Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
5422776b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
5422776b
编写于
8月 11, 2017
作者:
Y
Yi Wang
提交者:
GitHub
8月 11, 2017
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12 from qingqing01/framework_proto
make unit test of backward_test pass.
上级
f4858157
aad49da9
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
249 addition
and
216 deletion
+249
-216
paddle/framework/backward.cc
paddle/framework/backward.cc
+6
-6
paddle/framework/backward_test.cc
paddle/framework/backward_test.cc
+242
-209
paddle/framework/operator.cc
paddle/framework/operator.cc
+1
-1
未找到文件。
paddle/framework/backward.cc
浏览文件 @
5422776b
...
...
@@ -25,7 +25,7 @@ template <typename Map, typename T>
static
void
ForEachVarName
(
Map
&
names
,
T
callback
)
{
for
(
auto
&
name
:
names
)
{
for
(
auto
&
n
:
name
.
second
)
{
if
(
callback
(
n
))
break
;
if
(
callback
(
n
))
return
;
}
}
}
...
...
@@ -33,12 +33,12 @@ static void ForEachVarName(Map& names, T callback) {
static
bool
AllInSet
(
const
std
::
unordered_map
<
std
::
string
,
std
::
vector
<
std
::
string
>>&
names
,
const
std
::
string
&
suffix
,
const
std
::
unordered_set
<
std
::
string
>&
set
)
{
bool
ret_val
=
true
;
ForEachVarName
(
names
,
[
&
ret_val
,
&
set
,
&
suffix
](
const
std
::
string
&
n
)
{
ret_val
=
set
.
find
(
n
+
suffix
)
=
=
set
.
end
();
return
!
ret_val
;
bool
all_in_set
=
true
;
ForEachVarName
(
names
,
[
&
all_in_set
,
&
set
,
&
suffix
](
const
std
::
string
&
n
)
{
all_in_set
=
set
.
find
(
n
+
suffix
)
!
=
set
.
end
();
return
!
all_in_set
;
});
return
ret_val
;
return
all_in_set
;
}
static
std
::
shared_ptr
<
OperatorBase
>
NOP
()
{
...
...
paddle/framework/backward_test.cc
浏览文件 @
5422776b
...
...
@@ -82,11 +82,11 @@ class FcOp : public operators::NetOp {
AddOp
(
OpRegistry
::
CreateOp
(
"mul"
,
{{
"X"
,
{
Input
(
"X"
)}},
{
"Y"
,
{
Input
(
"W"
)}}},
{{
"Out"
,
{
Output
(
"mul_result"
)}}},
{}));
auto
b_name
=
Input
(
"b"
);
auto
input_b
=
Inputs
(
"b"
);
std
::
string
before_act
=
"mul_result"
;
if
(
b_name
!=
kEmptyVarName
)
{
if
(
input_b
.
size
()
!=
0
)
{
AddOp
(
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{{
"X"
,
{
Output
(
"mul_result"
)}},
{
"b"
,
{
b_name
}}},
"rowwise_add"
,
{{
"X"
,
{
Output
(
"mul_result"
)}},
{
"b"
,
{
input_b
[
0
]
}}},
{{
"Out"
,
{
Output
(
"add_result"
)}}},
{}));
before_act
=
"add_result"
;
}
else
{
...
...
@@ -166,209 +166,242 @@ REGISTER_OP(fc, f::FcOp, f::FcOpMaker);
REGISTER_OP
(
many_output_op
,
f
::
EmptyOp
,
f
::
ManyOutputOpMaker
);
REGISTER_GRADIENT_OP
(
many_output_op
,
many_output_op_grad
,
f
::
EmptyOp
);
// TEST(Backward, simple_op_grad) {
// auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
// ASSERT_NE(fwd, nullptr);
// auto gop = f::OpRegistry::CreateGradOp(*fwd);
// ASSERT_EQ(4UL, gop->inputs_.size());
// ASSERT_EQ(f::kEmptyVarName, gop->inputs_[0]);
// ASSERT_EQ("rowwise_add_grad", gop->type_);
// ASSERT_EQ(f::GradVarName("X"), gop->outputs_[0]);
// ASSERT_EQ(f::GradVarName("b"), gop->outputs_[1]);
//
// ASSERT_EQ(f::GradVarName("X"), gop->Output(f::GradVarName("X")));
//}
//
// TEST(Backward, simple_op_not_need_grad) {
// auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
// ASSERT_NE(fwd, nullptr);
// auto gop = f::Backward(*fwd, {"X"});
// ASSERT_EQ(std::find(gop->outputs_.begin(), gop->outputs_.end(),
// f::GradVarName("X")),
// gop->outputs_.end());
//
// auto no_input_gop = f::Backward(*fwd, {"X", "b"});
// ASSERT_NE(no_input_gop, nullptr);
// ASSERT_TRUE(no_input_gop->IsNetOp());
// ASSERT_EQ(0UL,
// std::static_pointer_cast<ops::NetOp>(no_input_gop)->ops_.size());
//}
//
// TEST(Backward, net_fc_backward_normal) {
// std::shared_ptr<f::OperatorBase> fwd = f::OpRegistry::CreateOp(
// "fc", {"X", "w", "b"}, {"mul_result", "add_result", "out"}, {});
// ASSERT_NE(fwd, nullptr);
// std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
// ASSERT_TRUE(gop->IsNetOp());
// auto net = static_cast<ops::NetOp *>(gop.get());
//
// ASSERT_NO_THROW(net->DebugString());
//
// ASSERT_EQ(3UL, net->ops_.size());
//
// f::OperatorBase &d_sigmoid = *net->ops_[0];
// ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);
//
// f::OperatorBase &d_add = *net->ops_[1];
// ASSERT_EQ("rowwise_add_grad", d_add.type_);
//
// f::OperatorBase &d_mul = *net->ops_[2];
// ASSERT_EQ("mul_grad", d_mul.type_);
//}
//
// TEST(Backward, net_fc_backward_not_have_b) {
// std::shared_ptr<f::OperatorBase> fwd =
// f::OpRegistry::CreateOp("fc", {"X", "w", f::kEmptyVarName},
// {"mul_result", "add_result", "tmp"}, {});
// ASSERT_NE(fwd, nullptr);
// std::shared_ptr<f::OperatorBase> gop = f::Backward(*fwd, {});
// ASSERT_TRUE(gop->IsNetOp());
// auto net = static_cast<ops::NetOp *>(gop.get());
//
// ASSERT_NO_THROW(net->DebugString());
//
// ASSERT_EQ(2UL, net->ops_.size());
//
// f::OperatorBase &d_sigmoid = *net->ops_[0];
// ASSERT_EQ("sigmoid_grad", d_sigmoid.type_);
//
// f::OperatorBase &d_mul = *net->ops_[1];
// ASSERT_EQ("mul_grad", d_mul.type_);
//}
//
// TEST(Backward, net_input_of_network_not_need_grad) {
// ops::NetOp net;
// net.AddOp(f::OpRegistry::CreateOp("fc", {"X", "W1", "b1"},
// {"mul_tmp_0", "add_tmp_0", "hidden0"},
// {}));
// net.AddOp(f::OpRegistry::CreateOp("fc", {"hidden0", "W2", "b2"},
// {"mul_tmp_1", "add_tmp_1", "hidden1"},
// {}));
// net.CompleteAddOp();
// auto bwd = Backward(net, {"X"}); // X@GRAD is not need.
// ASSERT_TRUE(bwd->IsNetOp());
// auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
//
// std::unordered_set<std::string> all_output =
// std::unordered_set<std::string>(
// bwd_net->outputs_.begin(), bwd_net->outputs_.end());
// all_output.erase(f::kEmptyVarName);
//
// for (auto &out : {"W1", "b1", "hidden0", "W2", "b2"}) {
// ASSERT_NE(all_output.find(f::GradVarName(out)), all_output.end());
// }
//
// // Not Generated X
// ASSERT_EQ(all_output.find(f::GradVarName("X")), all_output.end());
//
// ASSERT_EQ(2UL, bwd_net->ops_.size());
// ASSERT_TRUE(bwd_net->ops_[1]->IsNetOp());
// auto first_fc_grad = static_cast<ops::NetOp *>(bwd_net->ops_[1].get());
// ASSERT_EQ(3UL, first_fc_grad->ops_.size());
// ASSERT_EQ(f::kEmptyVarName,
// first_fc_grad->ops_[2]->Output(f::GradVarName("A")));
//}
//
// TEST(Backward, net_shared_weight) {
// ops::NetOp net;
// net.AddOp(f::OpRegistry::CreateOp("mul", {"X", "W"}, {"Out"}, {}));
// net.AddOp(f::OpRegistry::CreateOp("mul", {"Out", "W"}, {"FinalOut"}, {}));
// net.CompleteAddOp();
//
// auto bwd = f::Backward(net, {});
// ASSERT_TRUE(bwd->IsNetOp());
// auto bwd_net = static_cast<ops::NetOp *>(bwd.get());
// ASSERT_EQ(3UL, bwd_net->ops_.size());
// ASSERT_EQ("add", bwd_net->ops_[2]->type_);
//}
//
// TEST(Backward, op_register_grad_not_for_network) {
// auto fwd = f::OpRegistry::CreateOp(
// "fc", {"X", "W", "b"}, {"mul_out", "add_out", "out1"},
// {{"temporary_index", std::vector<int>{0, 1}}});
//
// ASSERT_THROW(f::OpRegistry::CreateGradOp(*fwd), EnforceNotMet);
//}
//
// TEST(Backward, op_all_input_are_not_need) {
// auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
// auto backward = f::Backward(*fwd, {"X", "b"});
// ASSERT_TRUE(backward->IsNetOp());
// auto net = static_cast<ops::NetOp *>(backward.get());
// ASSERT_TRUE(net->ops_.empty());
//}
//
// TEST(Backward, op_all_output_are_not_need) {
// auto fwd = f::OpRegistry::CreateOp("rowwise_add", {"X", "b"}, {"Out"}, {});
// auto backward = f::Backward(*fwd, {"Out"});
// ASSERT_TRUE(backward->IsNetOp());
// auto net = static_cast<ops::NetOp *>(backward.get());
// ASSERT_TRUE(net->ops_.empty());
//}
//
// TEST(Backward, op_part_of_output_are_not_need) {
// auto fwd = f::OpRegistry::CreateOp("many_output_op", {"X"}, {"Y", "Z"}, {});
// auto backward = f::Backward(*fwd, {"Z"});
// ASSERT_TRUE(backward->IsNetOp());
// auto net = static_cast<ops::NetOp *>(backward.get());
// ASSERT_EQ(net->ops_.size(), 2UL);
//
// auto &fill_zero = *net->ops_[0];
// ASSERT_EQ("fill_zeros_like", fill_zero.type_);
// ASSERT_EQ(1UL, fill_zero.inputs_.size());
// ASSERT_EQ("Z", fill_zero.inputs_[0]);
// ASSERT_EQ(1UL, fill_zero.outputs_.size());
// ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.outputs_[0]);
//
// auto &d_many_out = *net->ops_[1];
// ASSERT_EQ("many_output_op_grad", d_many_out.type_);
// ASSERT_EQ(1UL + 2UL + 2UL, d_many_out.inputs_.size()); // I/O/OG
// ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix,
// d_many_out.Input(f::GradVarName("z")));
// ASSERT_EQ(f::GradVarName("Y"), d_many_out.Input(f::GradVarName("y")));
// ASSERT_EQ(f::GradVarName("X"), d_many_out.Output(f::GradVarName("x")));
//}
//
// TEST(Backward, op_part_of_input_are_not_need) {
// auto fwd = f::OpRegistry::CreateOp("mul", {"a", "b"}, {"out"}, {});
// auto backward = f::Backward(*fwd, {"a"});
// auto &grad_mul = *backward;
// ASSERT_EQ(grad_mul.type_, "mul_grad");
// ASSERT_EQ(grad_mul.inputs_.size(), 2UL + 1UL + 1UL);
// ASSERT_EQ(grad_mul.outputs_.size(), 2UL);
// ASSERT_EQ(grad_mul.Output(f::GradVarName("A")), f::kEmptyVarName);
// ASSERT_EQ(grad_mul.Output(f::GradVarName("B")), f::GradVarName("b"));
// ASSERT_EQ(grad_mul.Input(f::GradVarName("Out")), f::GradVarName("out"));
// ASSERT_EQ(grad_mul.Input("A"), "a");
// ASSERT_EQ(grad_mul.Input("B"), "b");
// ASSERT_EQ(grad_mul.Input("Out"), "out");
//}
//
// TEST(Backward, linear_net_intermediate_variable_has_no_grad) {
// ops::NetOp net;
// net.AddOp(f::OpRegistry::CreateOp("fc", {"x1", "w1", "b1"},
// {"mul_out1", "add_out1", "out1"}, {}));
// net.AddOp(f::OpRegistry::CreateOp("fc", {"out1", "w2", "b2"},
// {"mul_out2", "tmp_out2", "out2"}, {}));
// net.AddOp(f::OpRegistry::CreateOp("fc", {"out2", "w3", "b3"},
// {"mul_out3", "tmp_out3", "out3"}, {}));
// net.CompleteAddOp();
// auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"});
// ASSERT_TRUE(backward->IsNetOp());
// auto bwd_net = static_cast<ops::NetOp *>(backward.get());
// ASSERT_EQ(bwd_net->ops_.size(), 3UL);
// auto &grad_fc = *bwd_net->ops_[0];
// EXPECT_EQ(grad_fc.inputs_.size(),
// 3UL /* external input number */
// + 1UL /* external output number*/
// + 1UL /* number of gradient of external output*/
// + 2U /* internal variable number*/);
// EXPECT_EQ(grad_fc.outputs_.size(), 2UL /* input number of mul*/
// + 2UL /* input number of rowwise_add
// */
// + 1UL /* input number of sigmod */);
// EXPECT_EQ(bwd_net->ops_[1]->inputs_.size(), 0UL);
// EXPECT_EQ(bwd_net->ops_[1]->outputs_.size(), 0UL);
// EXPECT_EQ(bwd_net->ops_[2]->inputs_.size(), 0UL);
// EXPECT_EQ(bwd_net->ops_[2]->outputs_.size(), 0UL);
//}
TEST
(
Backward
,
simple_op_grad
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{{
"X"
,
{
"x"
}},
{
"b"
,
{
"b"
}}},
{{
"Out"
,
{
"out"
}}},
{});
ASSERT_NE
(
fwd
,
nullptr
);
auto
gop
=
f
::
OpRegistry
::
CreateGradOp
(
*
fwd
);
ASSERT_EQ
(
1UL
,
gop
->
inputs_
.
size
());
ASSERT_EQ
(
"rowwise_add_grad"
,
gop
->
type_
);
ASSERT_EQ
(
f
::
GradVarName
(
"x"
),
gop
->
Output
(
f
::
GradVarName
(
"X"
)));
ASSERT_EQ
(
f
::
GradVarName
(
"b"
),
gop
->
Output
(
f
::
GradVarName
(
"b"
)));
}
TEST
(
Backward
,
simple_op_not_need_grad
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{{
"X"
,
{
"x"
}},
{
"b"
,
{
"b"
}}},
{{
"Out"
,
{
"out"
}}},
{});
ASSERT_NE
(
fwd
,
nullptr
);
auto
gop
=
f
::
Backward
(
*
fwd
,
{
"x"
});
ASSERT_EQ
(
gop
->
Output
(
f
::
GradVarName
(
"X"
)),
f
::
kEmptyVarName
);
auto
no_input_gop
=
f
::
Backward
(
*
fwd
,
{
"x"
,
"b"
});
ASSERT_NE
(
no_input_gop
,
nullptr
);
ASSERT_TRUE
(
no_input_gop
->
IsNetOp
());
ASSERT_EQ
(
0UL
,
std
::
static_pointer_cast
<
ops
::
NetOp
>
(
no_input_gop
)
->
ops_
.
size
());
}
TEST
(
Backward
,
net_fc_backward_normal
)
{
std
::
shared_ptr
<
f
::
OperatorBase
>
fwd
=
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w"
}},
{
"b"
,
{
"b"
}}},
{{
"mul_result"
,
{
"mul_res"
}},
{
"add_result"
,
{
"add_re"
}},
{
"Out"
,
{
"out"
}}},
{});
ASSERT_NE
(
fwd
,
nullptr
);
std
::
shared_ptr
<
f
::
OperatorBase
>
gop
=
f
::
Backward
(
*
fwd
,
{});
ASSERT_TRUE
(
gop
->
IsNetOp
());
auto
net
=
static_cast
<
ops
::
NetOp
*>
(
gop
.
get
());
ASSERT_NO_THROW
(
net
->
DebugString
());
ASSERT_EQ
(
3UL
,
net
->
ops_
.
size
());
f
::
OperatorBase
&
d_sigmoid
=
*
net
->
ops_
[
0
];
ASSERT_EQ
(
"sigmoid_grad"
,
d_sigmoid
.
type_
);
f
::
OperatorBase
&
d_add
=
*
net
->
ops_
[
1
];
ASSERT_EQ
(
"rowwise_add_grad"
,
d_add
.
type_
);
f
::
OperatorBase
&
d_mul
=
*
net
->
ops_
[
2
];
ASSERT_EQ
(
"mul_grad"
,
d_mul
.
type_
);
}
TEST
(
Backward
,
net_fc_backward_not_have_b
)
{
std
::
shared_ptr
<
f
::
OperatorBase
>
fwd
=
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w"
}},
{
"b"
,
{}}},
{{
"mul_result"
,
{
"mul_res"
}},
{
"add_result"
,
{
"add_res"
}},
{
"Out"
,
{
"tmp"
}}},
{});
ASSERT_NE
(
fwd
,
nullptr
);
std
::
shared_ptr
<
f
::
OperatorBase
>
gop
=
f
::
Backward
(
*
fwd
,
{});
ASSERT_TRUE
(
gop
->
IsNetOp
());
auto
net
=
static_cast
<
ops
::
NetOp
*>
(
gop
.
get
());
ASSERT_NO_THROW
(
net
->
DebugString
());
ASSERT_EQ
(
2UL
,
net
->
ops_
.
size
());
f
::
OperatorBase
&
d_sigmoid
=
*
net
->
ops_
[
0
];
ASSERT_EQ
(
"sigmoid_grad"
,
d_sigmoid
.
type_
);
f
::
OperatorBase
&
d_mul
=
*
net
->
ops_
[
1
];
ASSERT_EQ
(
"mul_grad"
,
d_mul
.
type_
);
}
TEST
(
Backward
,
net_input_of_network_not_need_grad
)
{
ops
::
NetOp
net
;
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"W1"
}},
{
"b"
,
{
"b1"
}}},
{{
"mul_result"
,
{
"mul_tmp_0"
}},
{
"add_result"
,
{
"add_tmp_0"
}},
{
"Out"
,
{
"hidden0"
}}},
{}));
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{{
"X"
,
{
"hidden0"
}},
{
"W"
,
{
"W2"
}},
{
"b"
,
{
"b2"
}}},
{{
"mul_result"
,
{
"mul_tmp_1"
}},
{
"add_result"
,
{
"add_tmp_1"
}},
{
"Out"
,
{
"hidden1"
}}},
{}));
net
.
CompleteAddOp
();
auto
bwd
=
Backward
(
net
,
{
"x"
});
// x@GRAD is not need.
ASSERT_TRUE
(
bwd
->
IsNetOp
());
auto
bwd_net
=
static_cast
<
ops
::
NetOp
*>
(
bwd
.
get
());
auto
output_vars
=
bwd_net
->
OutputVars
(
true
);
std
::
unordered_set
<
std
::
string
>
all_outputs
=
std
::
unordered_set
<
std
::
string
>
(
output_vars
.
begin
(),
output_vars
.
end
());
all_outputs
.
erase
(
f
::
kEmptyVarName
);
for
(
auto
&
out
:
{
"W1"
,
"b1"
,
"hidden0"
,
"W2"
,
"b2"
})
{
ASSERT_NE
(
all_outputs
.
find
(
f
::
GradVarName
(
out
)),
all_outputs
.
end
());
}
// Not Generated X
ASSERT_EQ
(
all_outputs
.
find
(
f
::
GradVarName
(
"X"
)),
all_outputs
.
end
());
ASSERT_EQ
(
2UL
,
bwd_net
->
ops_
.
size
());
ASSERT_TRUE
(
bwd_net
->
ops_
[
1
]
->
IsNetOp
());
auto
first_fc_grad
=
static_cast
<
ops
::
NetOp
*>
(
bwd_net
->
ops_
[
1
].
get
());
ASSERT_EQ
(
3UL
,
first_fc_grad
->
ops_
.
size
());
ASSERT_EQ
(
f
::
kEmptyVarName
,
first_fc_grad
->
ops_
[
2
]
->
Output
(
f
::
GradVarName
(
"X"
)));
}
TEST
(
Backward
,
net_shared_weight
)
{
ops
::
NetOp
net
;
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"mul"
,
{{
"X"
,
{
"x"
}},
{
"Y"
,
{
"w"
}}},
{{
"Out"
,
{
"out"
}}},
{}));
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"mul"
,
{{
"X"
,
{
"out"
}},
{
"Y"
,
{
"w"
}}},
{{
"Out"
,
{
"FinalOut"
}}},
{}));
net
.
CompleteAddOp
();
auto
bwd
=
f
::
Backward
(
net
,
{});
ASSERT_TRUE
(
bwd
->
IsNetOp
());
auto
bwd_net
=
static_cast
<
ops
::
NetOp
*>
(
bwd
.
get
());
ASSERT_EQ
(
3UL
,
bwd_net
->
ops_
.
size
());
ASSERT_EQ
(
"add"
,
bwd_net
->
ops_
[
2
]
->
type_
);
}
TEST
(
Backward
,
op_register_grad_not_for_network
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{{
"X"
,
{
"x"
}},
{
"W"
,
{
"w"
}},
{
"b"
,
{
"b"
}}},
{{
"mul_result"
,
{
"mul_out"
}},
{
"add_result"
,
{
"add_out"
}},
{
"Out"
,
{
"out1"
}}},
{{
"temporary_index"
,
std
::
vector
<
int
>
{
0
,
1
}}});
ASSERT_THROW
(
f
::
OpRegistry
::
CreateGradOp
(
*
fwd
),
EnforceNotMet
);
}
TEST
(
Backward
,
op_all_input_are_not_need
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{{
"X"
,
{
"x"
}},
{
"b"
,
{
"b"
}}},
{{
"Out"
,
{
"out"
}}},
{});
auto
backward
=
f
::
Backward
(
*
fwd
,
{
"x"
,
"b"
});
ASSERT_TRUE
(
backward
->
IsNetOp
());
auto
net
=
static_cast
<
ops
::
NetOp
*>
(
backward
.
get
());
ASSERT_TRUE
(
net
->
ops_
.
empty
());
}
TEST
(
Backward
,
op_all_output_are_not_need
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"rowwise_add"
,
{{
"X"
,
{
"x"
}},
{
"b"
,
{
"b"
}}},
{{
"Out"
,
{
"out"
}}},
{});
auto
backward
=
f
::
Backward
(
*
fwd
,
{
"out"
});
ASSERT_TRUE
(
backward
->
IsNetOp
());
auto
net
=
static_cast
<
ops
::
NetOp
*>
(
backward
.
get
());
ASSERT_TRUE
(
net
->
ops_
.
empty
());
}
TEST
(
Backward
,
op_part_of_output_are_not_need
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"many_output_op"
,
{{
"x"
,
{
"X"
}}},
{{
"y"
,
{
"Y"
}},
{
"z"
,
{
"Z"
}}},
{});
auto
backward
=
f
::
Backward
(
*
fwd
,
{
"Z"
});
ASSERT_TRUE
(
backward
->
IsNetOp
());
auto
net
=
static_cast
<
ops
::
NetOp
*>
(
backward
.
get
());
ASSERT_EQ
(
net
->
ops_
.
size
(),
2UL
);
auto
&
fill_zero
=
*
net
->
ops_
[
0
];
ASSERT_EQ
(
"fill_zeros_like"
,
fill_zero
.
type_
);
ASSERT_EQ
(
1UL
,
fill_zero
.
Inputs
(
"Src"
).
size
());
ASSERT_EQ
(
"Z"
,
fill_zero
.
Input
(
"Src"
));
ASSERT_EQ
(
1UL
,
fill_zero
.
Outputs
(
"Dst"
).
size
());
ASSERT_EQ
(
std
::
string
(
"Z"
)
+
f
::
kZeroVarSuffix
,
fill_zero
.
Output
(
"Dst"
));
auto
&
d_many_out
=
*
net
->
ops_
[
1
];
ASSERT_EQ
(
"many_output_op_grad"
,
d_many_out
.
type_
);
ASSERT_EQ
(
1UL
+
2UL
+
2UL
,
d_many_out
.
inputs_
.
size
());
// I/O/OG
ASSERT_EQ
(
std
::
string
(
"Z"
)
+
f
::
kZeroVarSuffix
,
d_many_out
.
Input
(
f
::
GradVarName
(
"z"
)));
ASSERT_EQ
(
f
::
GradVarName
(
"Y"
),
d_many_out
.
Input
(
f
::
GradVarName
(
"y"
)));
ASSERT_EQ
(
f
::
GradVarName
(
"X"
),
d_many_out
.
Output
(
f
::
GradVarName
(
"x"
)));
}
TEST
(
Backward
,
op_part_of_input_are_not_need
)
{
auto
fwd
=
f
::
OpRegistry
::
CreateOp
(
"mul"
,
{{
"X"
,
{
"a"
}},
{
"Y"
,
{
"b"
}}},
{{
"Out"
,
{
"out"
}}},
{});
auto
backward
=
f
::
Backward
(
*
fwd
,
{
"a"
});
auto
&
grad_mul
=
*
backward
;
ASSERT_EQ
(
grad_mul
.
type_
,
"mul_grad"
);
ASSERT_EQ
(
grad_mul
.
inputs_
.
size
(),
2UL
+
1UL
+
1UL
);
ASSERT_EQ
(
grad_mul
.
outputs_
.
size
(),
2UL
);
ASSERT_EQ
(
grad_mul
.
Output
(
f
::
GradVarName
(
"X"
)),
f
::
kEmptyVarName
);
ASSERT_EQ
(
grad_mul
.
Output
(
f
::
GradVarName
(
"Y"
)),
f
::
GradVarName
(
"b"
));
ASSERT_EQ
(
grad_mul
.
Input
(
f
::
GradVarName
(
"Out"
)),
f
::
GradVarName
(
"out"
));
ASSERT_EQ
(
grad_mul
.
Input
(
"X"
),
"a"
);
ASSERT_EQ
(
grad_mul
.
Input
(
"Y"
),
"b"
);
ASSERT_EQ
(
grad_mul
.
Input
(
"Out"
),
"out"
);
}
TEST
(
Backward
,
linear_net_intermediate_variable_has_no_grad
)
{
ops
::
NetOp
net
;
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{{
"X"
,
{
"x1"
}},
{
"W"
,
{
"w1"
}},
{
"b"
,
{
"b1"
}}},
{{
"mul_result"
,
{
"mul_out1"
}},
{
"add_result"
,
{
"add_out1"
}},
{
"Out"
,
{
"out1"
}}},
{}));
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{{
"X"
,
{
"out1"
}},
{
"W"
,
{
"w2"
}},
{
"b"
,
{
"b2"
}}},
{{
"mul_result"
,
{
"mul_out2"
}},
{
"add_result"
,
{
"tmp_out2"
}},
{
"Out"
,
{
"out2"
}}},
{}));
net
.
AddOp
(
f
::
OpRegistry
::
CreateOp
(
"fc"
,
{{
"X"
,
{
"out2"
}},
{
"W"
,
{
"w3"
}},
{
"b"
,
{
"b3"
}}},
{{
"mul_result"
,
{
"mul_out3"
}},
{
"add_result"
,
{
"tmp_out3"
}},
{
"Out"
,
{
"out3"
}}},
{}));
net
.
CompleteAddOp
();
auto
backward
=
f
::
Backward
(
net
,
{
"mul_out2"
,
"tmp_out2"
,
"out2"
});
ASSERT_TRUE
(
backward
->
IsNetOp
());
auto
bwd_net
=
static_cast
<
ops
::
NetOp
*>
(
backward
.
get
());
ASSERT_EQ
(
bwd_net
->
ops_
.
size
(),
3UL
);
auto
&
grad_fc
=
*
bwd_net
->
ops_
[
0
];
EXPECT_EQ
(
grad_fc
.
inputs_
[
"all"
].
size
(),
2UL
/* external input number */
+
1UL
/* external output number*/
+
1UL
/* number of gradient of external output*/
+
2U
/* internal variable number*/
);
EXPECT_EQ
(
grad_fc
.
outputs_
[
"all"
].
size
(),
2UL
/* input number of mul*/
+
2UL
/* input number of rowwise_add
*/
+
1UL
/* input number of sigmod */
);
EXPECT_EQ
(
bwd_net
->
ops_
[
1
]
->
inputs_
[
"all"
].
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
1
]
->
outputs_
[
"all"
].
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
2
]
->
inputs_
[
"all"
].
size
(),
0UL
);
EXPECT_EQ
(
bwd_net
->
ops_
[
2
]
->
outputs_
[
"all"
].
size
(),
0UL
);
}
paddle/framework/operator.cc
浏览文件 @
5422776b
...
...
@@ -43,7 +43,7 @@ std::unordered_map<std::string, OpProto>& OpProtos() {
const
std
::
string
&
OperatorBase
::
Input
(
const
std
::
string
&
name
)
const
{
auto
it
=
inputs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
inputs_
.
end
(),
"Op %s does not have
out
put %s"
,
type_
,
PADDLE_ENFORCE
(
it
!=
inputs_
.
end
(),
"Op %s does not have
in
put %s"
,
type_
,
name
);
PADDLE_ENFORCE_EQ
(
it
->
second
.
size
(),
1UL
,
"Op %s input %s should contain only one variable"
,
type_
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录