@@ -2063,8 +2060,6 @@ class Conv2DTranspose(layers.Layer):
library is installed. Default: True.
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: True.
Returns:
Variable: The tensor variable storing the convolution transpose result.
...
...
@@ -2196,11 +2191,11 @@ class SequenceConv(layers.Layer):
in the input parameters to the function.
Args:
name_scope (str): See base class.
name_scope(str): The name of this class.
num_filters (int): number of filters.
filter_size (int): the filter size (H and W).
filter_stride (int): stride of the filter.
padding (bool): if True, add paddings.
filter_size (int): the filter size (H and W). Default: 3.
filter_stride (int): stride of the filter. Default: 1.
padding (bool|None): if True, add paddings. Default: None
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, sequence_conv
...
...
@@ -2212,8 +2207,6 @@ class SequenceConv(layers.Layer):
is not set, the parameter is initialized with Xavier. Default: None.
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
Returns:
Variable: output of sequence_conv
...
...
@@ -2282,15 +2275,16 @@ class RowConv(layers.Layer):
More details about row_conv please refer to the design document https://github.com/PaddlePaddle/Paddle/issues/2228#issuecomment-303903645 .
Args:
name_scope (str): See base class.
name_scope(str): The name of this class.
future_context_size (int): Future context size. Please note, the shape
of convolution kernel is [future_context_size + 1, D].
param_attr (ParamAttr): Attributes of parameters, including
name, initializer etc.
act (str): Non-linear activation to be applied to output variable.
name, initializer etc. Default: None.
act (str): Non-linear activation to be applied to output variable. Default: None.
Returns:
the output(Out) is a LodTensor, which supports variable time-length input sequences. The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
the output(Out) is a LodTensor, which supports variable time-length input sequences.
The underlying tensor in this LodTensor is a matrix with shape T x N, i.e., the same shape as X.
Examples:
.. code-block:: python
...
...
@@ -2344,10 +2338,10 @@ class GroupNorm(layers.Layer):
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
Args:
name_scope (str): See base class.
name_scope(str): The name of this class.
groups(int): The number of groups that divided from channels.
epsilon(float): The small value added to the variance to prevent
division by zero.
division by zero. Default: 1e-05.
param_attr(ParamAttr|None): The parameter attribute for the learnable
scale :math:`g`. If it is set to False, no scale will be added to the output units.
If it is set to None, the bias is initialized one. Default: None.
...
...
@@ -2472,10 +2466,10 @@ class SpectralNorm(layers.Layer):
Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
Args:
name_scope (str): See base class.
dim(int): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer, default 0
power_iters(int): number of power iterations to calculate spectral norm, default 1
eps(float): epsilon for numerical stability in calculating norms
name_scope(str): The name of this class.
dim(int): The index of dimension which should be permuted to the first before reshaping Input(Weight) to matrix, it should be set as 0 if Input(Weight) is the weight of fc layer, and should be set as 1 if Input(Weight) is the weight of conv layer. Default: 0.
power_iters(int): The number of power iterations to calculate spectral norm. Default: 1.
eps(float): The epsilon for numerical stability in calculating norms. Default: 1e-12.
name (str): The name of this layer. It is optional.
Returns:
...
...
@@ -2549,14 +2543,14 @@ class TreeConv(layers.Layer):
Args:
name_scope (str): See base class.
name_scope(str): The name of this class.
output_size(int): output feature width
num_filters(int): number of filters, Default 1
max_depth(int): max depth of filters, Default 2
act(str): activation function, Default tanh
param_attr(ParamAttr): the parameter attribute for the filters, Default None
bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default None
name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default None
num_filters(int): number of filters, Default: 1.
max_depth(int): max depth of filters, Default: 2.
act(str): activation function, Default: tanh.
param_attr(ParamAttr): the parameter attribute for the filters, Default: None.
bias_attr(ParamAttr): the parameter attribute for the bias of this layer, Default: None.
name(str): a name of this layer(optional). If set None, the layer will be named automatically, Default: None.
Returns:
out(Variable): (Tensor) The feature vector of subtrees. The shape of the output tensor is [max_tree_node_size, output_size, num_filters]. The output tensor could be a new feature vector for next tree convolution layers