Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
549df290
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
549df290
编写于
5月 20, 2022
作者:
G
Guanghua Yu
提交者:
GitHub
5月 20, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add yolov3 PrunerQAT joint compression strategy (#6008)
* add yolov3 PrunerQAT joint compression strategy * update readme
上级
73ec9173
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
88 addition
and
2 deletion
+88
-2
configs/slim/README.md
configs/slim/README.md
+1
-0
configs/slim/extensions/yolov3_mobilenetv1_prune_qat.yml
configs/slim/extensions/yolov3_mobilenetv1_prune_qat.yml
+19
-0
ppdet/engine/trainer.py
ppdet/engine/trainer.py
+1
-1
ppdet/slim/__init__.py
ppdet/slim/__init__.py
+1
-1
ppdet/slim/prune.py
ppdet/slim/prune.py
+66
-0
未找到文件。
configs/slim/README.md
浏览文件 @
549df290
...
...
@@ -179,3 +179,4 @@ python3.7 tools/post_quant.py -c configs/ppyolo/ppyolo_mbv3_large_coco.yml --sli
| ------------------ | ------------ | -------- | :---------: |:---------: |:---------: | :---------: |:----------------------------------------------------------: | :----------------------------------------------------------: | :----------------------------------------------------------: |
| YOLOv3-MobileNetV1 | baseline | 608 | 24.65 | 94.2 | 332.0ms | 29.4 |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_coco.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml
)
| - |
| YOLOv3-MobileNetV1 | 蒸馏+剪裁 | 608 | 7.54(-69.4%) | 30.9(-67.2%) | 166.1ms | 28.4(-1.0) |
[
下载链接
](
https://paddledet.bj.bcebos.com/models/slim/yolov3_mobilenet_v1_coco_distill_prune.pdparams
)
|
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml
)
|
[
slim配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/extensions/yolov3_mobilenet_v1_coco_distill_prune.yml
)
|
| YOLOv3-MobileNetV1 | 剪裁+量化 | 608 | - | - | - | - | - |
[
配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/yolov3/yolov3_mobilenet_v1_270e_voc.yml
)
|
[
slim配置文件
](
https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim/extensions/yolov3_mobilenetv1_prune_qat.yml
)
|
configs/slim/extensions/yolov3_mobilenetv1_prune_qat.yml
0 → 100644
浏览文件 @
549df290
# Weights of yolov3_mobilenet_v1_voc
pretrain_weights
:
https://paddledet.bj.bcebos.com/models/yolov3_mobilenet_v1_270e_voc.pdparams
slim
:
PrunerQAT
PrunerQAT
:
criterion
:
fpgm
pruned_params
:
[
'
conv2d_27.w_0'
,
'
conv2d_28.w_0'
,
'
conv2d_29.w_0'
,
'
conv2d_30.w_0'
,
'
conv2d_31.w_0'
,
'
conv2d_32.w_0'
,
'
conv2d_34.w_0'
,
'
conv2d_35.w_0'
,
'
conv2d_36.w_0'
,
'
conv2d_37.w_0'
,
'
conv2d_38.w_0'
,
'
conv2d_39.w_0'
,
'
conv2d_41.w_0'
,
'
conv2d_42.w_0'
,
'
conv2d_43.w_0'
,
'
conv2d_44.w_0'
,
'
conv2d_45.w_0'
,
'
conv2d_46.w_0'
]
pruned_ratios
:
[
0.1
,
0.2
,
0.2
,
0.2
,
0.2
,
0.1
,
0.2
,
0.3
,
0.3
,
0.3
,
0.2
,
0.1
,
0.3
,
0.4
,
0.4
,
0.4
,
0.4
,
0.3
]
print_prune_params
:
False
quant_config
:
{
'
weight_quantize_type'
:
'
channel_wise_abs_max'
,
'
activation_quantize_type'
:
'
moving_average_abs_max'
,
'
weight_bits'
:
8
,
'
activation_bits'
:
8
,
'
dtype'
:
'
int8'
,
'
window_size'
:
10000
,
'
moving_rate'
:
0.9
,
'
quantizable_layer_type'
:
[
'
Conv2D'
,
'
Linear'
]}
print_qat_model
:
True
ppdet/engine/trainer.py
浏览文件 @
549df290
...
...
@@ -785,7 +785,7 @@ class Trainer(object):
save_dir
)
# dy2st and save model
if
'slim'
not
in
self
.
cfg
or
self
.
cfg
[
'slim_type'
]
!=
'QAT'
:
if
'slim'
not
in
self
.
cfg
or
'QAT'
not
in
self
.
cfg
[
'slim_type'
]
:
paddle
.
jit
.
save
(
static_model
,
os
.
path
.
join
(
save_dir
,
'model'
),
...
...
ppdet/slim/__init__.py
浏览文件 @
549df290
...
...
@@ -82,7 +82,7 @@ def build_slim_model(cfg, slim_cfg, mode='train'):
slim
=
create
(
cfg
.
slim
)
cfg
[
'slim_type'
]
=
cfg
.
slim
# TODO: fix quant export model in framework.
if
mode
==
'test'
and
slim_load_cfg
[
'slim'
]
==
'QAT'
:
if
mode
==
'test'
and
'QAT'
in
slim_load_cfg
[
'slim'
]
:
slim
.
quant_config
[
'activation_preprocess_type'
]
=
None
cfg
[
'model'
]
=
slim
(
model
)
cfg
[
'slim'
]
=
slim
...
...
ppdet/slim/prune.py
浏览文件 @
549df290
...
...
@@ -83,3 +83,69 @@ class Pruner(object):
pruned_flops
,
(
ori_flops
-
pruned_flops
)
/
ori_flops
))
return
model
@
register
@
serializable
class
PrunerQAT
(
object
):
def
__init__
(
self
,
criterion
,
pruned_params
,
pruned_ratios
,
print_prune_params
,
quant_config
,
print_qat_model
):
super
(
PrunerQAT
,
self
).
__init__
()
assert
criterion
in
[
'l1_norm'
,
'fpgm'
],
\
"unsupported prune criterion: {}"
.
format
(
criterion
)
# Pruner hyperparameter
self
.
criterion
=
criterion
self
.
pruned_params
=
pruned_params
self
.
pruned_ratios
=
pruned_ratios
self
.
print_prune_params
=
print_prune_params
# QAT hyperparameter
self
.
quant_config
=
quant_config
self
.
print_qat_model
=
print_qat_model
def
__call__
(
self
,
model
):
# FIXME: adapt to network graph when Training and inference are
# inconsistent, now only supports prune inference network graph.
model
.
eval
()
paddleslim
=
try_import
(
'paddleslim'
)
from
paddleslim.analysis
import
dygraph_flops
as
flops
input_spec
=
[{
"image"
:
paddle
.
ones
(
shape
=
[
1
,
3
,
640
,
640
],
dtype
=
'float32'
),
"im_shape"
:
paddle
.
full
(
[
1
,
2
],
640
,
dtype
=
'float32'
),
"scale_factor"
:
paddle
.
ones
(
shape
=
[
1
,
2
],
dtype
=
'float32'
)
}]
if
self
.
print_prune_params
:
print_prune_params
(
model
)
ori_flops
=
flops
(
model
,
input_spec
)
/
1000
logger
.
info
(
"FLOPs before pruning: {}GFLOPs"
.
format
(
ori_flops
))
if
self
.
criterion
==
'fpgm'
:
pruner
=
paddleslim
.
dygraph
.
FPGMFilterPruner
(
model
,
input_spec
)
elif
self
.
criterion
==
'l1_norm'
:
pruner
=
paddleslim
.
dygraph
.
L1NormFilterPruner
(
model
,
input_spec
)
logger
.
info
(
"pruned params: {}"
.
format
(
self
.
pruned_params
))
pruned_ratios
=
[
float
(
n
)
for
n
in
self
.
pruned_ratios
]
ratios
=
{}
for
i
,
param
in
enumerate
(
self
.
pruned_params
):
ratios
[
param
]
=
pruned_ratios
[
i
]
pruner
.
prune_vars
(
ratios
,
[
0
])
pruned_flops
=
flops
(
model
,
input_spec
)
/
1000
logger
.
info
(
"FLOPs after pruning: {}GFLOPs; pruned ratio: {}"
.
format
(
pruned_flops
,
(
ori_flops
-
pruned_flops
)
/
ori_flops
))
self
.
quanter
=
paddleslim
.
dygraph
.
quant
.
QAT
(
config
=
self
.
quant_config
)
self
.
quanter
.
quantize
(
model
)
if
self
.
print_qat_model
:
logger
.
info
(
"Quantized model:"
)
logger
.
info
(
model
)
return
model
def
save_quantized_model
(
self
,
layer
,
path
,
input_spec
=
None
,
**
config
):
self
.
quanter
.
save_quantized_model
(
model
=
layer
,
path
=
path
,
input_spec
=
input_spec
,
**
config
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录