diff --git a/configs/ppyolo/README.md b/configs/ppyolo/README.md index fe811c009ec5463adfe29aebf8909b643a153a26..b77bb2a3179bf95881920dc82b5a494f1ac207fb 100644 --- a/configs/ppyolo/README.md +++ b/configs/ppyolo/README.md @@ -56,7 +56,7 @@ PP-YOLO improved performance and speed of YOLOv3 with following methods: **Notes:** - PP-YOLO is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box APtest is evaluation results of `mAP(IoU=0.5:0.95)`. -- PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/static/docs/FAQ.md). +- PP-YOLO used 8 GPUs for training and mini-batch size as 24 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md). - PP-YOLO inference speed is tesed on single Tesla V100 with batch size as 1, CUDA 10.2, CUDNN 7.5.1, TensorRT 5.1.2.2 in TensorRT mode. - PP-YOLO FP32 inference speed testing uses inference model exported by `tools/export_model.py` and benchmarked by running `depoly/python/infer.py` with `--run_benchmark`. All testing results do not contains the time cost of data reading and post-processing(NMS), which is same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) in testing method. - TensorRT FP16 inference speed testing exclude the time cost of bounding-box decoding(`yolo_box`) part comparing with FP32 testing above, which means that data reading, bounding-box decoding and post-processing(NMS) is excluded(test method same as [YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet) too) @@ -71,7 +71,7 @@ PP-YOLO improved performance and speed of YOLOv3 with following methods: **Notes:** - PP-YOLO_MobileNetV3 is trained on COCO train2017 datast and evaluated on val2017 dataset,Box APval is evaluation results of `mAP(IoU=0.5:0.95)`, Box APval is evaluation results of `mAP(IoU=0.5)`. -- PP-YOLO_MobileNetV3 used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/static/docs/FAQ.md). +- PP-YOLO_MobileNetV3 used 4 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md). - PP-YOLO_MobileNetV3 inference speed is tested on Kirin 990 with 1 thread. ### PP-YOLO tiny @@ -84,7 +84,7 @@ PP-YOLO improved performance and speed of YOLOv3 with following methods: **Notes:** - PP-YOLO-tiny is trained on COCO train2017 datast and evaluated on val2017 dataset,Box APval is evaluation results of `mAP(IoU=0.5:0.95)`, Box APval is evaluation results of `mAP(IoU=0.5)`. -- PP-YOLO-tiny used 8 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/static/docs/FAQ.md). +- PP-YOLO-tiny used 8 GPUs for training and mini-batch size as 32 on each GPU, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md). - PP-YOLO-tiny inference speed is tested on Kirin 990 with 4 threads by arm8 - we alse provide PP-YOLO-tiny post quant inference model, which can compress model to **1.3MB** with nearly no inference on inference speed and performance diff --git a/configs/ppyolo/README_cn.md b/configs/ppyolo/README_cn.md index 2718648d19d2e7b178d442f1fc9be873440fcb71..b13ca3497c896cc53b7f81a33444c68ad6a6db0f 100644 --- a/configs/ppyolo/README_cn.md +++ b/configs/ppyolo/README_cn.md @@ -79,7 +79,7 @@ PP-YOLO从如下方面优化和提升YOLOv3模型的精度和速度: | PP-YOLO tiny | 8 | 32 | 4.2MB | **1.3M** | 416 | 22.7 | 65.4 | [model](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_650e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppyolo/ppyolo_tiny_650e_coco.yml) | [预测模型](https://paddledet.bj.bcebos.com/models/ppyolo_tiny_quant.tar) | - PP-YOLO-tiny 模型使用COCO数据集中train2017作为训练集,使用val2017作为测试集,Box APval为`mAP(IoU=0.5:0.95)`评估结果, Box AP50val为`mAP(IoU=0.5)`评估结果。 -- PP-YOLO-tiny 模型训练过程中使用8GPU,每GPU batch size为32进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](../../docs/FAQ.md)调整学习率和迭代次数。 +- PP-YOLO-tiny 模型训练过程中使用8GPU,每GPU batch size为32进行训练,如训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ.md)调整学习率和迭代次数。 - PP-YOLO-tiny 模型推理速度测试环境配置为麒麟990芯片4线程,arm8架构。 - 我们也提供的PP-YOLO-tiny的后量化压缩模型,将模型体积压缩到**1.3M**,对精度和预测速度基本无影响