提交 541ddf7e 编写于 作者: D dzhwinter

squash to one pr

上级 6e3d168b
...@@ -1034,6 +1034,37 @@ class Block(object): ...@@ -1034,6 +1034,37 @@ class Block(object):
class Program(object): class Program(object):
"""
Python Program. Beneath it is a ProgramDesc, which is used for
create c++ Program. A program is a self-contained programing
language like container. It has at least one Block, when the
control flow op like conditional_block, while_op is included,
it will contains nested block.
Please reference the framework.proto for details.
Notes: we have default_startup_program and default_main_program
by default, a pair of them will shared the parameters.
The default_startup_program only run once to initialize parameters,
default_main_program run in every minibatch and adjust the weights.
Args:
None
Returns:
Python Program
Examples:
.. code-block:: python
main_program = Program()
startup_program = Program()
with fluid.program_guard(main_program=main_program, startup_program=startup_program):
fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
"""
def __init__(self): def __init__(self):
self.desc = core.ProgramDesc() self.desc = core.ProgramDesc()
self.blocks = [Block(self, 0)] self.blocks = [Block(self, 0)]
......
...@@ -27,8 +27,32 @@ __all__ = ['accuracy', 'auc'] ...@@ -27,8 +27,32 @@ __all__ = ['accuracy', 'auc']
def accuracy(input, label, k=1, correct=None, total=None): def accuracy(input, label, k=1, correct=None, total=None):
""" """
accuracy layer.
Refer to the https://en.wikipedia.org/wiki/Precision_and_recall
This function computes the accuracy using the input and label. This function computes the accuracy using the input and label.
The output is the top k inputs and their indices. If the correct label occurs in top k predictions, then correct will increment by one.
Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
Args:
input(Variable): The input of accuracy layer, which is the predictions of network.
Carry LoD information is supported.
label(Variable): The label of dataset.
k(int): The top k predictions for each class will be checked.
correct(Variable): The correct predictions count.
total(Variable): The total entries count.
Returns:
Variable: The correct rate.
Examples:
.. code-block:: python
data = fluid.layers.data(name="data", shape=[-1, 32, 32], dtype="float32")
label = fluid.layers.data(name="data", shape=[-1,1], dtype="int32")
predict = fluid.layers.fc(input=data, size=10)
acc = fluid.layers.accuracy(input=predict, label=label, k=5)
""" """
helper = LayerHelper("accuracy", **locals()) helper = LayerHelper("accuracy", **locals())
topk_out, topk_indices = nn.topk(input, k=k) topk_out, topk_indices = nn.topk(input, k=k)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册