
/
(
1.0
+
std
::
exp
(
-
x_data
[
j
]))
-
label_data
[
j
])
*
weight_data
[
j
]
*
loss_grad
[
i
];
}
grad_data
+=
stride
;
x_data
+=
stride
;
label_data
+=
stride
;
weight_data
+=
stride
;
}
}
// template <typename T>
// static void SplitPredResult(const Tensor& input, Tensor* pred_conf,
// Tensor* pred_class, Tensor* pred_x, Tensor*
// pred_y,
// Tensor* pred_w, Tensor* pred_h,
// const int anchor_num, const int class_num) {
// const int n = input.dims()[0];
// const int h = input.dims()[2];
// const int w = input.dims()[3];
// const int box_attr_num = 5 + class_num;
//
// auto input_t = EigenTensor<T, 4>::From(input);
// auto pred_conf_t = EigenTensor<T, 4>::From(*pred_conf);
// auto pred_class_t = EigenTensor<T, 5>::From(*pred_class);
// auto pred_x_t = EigenTensor<T, 4>::From(*pred_x);
// auto pred_y_t = EigenTensor<T, 4>::From(*pred_y);
// auto pred_w_t = EigenTensor<T, 4>::From(*pred_w);
// auto pred_h_t = EigenTensor<T, 4>::From(*pred_h);
//
// for (int i = 0; i < n; i++) {
// for (int an_idx = 0; an_idx < anchor_num; an_idx++) {
// for (int j = 0; j < h; j++) {
// for (int k = 0; k < w; k++) {
// pred_x_t(i, an_idx, j, k) = input_t(i, box_attr_num * an_idx, j,
// k);
// pred_y_t(i, an_idx, j, k) =
// input_t(i, box_attr_num * an_idx + 1, j, k);
// pred_w_t(i, an_idx, j, k) =
// input_t(i, box_attr_num * an_idx + 2, j, k);
// pred_h_t(i, an_idx, j, k) =
// input_t(i, box_attr_num * an_idx + 3, j, k);
//
// pred_conf_t(i, an_idx, j, k) =
// input_t(i, box_attr_num * an_idx + 4, j, k);
//
// for (int c = 0; c < class_num; c++) {
// pred_class_t(i, an_idx, j, k, c) =
// input_t(i, box_attr_num * an_idx + 5 + c, j, k);
// }
// }
// }
// }
// }
// }
template
<
typename
T
>
static
T
CalcBoxIoU
(
std
::
vector
<
T
>
box1
,
std
::
vector
<
T
>
box2
)
{
T
b1_x1
=
box1
[
0
]
-
box1
[
2
]
/
2
;
...
...
@@ -242,30 +66,36 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
Tensor
*
tconf
,
Tensor
*
tclass
)
{
const
int
n
=
gt_box
.
dims
()[
0
];
const
int
b
=
gt_box
.
dims
()[
1
];
const
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
gt_box_t
=
EigenTensor
<
T
,
3
>::
From
(
gt_box
);
auto
gt_label_t
=
EigenTensor
<
int
,
2
>::
From
(
gt_label
);
auto
conf_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
*
conf_mask
).
setConstant
(
1.0
);
auto
obj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
*
obj_mask
).
setConstant
(
0.0
);
auto
tx_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tx
).
setConstant
(
0.0
);
auto
ty_t
=
EigenTensor
<
T
,
4
>::
From
(
*
ty
).
setConstant
(
0.0
);
auto
tw_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tw
).
setConstant
(
0.0
);
auto
th_t
=
EigenTensor
<
T
,
4
>::
From
(
*
th
).
setConstant
(
0.0
);
auto
tweight_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tweight
).
setConstant
(
0.0
);
auto
tconf_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tconf
).
setConstant
(
0.0
);
auto
tclass_t
=
EigenTensor
<
T
,
5
>::
From
(
*
tclass
).
setConstant
(
0.0
);
const
int
an_num
=
anchors
.
size
()
/
2
;
const
int
h
=
tclass
->
dims
()[
2
];
const
int
w
=
tclass
->
dims
()[
3
];
const
int
class_num
=
tclass
->
dims
()[
4
];
const
T
*
gt_box_data
=
gt_box
.
data
<
T
>
();
const
int
*
gt_label_data
=
gt_label
.
data
<
int
>
();
T
*
conf_mask_data
=
conf_mask
->
data
<
T
>
();
T
*
obj_mask_data
=
obj_mask
->
data
<
T
>
();
T
*
tx_data
=
tx
->
data
<
T
>
();
T
*
ty_data
=
ty
->
data
<
T
>
();
T
*
tw_data
=
tw
->
data
<
T
>
();
T
*
th_data
=
th
->
data
<
T
>
();
T
*
tweight_data
=
tweight
->
data
<
T
>
();
T
*
tconf_data
=
tconf
->
data
<
T
>
();
T
*
tclass_data
=
tclass
->
data
<
T
>
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
b
;
j
++
)
{
if
(
isZero
<
T
>
(
gt_box_t
(
i
,
j
,
2
))
&&
isZero
<
T
>
(
gt_box_t
(
i
,
j
,
3
)))
{
int
box_idx
=
(
i
*
b
+
j
)
*
4
;
if
(
isZero
<
T
>
(
gt_box_data
[
box_idx
+
2
])
&&
isZero
<
T
>
(
gt_box_data
[
box_idx
+
3
]))
{
continue
;
}
int
cur_label
=
gt_label_
t
(
i
,
j
)
;
T
gx
=
gt_box_
t
(
i
,
j
,
0
)
*
grid_size
;
T
gy
=
gt_box_
t
(
i
,
j
,
1
)
*
grid_size
;
T
gw
=
gt_box_
t
(
i
,
j
,
2
)
*
input_size
;
T
gh
=
gt_box_
t
(
i
,
j
,
3
)
*
input_size
;
int
cur_label
=
gt_label_
data
[
i
*
b
+
j
]
;
T
gx
=
gt_box_
data
[
box_idx
]
*
grid_size
;
T
gy
=
gt_box_
data
[
box_idx
+
1
]
*
grid_size
;
T
gw
=
gt_box_
data
[
box_idx
+
2
]
*
input_size
;
T
gh
=
gt_box_
data
[
box_idx
+
3
]
*
input_size
;
int
gi
=
static_cast
<
int
>
(
gx
);
int
gj
=
static_cast
<
int
>
(
gy
);
...
...
@@ -273,7 +103,7 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
T
iou
;
int
best_an_index
=
-
1
;
std
::
vector
<
T
>
gt_box_shape
({
0
,
0
,
gw
,
gh
});
for
(
int
an_idx
=
0
;
an_idx
<
an
chor
_num
;
an_idx
++
)
{
for
(
int
an_idx
=
0
;
an_idx
<
an_num
;
an_idx
++
)
{
std
::
vector
<
T
>
anchor_shape
({
0
,
0
,
static_cast
<
T
>
(
anchors
[
2
*
an_idx
]),
static_cast
<
T
>
(
anchors
[
2
*
an_idx
+
1
])});
iou
=
CalcBoxIoU
<
T
>
(
gt_box_shape
,
anchor_shape
);
...
...
@@ -282,19 +112,22 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
best_an_index
=
an_idx
;
}
if
(
iou
>
ignore_thresh
)
{
conf_mask_t
(
i
,
an_idx
,
gj
,
gi
)
=
static_cast
<
T
>
(
0.0
);
int
conf_idx
=
((
i
*
an_num
+
an_idx
)
*
h
+
gj
)
*
w
+
gi
;
conf_mask_data
[
conf_idx
]
=
static_cast
<
T
>
(
0.0
);
}
}
conf_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
static_cast
<
T
>
(
1.0
);
obj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
static_cast
<
T
>
(
1.0
);
tx_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gx
-
gi
;
ty_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gy
-
gj
;
tw_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gw
/
anchors
[
2
*
best_an_index
]);
th_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gh
/
anchors
[
2
*
best_an_index
+
1
]);
tweight_t
(
i
,
best_an_index
,
gj
,
gi
)
=
2.0
-
gt_box_t
(
i
,
j
,
2
)
*
gt_box_t
(
i
,
j
,
3
);
tclass_t
(
i
,
best_an_index
,
gj
,
gi
,
cur_label
)
=
1
;
tconf_t
(
i
,
best_an_index
,
gj
,
gi
)
=
1
;
int
obj_idx
=
((
i
*
an_num
+
best_an_index
)
*
h
+
gj
)
*
w
+
gi
;
conf_mask_data
[
obj_idx
]
=
static_cast
<
T
>
(
1.0
);
obj_mask_data
[
obj_idx
]
=
static_cast
<
T
>
(
1.0
);
tx_data
[
obj_idx
]
=
gx
-
gi
;
ty_data
[
obj_idx
]
=
gy
-
gj
;
tw_data
[
obj_idx
]
=
log
(
gw
/
anchors
[
2
*
best_an_index
]);
th_data
[
obj_idx
]
=
log
(
gh
/
anchors
[
2
*
best_an_index
+
1
]);
tweight_data
[
obj_idx
]
=
2.0
-
gt_box_data
[
box_idx
+
2
]
*
gt_box_data
[
box_idx
+
3
];
tconf_data
[
obj_idx
]
=
static_cast
<
T
>
(
1.0
);
tclass_data
[
obj_idx
*
class_num
+
cur_label
]
=
static_cast
<
T
>
(
1.0
);
}
}
}
...
...
@@ -427,18 +260,26 @@ static void CalcYolov3Loss(T* loss_data, const Tensor& input, const Tensor& tx,
const
int
class_num
=
tclass
.
dims
()[
4
];
const
int
grid_num
=
h
*
w
;
// T l = 0.0;
CalcSCE
<
T
>
(
loss_data
,
input_data
,
tx_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
CalcSCE
<
T
>
(
loss_data
,
input_data
+
grid_num
,
ty_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
// LOG(ERROR) << "C++ xy: " << loss_data[0] - l;
// l = loss_data[0];
CalcL1Loss
<
T
>
(
loss_data
,
input_data
+
2
*
grid_num
,
tw_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
);
CalcL1Loss
<
T
>
(
loss_data
,
input_data
+
3
*
grid_num
,
th_data
,
tweight_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
);
// LOG(ERROR) << "C++ wh: " << loss_data[0] - l;
// l = loss_data[0];
CalcSCE
<
T
>
(
loss_data
,
input_data
+
4
*
grid_num
,
tconf_data
,
conf_mask_data
,
conf_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
1
);
// LOG(ERROR) << "C++ conf: " << loss_data[0] - l;
// l = loss_data[0];
CalcSCE
<
T
>
(
loss_data
,
input_data
+
5
*
grid_num
,
tclass_data
,
obj_mask_data
,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
class_num
);
// LOG(ERROR) << "C++ class: " << loss_data[0] - l;
}
template
<
typename
T
>
...
...
@@ -488,7 +329,7 @@ static void CalcYolov3LossGrad(T* input_grad_data, const Tensor& loss_grad,
obj_mask_data
,
n
,
an_num
,
grid_num
,
class_num
,
class_num
);
}
template
<
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
Yolov3LossKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -517,6 +358,27 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
tweight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
constant
;
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
conf_mask
,
static_cast
<
T
>
(
1.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
obj_mask
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
tx
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
ty
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
tw
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
th
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
tweight
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
tconf
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
tclass
,
static_cast
<
T
>
(
0.0
));
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
h
,
&
conf_mask
,
&
obj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
&
tconf
,
&
tclass
);
...
...
@@ -528,7 +390,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
}
};
template
<
typename
T
>
template
<
typename
DeviceContext
,
typename
T
>
class
Yolov3LossGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
...
...
@@ -559,6 +421,27 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
tweight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
math
::
SetConstant
<
DeviceContext
,
T
>
constant
;
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
conf_mask
,
static_cast
<
T
>
(
1.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
obj_mask
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
tx
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
ty
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
tw
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
th
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
tweight
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
tconf
,
static_cast
<
T
>
(
0.0
));
constant
(
ctx
.
template
device_context
<
DeviceContext
>(),
&
tclass
,
static_cast
<
T
>
(
0.0
));
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
h
,
&
conf_mask
,
&
obj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
&
tconf
,
&
tclass
);
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
577a92d9
...
...
@@ -197,12 +197,12 @@ class TestYolov3LossOp(OpTest):
max_relative_error
=
0.31
)
def
initTestCase
(
self
):
self
.
anchors
=
[
12
,
12
,
11
,
13
]
self
.
anchors
=
[
12
,
12
]
self
.
class_num
=
5
self
.
ignore_thresh
=
0.5
self
.
input_size
=
416
self
.
x_shape
=
(
3
,
len
(
self
.
anchors
)
//
2
*
(
5
+
self
.
class_num
),
5
,
5
)
self
.
gtbox_shape
=
(
3
,
5
,
4
)
self
.
x_shape
=
(
1
,
len
(
self
.
anchors
)
//
2
*
(
5
+
self
.
class_num
),
3
,
3
)
self
.
gtbox_shape
=
(
1
,
5
,
4
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录