diff --git a/configs/pphuman/README.md b/configs/pphuman/README.md index dcaa9543e1390b674e07859006ceeb3b810bed61..6a713b6ce390856805ff093f9b85e6b5a000218d 100644 --- a/configs/pphuman/README.md +++ b/configs/pphuman/README.md @@ -11,6 +11,8 @@ PaddleDetection团队提供了针对行人的基于PP-YOLOE的检测模型,用 |PP-YOLOE-l| CrowdHuman | 48.0 | 81.9 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_36e_crowdhuman.pdparams) | [配置文件](./ppyoloe_crn_l_36e_crowdhuman.yml) | |PP-YOLOE-s| 业务数据集 | 53.2 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip) | [配置文件](./ppyoloe_crn_s_36e_pphuman.yml) | |PP-YOLOE-l| 业务数据集 | 57.8 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | [配置文件](./ppyoloe_crn_l_36e_pphuman.yml) | +|PP-YOLOE+_t-P2(320)| 业务数据集 | 49.8 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_t_p2_60e_pipeline.zip) | [配置文件](./ppyoloe_plus_crn_t_p2_60e_pphuman.yml) | +|PP-YOLOE+_t-P2(416)| 业务数据集 | 52.2 | - | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_t_p2_60e_pipeline.zip) | [配置文件](./ppyoloe_plus_crn_t_p2_60e_pphuman.yml) | **注意:** diff --git a/configs/pphuman/ppyoloe_plus_crn_t_p2_60e_pphuman.yml b/configs/pphuman/ppyoloe_plus_crn_t_p2_60e_pphuman.yml new file mode 100644 index 0000000000000000000000000000000000000000..b13f19c55645b7cb6423ad0a1e84508a3acb67c4 --- /dev/null +++ b/configs/pphuman/ppyoloe_plus_crn_t_p2_60e_pphuman.yml @@ -0,0 +1,60 @@ +_BASE_: [ + '../datasets/coco_detection.yml', + '../runtime.yml', + '../ppyoloe/_base_/optimizer_300e.yml', + '../ppyoloe/_base_/ppyoloe_plus_crn_tiny_auxhead.yml', + '../ppyoloe/_base_/ppyoloe_plus_reader_tiny.yml', +] + +log_iter: 100 +snapshot_epoch: 4 +weights: output/ppyoloe_plus_crn_tiny_60e_pphuman/model_final + +pretrain_weights: https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_tiny_auxhead_300e_coco.pdparams +depth_mult: 0.33 +width_mult: 0.375 + + +num_classes: 1 +TrainDataset: + !COCODataSet + image_dir: "" + anno_path: annotations/train.json + dataset_dir: dataset/pphuman + data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] + +EvalDataset: + !COCODataSet + image_dir: "" + anno_path: annotations/val.json + dataset_dir: dataset/pphuman + +TestDataset: + !ImageFolder + anno_path: annotations/val.json + dataset_dir: dataset/pphuman + + +TrainReader: + batch_size: 8 + + +epoch: 60 +LearningRate: + base_lr: 0.001 + schedulers: + - !CosineDecay + max_epochs: 72 + - !LinearWarmup + start_factor: 0. + epochs: 1 + + +PPYOLOEHead: + static_assigner_epoch: -1 + nms: + name: MultiClassNMS + nms_top_k: 1000 + keep_top_k: 300 + score_threshold: 0.01 + nms_threshold: 0.7 diff --git a/configs/ppvehicle/README.md b/configs/ppvehicle/README.md index a0a6ee28c0714cc43ab795e68ac25d2236b6d0fd..9181162900048d6c7ffd82a2ee976996be046fc8 100644 --- a/configs/ppvehicle/README.md +++ b/configs/ppvehicle/README.md @@ -19,6 +19,9 @@ PaddleDetection团队提供了针对自动驾驶场景的基于PP-YOLOE的检测 |PP-YOLOE-s| PPVehicle9cls | 9 | 35.3 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_s_36e_ppvehicle9cls.pdparams) | [配置文件](./mot_ppyoloe_s_36e_ppvehicle9cls.yml) | |PP-YOLOE-l| PPVehicle | 1 | 63.9 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_l_36e_ppvehicle.pdparams) | [配置文件](./mot_ppyoloe_l_36e_ppvehicle.yml) | |PP-YOLOE-s| PPVehicle | 1 | 61.3 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_s_36e_ppvehicle.pdparams) | [配置文件](./mot_ppyoloe_s_36e_ppvehicle.yml) | +|PP-YOLOE+_t-P2(320)| PPVehicle | 1 | 58.2 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_t_p2_60e_ppvehicle.zip) | [配置文件](./ppyoloe_plus_crn_t_p2_60e_ppvehicle.yml) | +|PP-YOLOE+_t-P2(416)| PPVehicle | 1 | 60.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_t_p2_60e_ppvehicle.zip) | [配置文件](./ppyoloe_plus_crn_t_p2_60e_ppvehicle.yml) | + **注意:** - PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)** 调整学习率。 diff --git a/configs/ppvehicle/ppyoloe_plus_crn_t_p2_60e_ppvehicle.yml b/configs/ppvehicle/ppyoloe_plus_crn_t_p2_60e_ppvehicle.yml new file mode 100644 index 0000000000000000000000000000000000000000..815935f92f825c359d79b250e44c89ea644abda5 --- /dev/null +++ b/configs/ppvehicle/ppyoloe_plus_crn_t_p2_60e_ppvehicle.yml @@ -0,0 +1,61 @@ +_BASE_: [ + '../datasets/coco_detection.yml', + '../runtime.yml', + '../ppyoloe/_base_/optimizer_300e.yml', + '../ppyoloe/_base_/ppyoloe_plus_crn_tiny_auxhead.yml', + '../ppyoloe/_base_/ppyoloe_plus_reader_tiny.yml', +] + +log_iter: 100 +snapshot_epoch: 4 +weights: output/ppyoloe_plus_crn_tiny_60e_ppvehicle/model_final + +pretrain_weights: https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_tiny_auxhead_300e_coco.pdparams +depth_mult: 0.33 +width_mult: 0.375 + + +num_classes: 1 +TrainDataset: + !COCODataSet + image_dir: "" + anno_path: annotations/train_all.json + dataset_dir: dataset/ppvehicle + data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] + allow_empty: true + +EvalDataset: + !COCODataSet + image_dir: "" + anno_path: annotations/val_all.json + dataset_dir: dataset/ppvehicle + +TestDataset: + !ImageFolder + anno_path: annotations/val_all.json + dataset_dir: dataset/ppvehicle + + +TrainReader: + batch_size: 8 + + +epoch: 60 +LearningRate: + base_lr: 0.001 + schedulers: + - !CosineDecay + max_epochs: 72 + - !LinearWarmup + start_factor: 0. + epochs: 1 + + +PPYOLOEHead: + static_assigner_epoch: -1 + nms: + name: MultiClassNMS + nms_top_k: 1000 + keep_top_k: 300 + score_threshold: 0.01 + nms_threshold: 0.7 diff --git a/configs/ppyoloe/README.md b/configs/ppyoloe/README.md index ba5e9c0fcfe1c5ad6763114bd3b726d7716a8597..9b550b77e9e140acef259e597a072478454314d4 100644 --- a/configs/ppyoloe/README.md +++ b/configs/ppyoloe/README.md @@ -44,6 +44,16 @@ PP-YOLOE is composed of following methods: | PP-YOLOE+_x | 80 | 8 | 8 | cspresnet-x | 640 | 54.7 | 54.9 | 98.42 | 206.59 | 45.0 | 95.2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_x_80e_coco.pdparams) | [config](./ppyoloe_plus_crn_x_80e_coco.yml) | +#### Tiny model + +| Model | Epoch | GPU number | images/GPU | backbone | input shape | Box APval
0.5:0.95 | Box APtest
0.5:0.95 | Params(M) | FLOPs(G) | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | download | config | +|:--------------:|:-----:|:-------:|:----------:|:----------:| :-------:|:--------------------------:|:---------------------------:|:---------:|:--------:|:---------------:| :---------------------: |:------------------------------------------------------------------------------------:|:-------------------------------------------:| +| PP-YOLOE-t-P2 | 300 | 8 | 8 | cspresnet-t | 320 | 34.7 | 50.0 | 6.82 | 4.78 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_t_p2_300e_coco.pdparams) | [config](./ppyoloe_crn_t_p2_300e_coco.yml) | +| PP-YOLOE-t-P2 | 300 | 8 | 8 | cspresnet-t | 416 | 36.4 | 52.3 | 6.82 | 8.07 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_t_p2_300e_coco.pdparams) | [config](./ppyoloe_crn_t_p2_300e_coco.yml) | +| PP-YOLOE+_t-P2(aux) | 300 | 8 | 8 | cspresnet-t | 320 | 36.3 | 51.7 | 6.00 | 15.46 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_t_p2_auxhead_300e_coco.pdparams) | [config](./ppyoloe_plus_crn_t_p2_auxhead_300e_coco.yml) | +| PP-YOLOE+_t-P2(aux) | 300 | 8 | 8 | cspresnet-t | 416 | 39.0 | 55.1 | 6.00 | 26.13 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_t_p2_auxhead_300e_coco.pdparams) | [config](./ppyoloe_plus_crn_t_p2_auxhead_300e_coco.yml) | + + ### Comprehensive Metrics | Model | Epoch | AP0.5:0.95 | AP0.5 | AP0.75 | APsmall | APmedium | APlarge | ARsmall | ARmedium | ARlarge | |:------------------------:|:-----:|:---------------:|:----------:|:------------:|:------------:| :-----------: |:------------:|:------------:|:-------------:|:------------:| diff --git a/configs/ppyoloe/README_cn.md b/configs/ppyoloe/README_cn.md index d73bc8415024e68527a17a4f306a9a8374084b05..c07730ee927bd9d178d8912defae479656e04f9a 100644 --- a/configs/ppyoloe/README_cn.md +++ b/configs/ppyoloe/README_cn.md @@ -43,6 +43,15 @@ PP-YOLOE由以下方法组成 | PP-YOLOE+_l | 80 | 8 | 8 | cspresnet-l | 640 | 52.9 | 53.3 | 52.20 | 110.07 | 78.1 | 149.2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams) | [config](./ppyoloe_plus_crn_l_80e_coco.yml) | | PP-YOLOE+_x | 80 | 8 | 8 | cspresnet-x | 640 | 54.7 | 54.9 | 98.42 | 206.59 | 45.0 | 95.2 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_x_80e_coco.pdparams) | [config](./ppyoloe_plus_crn_x_80e_coco.yml) | +#### Tiny模型 + +| 模型 | Epoch | GPU个数 | 每GPU图片个数 | 骨干网络 | 输入尺寸 | Box APval
0.5:0.95 | Box APtest
0.5:0.95 | Params(M) | FLOPs(G) | V100 FP32(FPS) | V100 TensorRT FP16(FPS) | 模型下载 | 配置文件 | +|:---------------:|:-----:|:---------:|:--------:|:----------:|:----------:|:--------------------------:|:---------------------------:|:---------:|:--------:|:---------------:| :---------------------: |:------------------------------------------------------------------------------------:|:-------------------------------------------:| +| PP-YOLOE-t-P2 | 300 | 8 | 8 | cspresnet-t | 320 | 34.7 | 50.0 | 6.82 | 4.78 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_t_p2_300e_coco.pdparams) | [config](./ppyoloe_crn_t_p2_300e_coco.yml) | +| PP-YOLOE-t-P2 | 300 | 8 | 8 | cspresnet-t | 416 | 36.4 | 52.3 | 6.82 | 8.07 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_t_p2_300e_coco.pdparams) | [config](./ppyoloe_crn_t_p2_300e_coco.yml) | +| PP-YOLOE+_t-P2(aux) | 300 | 8 | 8 | cspresnet-t | 320 | 36.3 | 51.7 | 6.00 | 15.46 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_t_p2_auxhead_300e_coco.pdparams) | [config](./ppyoloe_plus_crn_t_p2_auxhead_300e_coco.yml) | +| PP-YOLOE+_t-P2(aux) | 300 | 8 | 8 | cspresnet-t | 416 | 39.0 | 55.1 | 6.00 | 26.13 | - | - | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_t_p2_auxhead_300e_coco.pdparams) | [config](./ppyoloe_plus_crn_t_p2_auxhead_300e_coco.yml) | + ### 综合指标 | 模型 | Epoch | AP0.5:0.95 | AP0.5 | AP0.75 | APsmall | APmedium | APlarge | ARsmall | ARmedium | ARlarge | diff --git a/configs/ppyoloe/_base_/ppyoloe_plus_crn_tiny_auxhead.yml b/configs/ppyoloe/_base_/ppyoloe_plus_crn_tiny_auxhead.yml new file mode 100644 index 0000000000000000000000000000000000000000..8aea82150dfaef11a9c7e7362642fdd8e5e951d9 --- /dev/null +++ b/configs/ppyoloe/_base_/ppyoloe_plus_crn_tiny_auxhead.yml @@ -0,0 +1,60 @@ +architecture: PPYOLOEWithAuxHead +norm_type: sync_bn +use_ema: true +ema_decay: 0.9998 +ema_black_list: ['proj_conv.weight'] +custom_black_list: ['reduce_mean'] + +PPYOLOEWithAuxHead: + backbone: CSPResNet + neck: CustomCSPPAN + yolo_head: PPYOLOEHead + aux_head: SimpleConvHead + post_process: ~ + +CSPResNet: + layers: [3, 6, 6, 3] + channels: [64, 128, 256, 512, 1024] + return_idx: [1, 2, 3] + use_large_stem: True + use_alpha: True + +CustomCSPPAN: + out_channels: [384, 384, 384] + stage_num: 1 + block_num: 3 + act: 'swish' + spp: true + +SimpleConvHead: + feat_in: 288 + feat_out: 288 + num_convs: 1 + fpn_strides: [32, 16, 8] + norm_type: 'gn' + act: 'LeakyReLU' + reg_max: 16 + +PPYOLOEHead: + fpn_strides: [32, 16, 8] + grid_cell_scale: 5.0 + grid_cell_offset: 0.5 + static_assigner_epoch: 100 + use_varifocal_loss: True + loss_weight: {class: 1.0, iou: 2.5, dfl: 0.5} + attn_conv: 'repvgg' # + static_assigner: + name: ATSSAssigner + topk: 9 + assigner: + name: TaskAlignedAssigner + topk: 13 + alpha: 1.0 + beta: 6.0 + is_close_gt: True # + nms: + name: MultiClassNMS + nms_top_k: 1000 + keep_top_k: 300 + score_threshold: 0.01 + nms_threshold: 0.7 diff --git a/configs/ppyoloe/_base_/ppyoloe_plus_tiny_reader.yml b/configs/ppyoloe/_base_/ppyoloe_plus_tiny_reader.yml new file mode 100644 index 0000000000000000000000000000000000000000..2b7be58daf8e208c4875cff6be9ea48dbf0073e5 --- /dev/null +++ b/configs/ppyoloe/_base_/ppyoloe_plus_tiny_reader.yml @@ -0,0 +1,40 @@ +worker_num: 4 +eval_height: &eval_height 320 +eval_width: &eval_width 320 +eval_size: &eval_size [*eval_height, *eval_width] + +TrainReader: + sample_transforms: + - Decode: {} + - RandomDistort: {} + - RandomExpand: {fill_value: [123.675, 116.28, 103.53]} + - RandomCrop: {} + - RandomFlip: {} + batch_transforms: + - BatchRandomResize: {target_size: [224, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544], random_size: True, random_interp: True, keep_ratio: False} + - NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none} + - Permute: {} + - PadGT: {} + batch_size: 8 + shuffle: true + drop_last: true + use_shared_memory: true + collate_batch: true + +EvalReader: + sample_transforms: + - Decode: {} + - Resize: {target_size: *eval_size, keep_ratio: False, interp: 2} + - NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none} + - Permute: {} + batch_size: 2 + +TestReader: + inputs_def: + image_shape: [3, *eval_height, *eval_width] + sample_transforms: + - Decode: {} + - Resize: {target_size: *eval_size, keep_ratio: False, interp: 2} + - NormalizeImage: {mean: [0., 0., 0.], std: [1., 1., 1.], norm_type: none} + - Permute: {} + batch_size: 1 diff --git a/configs/ppyoloe/ppyoloe_crn_t_p2_300e_coco.yml b/configs/ppyoloe/ppyoloe_crn_t_p2_300e_coco.yml new file mode 100644 index 0000000000000000000000000000000000000000..02dc0ddc9f61ac99231029238453b9490d6df546 --- /dev/null +++ b/configs/ppyoloe/ppyoloe_crn_t_p2_300e_coco.yml @@ -0,0 +1,81 @@ +_BASE_: [ + '../datasets/coco_detection.yml', + '../runtime.yml', + './_base_/optimizer_300e.yml', + './_base_/ppyoloe_crn.yml', + './_base_/ppyoloe_reader.yml', +] + +log_iter: 100 +snapshot_epoch: 10 +weights: output/ppyoloe_crn_t_p2_300e_coco/model_final + +pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/CSPResNetb_t_pretrained.pdparams +depth_mult: 0.33 +width_mult: 0.375 + + +CSPResNet: + return_idx: [0, 1, 2, 3] + +CustomCSPPAN: + out_channels: [768, 384, 192, 96] + +PPYOLOEHead: + fpn_strides: [32, 16, 8, 4] + attn_conv: 'repvgg' # + assigner: + name: TaskAlignedAssigner + topk: 13 + alpha: 1.0 + beta: 6.0 + is_close_gt: True # + nms: + name: MultiClassNMS + nms_top_k: 1000 + keep_top_k: 300 + score_threshold: 0.01 + nms_threshold: 0.7 + + +worker_num: 4 +eval_height: &eval_height 320 +eval_width: &eval_width 320 +eval_size: &eval_size [*eval_height, *eval_width] + +TrainReader: + sample_transforms: + - Decode: {} + - RandomDistort: {} + - RandomExpand: {fill_value: [123.675, 116.28, 103.53]} + - RandomCrop: {} + - RandomFlip: {} + batch_transforms: + - BatchRandomResize: {target_size: [224, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544], random_size: True, random_interp: True, keep_ratio: False} + - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} + - Permute: {} + - PadGT: {} + batch_size: 8 + shuffle: true + drop_last: true + use_shared_memory: true + collate_batch: true + +EvalReader: + sample_transforms: + - Decode: {} + - Resize: {target_size: *eval_size, keep_ratio: False, interp: 2} + - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} + - Permute: {} + batch_size: 2 + +TestReader: + inputs_def: + image_shape: [3, *eval_height, *eval_width] + sample_transforms: + - Decode: {} + - Resize: {target_size: *eval_size, keep_ratio: False, interp: 2} + - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} + - Permute: {} + batch_size: 1 + fuse_normalize: True diff --git a/configs/ppyoloe/ppyoloe_plus_crn_t_auxhead_300e_coco.yml b/configs/ppyoloe/ppyoloe_plus_crn_t_auxhead_300e_coco.yml new file mode 100644 index 0000000000000000000000000000000000000000..61422ddcceeaf8bcdeab73e24f6fcbabfd5d34a3 --- /dev/null +++ b/configs/ppyoloe/ppyoloe_plus_crn_t_auxhead_300e_coco.yml @@ -0,0 +1,15 @@ +_BASE_: [ + '../datasets/coco_detection.yml', + '../runtime.yml', + './_base_/optimizer_300e.yml', + './_base_/ppyoloe_plus_crn_tiny_auxhead.yml', + './_base_/ppyoloe_plus_tiny_reader.yml', +] + +log_iter: 100 +snapshot_epoch: 10 +weights: output/ppyoloe_plus_crn_t_auxhead_300e_coco/model_final + +pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/CSPResNetb_t_pretrained.pdparams +depth_mult: 0.33 +width_mult: 0.375 diff --git a/configs/ppyoloe/ppyoloe_plus_crn_t_p2_auxhead_300e_coco.yml b/configs/ppyoloe/ppyoloe_plus_crn_t_p2_auxhead_300e_coco.yml new file mode 100644 index 0000000000000000000000000000000000000000..27f8f5220149f6d0424c6d3d19b03dae803c33d5 --- /dev/null +++ b/configs/ppyoloe/ppyoloe_plus_crn_t_p2_auxhead_300e_coco.yml @@ -0,0 +1,36 @@ +_BASE_: [ + '../datasets/coco_detection.yml', + '../runtime.yml', + './_base_/optimizer_300e.yml', + './_base_/ppyoloe_plus_crn_tiny_auxhead.yml', + './_base_/ppyoloe_plus_tiny_reader.yml', +] + +log_iter: 100 +snapshot_epoch: 10 +weights: output/ppyoloe_plus_crn_t_p2_auxhead_300e_coco/model_final + +pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/CSPResNetb_t_pretrained.pdparams +depth_mult: 0.33 +width_mult: 0.375 + + +architecture: PPYOLOEWithAuxHead +PPYOLOEWithAuxHead: + backbone: CSPResNet + neck: CustomCSPPAN + yolo_head: PPYOLOEHead + aux_head: SimpleConvHead + post_process: ~ + +CSPResNet: + return_idx: [0, 1, 2, 3] # index 0 stands for P2 + +CustomCSPPAN: + out_channels: [384, 384, 384, 384] + +SimpleConvHead: + fpn_strides: [32, 16, 8, 4] + +PPYOLOEHead: + fpn_strides: [32, 16, 8, 4] diff --git a/ppdet/engine/export_utils.py b/ppdet/engine/export_utils.py index eb8e181690b507e0851a25134a2662b9a51e7d3c..d7d2e883d2dc38ee09fc4e3c4cdab3a1dad6d8ac 100644 --- a/ppdet/engine/export_utils.py +++ b/ppdet/engine/export_utils.py @@ -194,6 +194,9 @@ def _dump_infer_config(config, path, image_shape, model): arch_state = True break + if infer_arch == 'PPYOLOEWithAuxHead': + infer_arch = 'PPYOLOE' + if infer_arch in ['PPYOLOE', 'YOLOX', 'YOLOF']: infer_cfg['arch'] = infer_arch infer_cfg['min_subgraph_size'] = TRT_MIN_SUBGRAPH[infer_arch] diff --git a/ppdet/engine/trainer.py b/ppdet/engine/trainer.py index 272cb32bdb59082abce638d7fb5ac96abc449fa0..362140ac2029cfb5e0b740a607c85340ac8e5a87 100644 --- a/ppdet/engine/trainer.py +++ b/ppdet/engine/trainer.py @@ -157,9 +157,10 @@ class Trainer(object): if print_params: params = sum([ p.numel() for n, p in self.model.named_parameters() - if all([x not in n for x in ['_mean', '_variance']]) + if all([x not in n for x in ['_mean', '_variance', 'aux_']]) ]) # exclude BatchNorm running status - logger.info('Params: ', params / 1e6) + logger.info('Model Params : {} M.'.format((params / 1e6).numpy()[ + 0])) # build optimizer in train mode if self.mode == 'train': @@ -1105,6 +1106,10 @@ class Trainer(object): return static_model, pruned_input_spec def export(self, output_dir='output_inference'): + if hasattr(self.model, 'aux_neck'): + self.model.__delattr__('aux_neck') + if hasattr(self.model, 'aux_head'): + self.model.__delattr__('aux_head') self.model.eval() model_name = os.path.splitext(os.path.split(self.cfg.filename)[-1])[0] @@ -1151,6 +1156,10 @@ class Trainer(object): logger.info("Export Post-Quant model and saved in {}".format(save_dir)) def _flops(self, loader): + if hasattr(self.model, 'aux_neck'): + self.model.__delattr__('aux_neck') + if hasattr(self.model, 'aux_head'): + self.model.__delattr__('aux_head') self.model.eval() try: import paddleslim diff --git a/ppdet/modeling/architectures/ppyoloe.py b/ppdet/modeling/architectures/ppyoloe.py index 0d0e926f49bd164382b9707efd5d44211e9beaec..7ff7c254da92546be6b4ee684f02dfdca730ebba 100644 --- a/ppdet/modeling/architectures/ppyoloe.py +++ b/ppdet/modeling/architectures/ppyoloe.py @@ -16,10 +16,12 @@ from __future__ import absolute_import from __future__ import division from __future__ import print_function +import paddle +import copy from ppdet.core.workspace import register, create from .meta_arch import BaseArch -__all__ = ['PPYOLOE'] +__all__ = ['PPYOLOE', 'PPYOLOEWithAuxHead'] # PP-YOLOE and PP-YOLOE+ are recommended to use this architecture # PP-YOLOE and PP-YOLOE+ can also use the same architecture of YOLOv3 in yolo.py @@ -97,3 +99,101 @@ class PPYOLOE(BaseArch): def get_pred(self): return self._forward() + + +@register +class PPYOLOEWithAuxHead(BaseArch): + __category__ = 'architecture' + __inject__ = ['post_process'] + + def __init__(self, + backbone='CSPResNet', + neck='CustomCSPPAN', + yolo_head='PPYOLOEHead', + aux_head='SimpleConvHead', + post_process='BBoxPostProcess', + for_mot=False, + detach_epoch=5): + """ + PPYOLOE network, see https://arxiv.org/abs/2203.16250 + + Args: + backbone (nn.Layer): backbone instance + neck (nn.Layer): neck instance + yolo_head (nn.Layer): anchor_head instance + post_process (object): `BBoxPostProcess` instance + for_mot (bool): whether return other features for multi-object tracking + models, default False in pure object detection models. + """ + super(PPYOLOEWithAuxHead, self).__init__() + self.backbone = backbone + self.neck = neck + self.aux_neck = copy.deepcopy(self.neck) + + self.yolo_head = yolo_head + self.aux_head = aux_head + self.post_process = post_process + self.for_mot = for_mot + self.detach_epoch = detach_epoch + + @classmethod + def from_config(cls, cfg, *args, **kwargs): + # backbone + backbone = create(cfg['backbone']) + + # fpn + kwargs = {'input_shape': backbone.out_shape} + neck = create(cfg['neck'], **kwargs) + aux_neck = copy.deepcopy(neck) + + # head + kwargs = {'input_shape': neck.out_shape} + yolo_head = create(cfg['yolo_head'], **kwargs) + aux_head = create(cfg['aux_head'], **kwargs) + + return { + 'backbone': backbone, + 'neck': neck, + "yolo_head": yolo_head, + 'aux_head': aux_head, + } + + def _forward(self): + body_feats = self.backbone(self.inputs) + neck_feats = self.neck(body_feats, self.for_mot) + + if self.training: + if self.inputs['epoch_id'] >= self.detach_epoch: + aux_neck_feats = self.aux_neck([f.detach() for f in body_feats]) + dual_neck_feats = (paddle.concat( + [f.detach(), aux_f], axis=1) for f, aux_f in + zip(neck_feats, aux_neck_feats)) + else: + aux_neck_feats = self.aux_neck(body_feats) + dual_neck_feats = (paddle.concat( + [f, aux_f], axis=1) for f, aux_f in + zip(neck_feats, aux_neck_feats)) + aux_cls_scores, aux_bbox_preds = self.aux_head(dual_neck_feats) + loss = self.yolo_head( + neck_feats, + self.inputs, + aux_pred=[aux_cls_scores, aux_bbox_preds]) + return loss + else: + yolo_head_outs = self.yolo_head(neck_feats) + if self.post_process is not None: + bbox, bbox_num = self.post_process( + yolo_head_outs, self.yolo_head.mask_anchors, + self.inputs['im_shape'], self.inputs['scale_factor']) + else: + bbox, bbox_num = self.yolo_head.post_process( + yolo_head_outs, self.inputs['scale_factor']) + output = {'bbox': bbox, 'bbox_num': bbox_num} + + return output + + def get_loss(self): + return self._forward() + + def get_pred(self): + return self._forward() diff --git a/ppdet/modeling/assigners/task_aligned_assigner.py b/ppdet/modeling/assigners/task_aligned_assigner.py index cb932c7886120258b0ca15824ca1d6040ee8c830..23af79439ae7074b1a0f7fd74c42c1866c4de6ce 100644 --- a/ppdet/modeling/assigners/task_aligned_assigner.py +++ b/ppdet/modeling/assigners/task_aligned_assigner.py @@ -28,17 +28,47 @@ from .utils import (gather_topk_anchors, check_points_inside_bboxes, __all__ = ['TaskAlignedAssigner'] +def is_close_gt(anchor, gt, stride_lst, max_dist=2.0, alpha=2.): + """Calculate distance ratio of box1 and box2 in batch for larger stride + anchors dist/stride to promote the survive of large distance match + Args: + anchor (Tensor): box with the shape [L, 2] + gt (Tensor): box with the shape [N, M2, 4] + Return: + dist (Tensor): dist ratio between box1 and box2 with the shape [N, M1, M2] + """ + center1 = anchor.unsqueeze(0) + center2 = (gt[..., :2] + gt[..., -2:]) / 2. + center1 = center1.unsqueeze(1) # [N, M1, 2] -> [N, 1, M1, 2] + center2 = center2.unsqueeze(2) # [N, M2, 2] -> [N, M2, 1, 2] + + stride = paddle.concat([ + paddle.full([x], 32 / pow(2, idx)) for idx, x in enumerate(stride_lst) + ]).unsqueeze(0).unsqueeze(0) + dist = paddle.linalg.norm(center1 - center2, p=2, axis=-1) / stride + dist_ratio = dist + dist_ratio[dist < max_dist] = 1. + dist_ratio[dist >= max_dist] = 0. + return dist_ratio + + @register class TaskAlignedAssigner(nn.Layer): """TOOD: Task-aligned One-stage Object Detection """ - def __init__(self, topk=13, alpha=1.0, beta=6.0, eps=1e-9): + def __init__(self, + topk=13, + alpha=1.0, + beta=6.0, + eps=1e-9, + is_close_gt=False): super(TaskAlignedAssigner, self).__init__() self.topk = topk self.alpha = alpha self.beta = beta self.eps = eps + self.is_close_gt = is_close_gt @paddle.no_grad() def forward(self, @@ -107,7 +137,10 @@ class TaskAlignedAssigner(nn.Layer): self.beta) # check the positive sample's center in gt, [B, n, L] - is_in_gts = check_points_inside_bboxes(anchor_points, gt_bboxes) + if self.is_close_gt: + is_in_gts = is_close_gt(anchor_points, gt_bboxes, num_anchors_list) + else: + is_in_gts = check_points_inside_bboxes(anchor_points, gt_bboxes) # select topk largest alignment metrics pred bbox as candidates # for each gt, [B, n, L] diff --git a/ppdet/modeling/heads/ppyoloe_head.py b/ppdet/modeling/heads/ppyoloe_head.py index 699d601313e702d7b01e04b9ad461cf07047beca..d29e9ac73ac044ea2c65711dd895cf6e9cc2be8a 100644 --- a/ppdet/modeling/heads/ppyoloe_head.py +++ b/ppdet/modeling/heads/ppyoloe_head.py @@ -16,24 +16,29 @@ import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register +from paddle import ParamAttr +from paddle.nn.initializer import KaimingNormal +from paddle.nn.initializer import Normal, Constant from ..bbox_utils import batch_distance2bbox from ..losses import GIoULoss from ..initializer import bias_init_with_prob, constant_, normal_ from ..assigners.utils import generate_anchors_for_grid_cell -from ppdet.modeling.backbones.cspresnet import ConvBNLayer +from ppdet.modeling.backbones.cspresnet import ConvBNLayer, RepVggBlock from ppdet.modeling.ops import get_static_shape, get_act_fn from ppdet.modeling.layers import MultiClassNMS -__all__ = ['PPYOLOEHead'] +__all__ = ['PPYOLOEHead', 'SimpleConvHead'] class ESEAttn(nn.Layer): - def __init__(self, feat_channels, act='swish'): + def __init__(self, feat_channels, act='swish', attn_conv='convbn'): super(ESEAttn, self).__init__() self.fc = nn.Conv2D(feat_channels, feat_channels, 1) - self.conv = ConvBNLayer(feat_channels, feat_channels, 1, act=act) - + if attn_conv == 'convbn': + self.conv = ConvBNLayer(feat_channels, feat_channels, 1, act=act) + else: + self.conv = RepVggBlock(feat_channels, feat_channels, act=act) self._init_weights() def _init_weights(self): @@ -73,6 +78,7 @@ class PPYOLOEHead(nn.Layer): 'dfl': 0.5, }, trt=False, + attn_conv='convbn', exclude_nms=False, exclude_post_process=False, use_shared_conv=True): @@ -112,8 +118,8 @@ class PPYOLOEHead(nn.Layer): act, trt=trt) if act is None or isinstance(act, (str, dict)) else act for in_c in self.in_channels: - self.stem_cls.append(ESEAttn(in_c, act=act)) - self.stem_reg.append(ESEAttn(in_c, act=act)) + self.stem_cls.append(ESEAttn(in_c, act=act, attn_conv=attn_conv)) + self.stem_reg.append(ESEAttn(in_c, act=act, attn_conv=attn_conv)) # pred head self.pred_cls = nn.LayerList() self.pred_reg = nn.LayerList() @@ -151,7 +157,7 @@ class PPYOLOEHead(nn.Layer): self.anchor_points = anchor_points self.stride_tensor = stride_tensor - def forward_train(self, feats, targets): + def forward_train(self, feats, targets, aux_pred=None): anchors, anchor_points, num_anchors_list, stride_tensor = \ generate_anchors_for_grid_cell( feats, self.fpn_strides, self.grid_cell_scale, @@ -173,7 +179,7 @@ class PPYOLOEHead(nn.Layer): return self.get_loss([ cls_score_list, reg_distri_list, anchors, anchor_points, num_anchors_list, stride_tensor - ], targets) + ], targets, aux_pred) def _generate_anchors(self, feats=None, dtype='float32'): # just use in eval time @@ -231,12 +237,12 @@ class PPYOLOEHead(nn.Layer): return cls_score_list, reg_dist_list, anchor_points, stride_tensor - def forward(self, feats, targets=None): + def forward(self, feats, targets=None, aux_pred=None): assert len(feats) == len(self.fpn_strides), \ "The size of feats is not equal to size of fpn_strides" if self.training: - return self.forward_train(feats, targets) + return self.forward_train(feats, targets, aux_pred) else: return self.forward_eval(feats) @@ -321,13 +327,17 @@ class PPYOLOEHead(nn.Layer): loss_dfl = pred_dist.sum() * 0. return loss_l1, loss_iou, loss_dfl - def get_loss(self, head_outs, gt_meta): + def get_loss(self, head_outs, gt_meta, aux_pred=None): pred_scores, pred_distri, anchors,\ anchor_points, num_anchors_list, stride_tensor = head_outs anchor_points_s = anchor_points / stride_tensor pred_bboxes = self._bbox_decode(anchor_points_s, pred_distri) + if aux_pred is not None: + pred_scores_aux = aux_pred[0] + pred_bboxes_aux = self._bbox_decode(anchor_points_s, aux_pred[1]) + gt_labels = gt_meta['gt_class'] gt_bboxes = gt_meta['gt_bbox'] pad_gt_mask = gt_meta['pad_gt_mask'] @@ -345,6 +355,7 @@ class PPYOLOEHead(nn.Layer): alpha_l = 0.25 else: if self.sm_use: + # only used in smalldet of PPYOLOE-SOD model assigned_labels, assigned_bboxes, assigned_scores = \ self.assigner( pred_scores.detach(), @@ -356,19 +367,51 @@ class PPYOLOEHead(nn.Layer): pad_gt_mask, bg_index=self.num_classes) else: - assigned_labels, assigned_bboxes, assigned_scores = \ - self.assigner( - pred_scores.detach(), - pred_bboxes.detach() * stride_tensor, - anchor_points, - num_anchors_list, - gt_labels, - gt_bboxes, - pad_gt_mask, - bg_index=self.num_classes) + if aux_pred is None: + assigned_labels, assigned_bboxes, assigned_scores = \ + self.assigner( + pred_scores.detach(), + pred_bboxes.detach() * stride_tensor, + anchor_points, + num_anchors_list, + gt_labels, + gt_bboxes, + pad_gt_mask, + bg_index=self.num_classes) + else: + assigned_labels, assigned_bboxes, assigned_scores = \ + self.assigner( + pred_scores_aux.detach(), + pred_bboxes_aux.detach() * stride_tensor, + anchor_points, + num_anchors_list, + gt_labels, + gt_bboxes, + pad_gt_mask, + bg_index=self.num_classes) alpha_l = -1 # rescale bbox assigned_bboxes /= stride_tensor + + assign_out_dict = self.get_loss_from_assign( + pred_scores, pred_distri, pred_bboxes, anchor_points_s, + assigned_labels, assigned_bboxes, assigned_scores, alpha_l) + + if aux_pred is not None: + assign_out_dict_aux = self.get_loss_from_assign( + aux_pred[0], aux_pred[1], pred_bboxes_aux, anchor_points_s, + assigned_labels, assigned_bboxes, assigned_scores, alpha_l) + loss = {} + for key in assign_out_dict.keys(): + loss[key] = assign_out_dict[key] + assign_out_dict_aux[key] + else: + loss = assign_out_dict + + return loss + + def get_loss_from_assign(self, pred_scores, pred_distri, pred_bboxes, + anchor_points_s, assigned_labels, assigned_bboxes, + assigned_scores, alpha_l): # cls loss if self.use_varifocal_loss: one_hot_label = F.one_hot(assigned_labels, @@ -421,3 +464,169 @@ class PPYOLOEHead(nn.Layer): else: bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores) return bbox_pred, bbox_num + + +def get_activation(name="LeakyReLU"): + if name == "silu": + module = nn.Silu() + elif name == "relu": + module = nn.ReLU() + elif name in ["LeakyReLU", 'leakyrelu', 'lrelu']: + module = nn.LeakyReLU(0.1) + elif name is None: + module = nn.Identity() + else: + raise AttributeError("Unsupported act type: {}".format(name)) + return module + + +class ConvNormLayer(nn.Layer): + def __init__(self, + in_channels, + out_channels, + kernel_size, + stride=1, + padding=0, + dilation=1, + groups=1, + norm_type='gn', + activation="LeakyReLU"): + super(ConvNormLayer, self).__init__() + assert norm_type in ['bn', 'sync_bn', 'syncbn', 'gn', None] + self.conv = nn.Conv2D( + in_channels, + out_channels, + kernel_size, + stride=stride, + padding=padding, + dilation=dilation, + groups=groups, + bias_attr=False, + weight_attr=ParamAttr(initializer=KaimingNormal())) + + if norm_type in ['bn', 'sync_bn', 'syncbn']: + self.norm = nn.BatchNorm2D(out_channels) + elif norm_type == 'gn': + self.norm = nn.GroupNorm(num_groups=32, num_channels=out_channels) + else: + self.norm = None + + self.act = get_activation(activation) + + def forward(self, x): + y = self.conv(x) + if self.norm is not None: + y = self.norm(y) + y = self.act(y) + return y + + +class ScaleReg(nn.Layer): + """ + Parameter for scaling the regression outputs. + """ + + def __init__(self, scale=1.0): + super(ScaleReg, self).__init__() + scale = paddle.to_tensor(scale) + self.scale = self.create_parameter( + shape=[1], + dtype='float32', + default_initializer=nn.initializer.Assign(scale)) + + def forward(self, x): + return x * self.scale + + +@register +class SimpleConvHead(nn.Layer): + __shared__ = ['num_classes'] + + def __init__(self, + num_classes=80, + feat_in=288, + feat_out=288, + num_convs=1, + fpn_strides=[32, 16, 8, 4], + norm_type='gn', + act='LeakyReLU', + prior_prob=0.01, + reg_max=16): + super(SimpleConvHead, self).__init__() + self.num_classes = num_classes + self.feat_in = feat_in + self.feat_out = feat_out + self.num_convs = num_convs + self.fpn_strides = fpn_strides + self.reg_max = reg_max + + self.cls_convs = nn.LayerList() + self.reg_convs = nn.LayerList() + for i in range(self.num_convs): + in_c = feat_in if i == 0 else feat_out + self.cls_convs.append( + ConvNormLayer( + in_c, + feat_out, + 3, + stride=1, + padding=1, + norm_type=norm_type, + activation=act)) + self.reg_convs.append( + ConvNormLayer( + in_c, + feat_out, + 3, + stride=1, + padding=1, + norm_type=norm_type, + activation=act)) + + bias_cls = bias_init_with_prob(prior_prob) + self.gfl_cls = nn.Conv2D( + feat_out, + self.num_classes, + kernel_size=3, + stride=1, + padding=1, + weight_attr=ParamAttr(initializer=Normal( + mean=0.0, std=0.01)), + bias_attr=ParamAttr(initializer=Constant(value=bias_cls))) + self.gfl_reg = nn.Conv2D( + feat_out, + 4 * (self.reg_max + 1), + kernel_size=3, + stride=1, + padding=1, + weight_attr=ParamAttr(initializer=Normal( + mean=0.0, std=0.01)), + bias_attr=ParamAttr(initializer=Constant(value=0))) + + self.scales = nn.LayerList() + for i in range(len(self.fpn_strides)): + self.scales.append(ScaleReg(1.0)) + + def forward(self, feats): + cls_scores = [] + bbox_preds = [] + for x, scale in zip(feats, self.scales): + cls_feat = x + reg_feat = x + for cls_conv in self.cls_convs: + cls_feat = cls_conv(cls_feat) + for reg_conv in self.reg_convs: + reg_feat = reg_conv(reg_feat) + + cls_score = self.gfl_cls(cls_feat) + cls_score = F.sigmoid(cls_score) + cls_score = cls_score.flatten(2).transpose([0, 2, 1]) + cls_scores.append(cls_score) + + bbox_pred = scale(self.gfl_reg(reg_feat)) + bbox_pred = bbox_pred.flatten(2).transpose([0, 2, 1]) + bbox_preds.append(bbox_pred) + + cls_scores = paddle.concat(cls_scores, axis=1) + bbox_preds = paddle.concat(bbox_preds, axis=1) + return cls_scores, bbox_preds