Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
546eefae
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
546eefae
编写于
1月 31, 2019
作者:
T
Tao Luo
提交者:
GitHub
1月 31, 2019
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #15591 from lidanqing-intel/lidanqing/density_prior_box
optimize density_prior_box_op.h in detect model for cpu
上级
dc5e25fc
4b3c6612
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
38 addition
and
26 deletion
+38
-26
paddle/fluid/operators/detection/density_prior_box_op.h
paddle/fluid/operators/detection/density_prior_box_op.h
+38
-26
未找到文件。
paddle/fluid/operators/detection/density_prior_box_op.h
浏览文件 @
546eefae
...
...
@@ -52,6 +52,10 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
step_height
=
step_h
;
}
int
num_priors
=
0
;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for reduction(+ : num_priors)
#endif
for
(
size_t
i
=
0
;
i
<
densities
.
size
();
++
i
)
{
num_priors
+=
(
fixed_ratios
.
size
())
*
(
pow
(
densities
[
i
],
2
));
}
...
...
@@ -64,6 +68,17 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
auto
e_boxes
=
framework
::
EigenTensor
<
T
,
4
>::
From
(
*
boxes
).
setConstant
(
0.0
);
int
step_average
=
static_cast
<
int
>
((
step_width
+
step_height
)
*
0.5
);
std
::
vector
<
float
>
sqrt_fixed_ratios
;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for
#endif
for
(
int
i
=
0
;
i
<
fixed_ratios
.
size
();
i
++
)
{
sqrt_fixed_ratios
.
push_back
(
sqrt
(
fixed_ratios
[
i
]));
}
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for
(
int
h
=
0
;
h
<
feature_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
feature_width
;
++
w
)
{
T
center_x
=
(
w
+
offset
)
*
step_width
;
...
...
@@ -73,34 +88,25 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
for
(
size_t
s
=
0
;
s
<
fixed_sizes
.
size
();
++
s
)
{
auto
fixed_size
=
fixed_sizes
[
s
];
int
density
=
densities
[
s
];
int
shift
=
step_average
/
density
;
// Generate density prior boxes with fixed ratios.
for
(
size_t
r
=
0
;
r
<
fixed_ratios
.
size
();
++
r
)
{
float
ar
=
fixed_ratios
[
r
];
int
shift
=
step_average
/
density
;
float
box_width_ratio
=
fixed_size
*
sqrt
(
ar
)
;
float
box_height_ratio
=
fixed_size
/
sqrt
(
ar
)
;
float
box_width_ratio
=
fixed_size
*
sqrt_
fixed_ratios
[
r
];
float
box_height_ratio
=
fixed_size
/
sqrt_fixed_ratios
[
r
]
;
float
density_center_x
=
center_x
-
step_average
/
2.
+
shift
/
2.
;
float
density_center_y
=
center_y
-
step_average
/
2.
+
shift
/
2.
;
for
(
int
di
=
0
;
di
<
density
;
++
di
)
{
for
(
int
dj
=
0
;
dj
<
density
;
++
dj
)
{
float
center_x_temp
=
center_x
-
step_average
/
2.
+
shift
/
2.
+
dj
*
shift
;
float
center_y_temp
=
center_y
-
step_average
/
2.
+
shift
/
2.
+
di
*
shift
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
(
center_x_temp
-
box_width_ratio
/
2.
)
/
img_width
>=
0
?
(
center_x_temp
-
box_width_ratio
/
2.
)
/
img_width
:
0
;
e_boxes
(
h
,
w
,
idx
,
1
)
=
(
center_y_temp
-
box_height_ratio
/
2.
)
/
img_height
>=
0
?
(
center_y_temp
-
box_height_ratio
/
2.
)
/
img_height
:
0
;
e_boxes
(
h
,
w
,
idx
,
2
)
=
(
center_x_temp
+
box_width_ratio
/
2.
)
/
img_width
<=
1
?
(
center_x_temp
+
box_width_ratio
/
2.
)
/
img_width
:
1
;
e_boxes
(
h
,
w
,
idx
,
3
)
=
(
center_y_temp
+
box_height_ratio
/
2.
)
/
img_height
<=
1
?
(
center_y_temp
+
box_height_ratio
/
2.
)
/
img_height
:
1
;
float
center_x_temp
=
density_center_x
+
dj
*
shift
;
float
center_y_temp
=
density_center_y
+
di
*
shift
;
e_boxes
(
h
,
w
,
idx
,
0
)
=
std
::
max
(
(
center_x_temp
-
box_width_ratio
/
2.
)
/
img_width
,
0.
);
e_boxes
(
h
,
w
,
idx
,
1
)
=
std
::
max
(
(
center_y_temp
-
box_height_ratio
/
2.
)
/
img_height
,
0.
);
e_boxes
(
h
,
w
,
idx
,
2
)
=
std
::
min
(
(
center_x_temp
+
box_width_ratio
/
2.
)
/
img_width
,
1.
);
e_boxes
(
h
,
w
,
idx
,
3
)
=
std
::
min
(
(
center_y_temp
+
box_height_ratio
/
2.
)
/
img_height
,
1.
);
idx
++
;
}
}
...
...
@@ -131,8 +137,14 @@ class DensityPriorBoxOpKernel : public framework::OpKernel<T> {
vars
->
Resize
({
box_num
,
static_cast
<
int
>
(
variances
.
size
())});
auto
e_vars
=
framework
::
EigenMatrix
<
T
,
Eigen
::
RowMajor
>::
From
(
*
vars
);
e_vars
=
var_et
.
broadcast
(
Eigen
::
DSizes
<
int
,
2
>
(
box_num
,
1
));
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for
(
int
i
=
0
;
i
<
box_num
;
++
i
)
{
for
(
int
j
=
0
;
j
<
variances
.
size
();
++
j
)
{
e_vars
(
i
,
j
)
=
variances
[
j
];
}
}
vars
->
Resize
(
var_dim
);
boxes
->
Resize
(
box_dim
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录