diff --git a/python/paddle/fluid/inference_transpiler.py b/python/paddle/fluid/inference_transpiler.py index 3791e935765b494d6967f7ed2ac450b37e61c51f..194f7adf46ef8853d2eea8cf6cd787fd95e5081c 100644 --- a/python/paddle/fluid/inference_transpiler.py +++ b/python/paddle/fluid/inference_transpiler.py @@ -45,10 +45,11 @@ class InferenceTranspiler: - conv->elementwise_add->any_other_op The transpile stages are: - 1. insert elementwise_add op when bias == 0, and adjust its input and output. + 1. insert elementwise_add op when bias == 0. 2. fuse the batch_norm's parameters to conv and elementwise_add operators. - 3. remove batch_norm ops and its variables which are not used in any other ops. - 4. remove unused variables. + 3. remove batch_norm ops which are not used in any other ops. + 4. adjust the input of any_other_op to be the output of elementwise_add operator. + 5. remove unused variables. :param program: program to transpile :type program: Program @@ -62,24 +63,35 @@ class InferenceTranspiler: self.scope = scope self.place = place self.block = program.block(0) + self.input_map = {} # store the input names should be adjusted + i = 0 while i < len(self.block.ops): current_op = self.block.ops[i] # TODO(luotao1): consider only conv2d now. fc would be delt later. if current_op.type in ['conv2d']: next_op = self.block.ops[i + 1] - # TODO(luotao1): consider only conv2d without bias now. - # If conv2d with bias, the next_op.type is elementwise_add. + # conv2d without bias if (next_op.type == 'batch_norm'): # insert bias op bias_op = self._insert_bias_op(i + 1, current_op, next_op) # fuse batch_norm - self._fuse_param(current_op, next_op, bias_op) + self._fuse_param(current_op, next_op, bias_op, 0) # remove batch_norm_op self.block.remove_op(i + 2) i = i + 1 + # conv2d with bias, the next_op.type is elementwise_add + elif (next_op.type == 'elementwise_add'): + next_next_op = self.block.ops[i + 2] + if (next_next_op.type == 'batch_norm'): + # fuse batch_norm + self._fuse_param(current_op, next_next_op, next_op, 1) + # remove batch_norm_op + self.block.remove_op(i + 2) + i = i + 1 i = i + 1 + self._adjust_input() self._remove_unused_var() return program @@ -113,7 +125,7 @@ class InferenceTranspiler: attrs={"axis": 1}) # dim_start=1 return bias_op - def _fuse_param(self, current_op, bn_op, bias_op): + def _fuse_param(self, current_op, bn_op, bias_op, with_bias): ''' fuse the batch_norm_op' parameters to current_op (conv or fc) @@ -123,6 +135,8 @@ class InferenceTranspiler: :type bn_op: Operator :param bias_op: elementwise_add operator for adding bias :type bias_op: Operator + :param with_bias: If current operator has bias, with_bias = 1; otherwise 0. + :type with_bias: Int ''' def _load_tensor(param_name): @@ -144,7 +158,10 @@ class InferenceTranspiler: tmp = np.float32(np.divide(scale_bn, std_bn)) # add bias of batch_norm_op to conv2d - bias = np.zeros(bias_bn.shape) + if with_bias: + bias = _load_param(bias_op.input("Y")) + else: + bias = np.zeros(bias_bn.shape) bias = np.float32( np.add(np.multiply(np.subtract(bias, mean_bn), tmp), bias_bn)) bias_tensor = _load_tensor(bias_op.input("Y")) @@ -159,6 +176,17 @@ class InferenceTranspiler: # set the updated parameters current_tensor.set(np.array(dst_param), self.place) + # collect the renamed input + self.input_map[bn_op.output("Y")[0]] = bias_op.output("Out")[0] + + def _adjust_input(self): + for i in range(len(self.block.ops)): + current_op = self.block.ops[i] + for input_arg in current_op.input_arg_names: + if input_arg in self.input_map: + current_op.rename_input(input_arg, + self.input_map[input_arg]) + def _remove_unused_var(self): ''' remove unused varibles in program diff --git a/python/paddle/fluid/tests/book/test_image_classification.py b/python/paddle/fluid/tests/book/test_image_classification.py index bca42a89cdc75d258e380cda6e15ecacbc624ac7..5e47bcb2cb533217ab5c1bfe6c5d72d91f0328d7 100644 --- a/python/paddle/fluid/tests/book/test_image_classification.py +++ b/python/paddle/fluid/tests/book/test_image_classification.py @@ -26,7 +26,13 @@ import numpy as np def resnet_cifar10(input, depth=32): - def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu'): + def conv_bn_layer(input, + ch_out, + filter_size, + stride, + padding, + act='relu', + bias_attr=False): tmp = fluid.layers.conv2d( input=input, filter_size=filter_size, @@ -34,7 +40,7 @@ def resnet_cifar10(input, depth=32): stride=stride, padding=padding, act=None, - bias_attr=False) + bias_attr=bias_attr) return fluid.layers.batch_norm(input=tmp, act=act) def shortcut(input, ch_in, ch_out, stride): @@ -45,7 +51,7 @@ def resnet_cifar10(input, depth=32): def basicblock(input, ch_in, ch_out, stride): tmp = conv_bn_layer(input, ch_out, 3, stride, 1) - tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None) + tmp = conv_bn_layer(tmp, ch_out, 3, 1, 1, act=None, bias_attr=True) short = shortcut(input, ch_in, ch_out, stride) return fluid.layers.elementwise_add(x=tmp, y=short, act='relu')