Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
52e5ee60
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
52e5ee60
编写于
2月 18, 2019
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add debug info
上级
7e7b4500
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
116 addition
and
81 deletion
+116
-81
paddle/fluid/imperative/layer.cc
paddle/fluid/imperative/layer.cc
+2
-2
paddle/fluid/imperative/layer.h
paddle/fluid/imperative/layer.h
+11
-6
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+1
-1
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+9
-3
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
...paddle/fluid/tests/unittests/test_imperative_optimizer.py
+93
-69
未找到文件。
paddle/fluid/imperative/layer.cc
浏览文件 @
52e5ee60
...
...
@@ -175,7 +175,7 @@ std::unique_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
PADDLE_ENFORCE
(
var_
->
IsInitialized
(),
"Variable must be initialized when getting numpy tensor"
);
std
::
unique_ptr
<
VarBase
>
new_var
(
new
VarBase
());
std
::
unique_ptr
<
VarBase
>
new_var
(
new
VarBase
(
"NewVarBase"
));
framework
::
LoDTensor
*
tensor
=
new_var
->
var_
->
GetMutable
<
framework
::
LoDTensor
>
();
tensor
->
Resize
(
var_
->
Get
<
framework
::
LoDTensor
>
().
dims
());
...
...
@@ -303,7 +303,7 @@ std::vector<VarBase*> PyLayer::Apply(int func_id,
std
::
vector
<
Variable
*>
outvars
=
CallPythonFunc
(
py_funcs_
[
func_id
],
invars
);
std
::
vector
<
VarBase
*>
ret
;
for
(
Variable
*
v
:
outvars
)
{
ret
.
push_back
(
new
VarBase
(
v
,
new
VarBase
(
true
)
));
ret
.
push_back
(
new
VarBase
(
v
,
new
VarBase
(
"PYLAYER_XGRAD"
,
true
),
""
));
}
return
ret
;
}
...
...
paddle/fluid/imperative/layer.h
浏览文件 @
52e5ee60
...
...
@@ -103,26 +103,30 @@ class OpBase;
*/
class
VarBase
{
public:
VarBase
(
)
:
VarBase
(
new
framework
::
Variable
(),
new
VarBase
(
true
)
)
{}
VarBase
(
std
::
string
name
)
:
VarBase
(
new
framework
::
Variable
(),
new
VarBase
(
name
+
"XGRAD"
,
true
),
name
)
{}
// Owns `var` and `grad`
VarBase
(
framework
::
Variable
*
var
,
VarBase
*
grad
)
VarBase
(
framework
::
Variable
*
var
,
VarBase
*
grad
,
std
::
string
name
)
:
var_desc_
(
nullptr
),
var_
(
var
),
grads_
(
grad
),
stop_gradient_
(
false
),
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
)
{}
pre_op_out_idx_
(
-
1
),
name_
(
name
)
{
LOG
(
ERROR
)
<<
"create "
<<
name
;
}
explicit
VarBase
(
bool
stop_gradient
)
explicit
VarBase
(
std
::
string
name
,
bool
stop_gradient
)
:
var_desc_
(
nullptr
),
var_
(
new
framework
::
Variable
()),
grads_
(
stop_gradient
?
nullptr
:
new
VarBase
(
true
)),
grads_
(
stop_gradient
?
nullptr
:
new
VarBase
(
name
+
"XGRAD"
,
true
)),
stop_gradient_
(
stop_gradient
),
pre_op_
(
nullptr
),
pre_op_out_idx_
(
-
1
)
{}
pre_op_out_idx_
(
-
1
),
name_
(
name
)
{
LOG
(
ERROR
)
<<
"create "
<<
name
;
}
virtual
~
VarBase
()
{
LOG
(
ERROR
)
<<
"delete "
<<
name_
;
if
(
var_
)
{
delete
var_
;
}
...
...
@@ -183,6 +187,7 @@ class VarBase {
OpBase
*
pre_op_
;
std
::
string
pre_op_out_name_
;
int
pre_op_out_idx_
;
std
::
string
name_
;
};
/* The wrapper for OpDesc which holds a OpDesc and a OpDesc of its
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
52e5ee60
...
...
@@ -137,7 +137,7 @@ PYBIND11_MODULE(core, m) {
py
::
class_
<
imperative
::
VarBase
>
(
m
,
"VarBase"
,
R"DOC()DOC"
)
// .def(py::init<>())
.
def
(
py
::
init
<
bool
>
(),
py
::
arg
(
"stop_gradient"
)
=
false
)
.
def
(
py
::
init
<
std
::
string
,
bool
>
(),
py
::
arg
(
"stop_gradient"
)
=
false
,
py
::
arg
(
"name"
)
=
""
)
.
def
(
"_run_backward"
,
[](
imperative
::
VarBase
&
self
)
{
self
.
RunBackward
();
})
.
def
(
"_grad_name"
,
&
imperative
::
VarBase
::
GradName
)
...
...
python/paddle/fluid/framework.py
浏览文件 @
52e5ee60
...
...
@@ -306,6 +306,10 @@ class Variable(object):
if
name
is
None
:
name
=
unique_name
.
generate
(
'_generated_var'
)
# print("create var", name)
# import sys
# sys.stdout.flush()
is_new_var
=
False
name
=
cpt
.
to_text
(
name
)
self
.
desc
=
self
.
block
.
desc
.
find_var
(
cpt
.
to_bytes
(
name
))
...
...
@@ -383,7 +387,7 @@ class Variable(object):
if
_in_imperative_mode
():
self
.
_ivar
=
kwargs
.
get
(
"ivar"
,
None
)
if
not
self
.
_ivar
:
self
.
_ivar
=
core
.
VarBase
()
self
.
_ivar
=
core
.
VarBase
(
name
,
stop_gradient
)
self
.
_ivar
.
desc
=
self
.
desc
self
.
_ivar
.
stop_gradient
=
stop_gradient
...
...
@@ -1269,6 +1273,7 @@ class Block(object):
return
var
def
_remove_var
(
self
,
name
):
if
not
_in_imperative_mode
():
self
.
_sync_with_cpp
()
self
.
desc
.
_remove_var
(
cpt
.
to_bytes
(
name
))
del
self
.
vars
[
name
]
...
...
@@ -1353,6 +1358,7 @@ class Block(object):
Returns:
None
"""
if
not
_in_imperative_mode
():
self
.
_sync_with_cpp
()
self
.
desc
.
_remove_op
(
index
,
index
+
1
)
del
self
.
ops
[
index
]
...
...
python/paddle/fluid/tests/unittests/test_imperative_optimizer.py
浏览文件 @
52e5ee60
...
...
@@ -101,7 +101,7 @@ class MNIST(fluid.imperative.Layer):
class
TestImperativeMnist
(
unittest
.
TestCase
):
def
test_mnist_float32
(
self
):
seed
=
90
batch_num
=
2
batch_num
=
100000
with
fluid
.
imperative
.
guard
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
...
...
@@ -125,85 +125,109 @@ class TestImperativeMnist(unittest.TestCase):
label
=
to_variable
(
y_data
)
label
.
_stop_gradient
=
True
print
(
"forward start"
)
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
dy_out
=
avg_loss
.
_numpy
()
# dy_out = avg_loss._numpy()
print
(
"forward end"
)
if
batch_id
==
0
:
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_init_value
[
param
.
name
]
=
param
.
_numpy
()
#
if batch_id == 0:
#
for param in fluid.default_main_program().global_block(
#
).all_parameters():
#
dy_param_init_value[param.name] = param._numpy()
avg_loss
.
_backward
()
sgd
.
minimize
(
avg_loss
)
mnist
.
clear_gradients
()
dy_param_value
=
{}
for
param
in
fluid
.
default_main_program
().
global_block
(
).
all_parameters
():
dy_param_value
[
param
.
name
]
=
param
.
_numpy
()
with
new_program_scope
():
fluid
.
default_startup_program
().
random_seed
=
seed
fluid
.
default_main_program
().
random_seed
=
seed
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
(
)
if
not
core
.
is_compiled_with_cuda
()
else
fluid
.
CUDAPlace
(
0
))
mnist
=
MNIST
()
sgd
=
SGDOptimizer
(
learning_rate
=
1e-3
)
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
128
)
print
(
"backward end"
)
img
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
cost
=
mnist
(
img
)
loss
=
fluid
.
layers
.
cross_entropy
(
cost
,
label
)
avg_loss
=
fluid
.
layers
.
mean
(
loss
)
sgd
.
minimize
(
avg_loss
)
# initialize params and fetch them
static_param_init_value
=
{}
static_param_name_list
=
[]
for
param
in
fluid
.
default_startup_program
().
global_block
(
).
all_parameters
():
static_param_name_list
.
append
(
param
.
name
)
print
(
"sgd end"
)
out
=
exe
.
run
(
fluid
.
default_startup_program
(),
fetch_list
=
static_param_name_list
)
for
i
in
range
(
len
(
static_param_name_list
)):
static_param_init_value
[
static_param_name_list
[
i
]]
=
out
[
i
]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
if
batch_id
>=
batch_num
:
break
static_x_data
=
np
.
array
(
[
x
[
0
].
reshape
(
1
,
28
,
28
)
for
x
in
data
]).
astype
(
'float32'
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
'int64'
).
reshape
(
[
128
,
1
])
fetch_list
=
[
avg_loss
.
name
]
fetch_list
.
extend
(
static_param_name_list
)
out
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"pixel"
:
static_x_data
,
"label"
:
y_data
},
fetch_list
=
fetch_list
)
static_param_value
=
{}
static_out
=
out
[
0
]
for
i
in
range
(
1
,
len
(
out
)):
static_param_value
[
static_param_name_list
[
i
-
1
]]
=
out
[
i
]
for
key
,
value
in
six
.
iteritems
(
static_param_init_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_init_value
[
key
]))
self
.
assertTrue
(
np
.
allclose
(
static_out
,
dy_out
))
mnist
.
clear_gradients
()
for
key
,
value
in
six
.
iteritems
(
static_param_value
):
self
.
assertTrue
(
np
.
allclose
(
value
,
dy_param_value
[
key
]))
import
gc
for
name
,
var
in
fluid
.
default_main_program
().
global_block
().
vars
.
items
():
if
not
var
.
persistable
:
fluid
.
default_main_program
().
global_block
().
_remove_var
(
name
)
# var._ivar._clear_values()
for
op
in
fluid
.
default_main_program
().
global_block
().
ops
:
fluid
.
default_main_program
().
global_block
().
_remove_op
(
op
.
idx
)
assert
len
(
gc
.
get_referrers
(
avg_loss
))
==
1
print
(
"clear end"
)
print
(
"ivar ref "
,
gc
.
get_referrers
(
gc
.
get_referrers
(
avg_loss
.
_ivar
)[
0
])[
0
].
__class__
.
__name__
)
print
(
"ivar ref "
,
gc
.
get_referrers
(
gc
.
get_referrers
(
avg_loss
.
_ivar
)[
1
])[
0
].
__class__
.
__name__
)
# dy_param_value = {}
# for param in fluid.default_main_program().global_block(
# ).all_parameters():
# dy_param_value[param.name] = param._numpy()
# with new_program_scope():
# fluid.default_startup_program().random_seed = seed
# fluid.default_main_program().random_seed = seed
# exe = fluid.Executor(fluid.CPUPlace(
# ) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
# mnist = MNIST()
# sgd = SGDOptimizer(learning_rate=1e-3)
# train_reader = paddle.batch(
# paddle.dataset.mnist.train(), batch_size=128)
# img = fluid.layers.data(
# name='pixel', shape=[1, 28, 28], dtype='float32')
# label = fluid.layers.data(name='label', shape=[1], dtype='int64')
# cost = mnist(img)
# loss = fluid.layers.cross_entropy(cost, label)
# avg_loss = fluid.layers.mean(loss)
# sgd.minimize(avg_loss)
# # initialize params and fetch them
# static_param_init_value = {}
# static_param_name_list = []
# for param in fluid.default_startup_program().global_block(
# ).all_parameters():
# static_param_name_list.append(param.name)
# out = exe.run(fluid.default_startup_program(),
# fetch_list=static_param_name_list)
# for i in range(len(static_param_name_list)):
# static_param_init_value[static_param_name_list[i]] = out[i]
# for batch_id, data in enumerate(train_reader()):
# if batch_id >= batch_num:
# break
# static_x_data = np.array(
# [x[0].reshape(1, 28, 28) for x in data]).astype('float32')
# y_data = np.array([x[1] for x in data]).astype('int64').reshape(
# [128, 1])
# fetch_list = [avg_loss.name]
# fetch_list.extend(static_param_name_list)
# out = exe.run(fluid.default_main_program(),
# feed={"pixel": static_x_data,
# "label": y_data},
# fetch_list=fetch_list)
# static_param_value = {}
# static_out = out[0]
# for i in range(1, len(out)):
# static_param_value[static_param_name_list[i - 1]] = out[i]
# for key, value in six.iteritems(static_param_init_value):
# self.assertTrue(np.allclose(value, dy_param_init_value[key]))
# self.assertTrue(np.allclose(static_out, dy_out))
# for key, value in six.iteritems(static_param_value):
# self.assertTrue(np.allclose(value, dy_param_value[key]))
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录