提交 48cf64e8 编写于 作者: G gangliao 提交者: GitHub

Merge pull request #2674 from gangliao/cpu_mem

[Done] Memory Management: Buddy Allocator
......@@ -104,6 +104,7 @@ function(merge_static_libs TARGET_NAME)
foreach(lib ${libs})
list(APPEND libs_deps ${${lib}_LIB_DEPENDS})
endforeach()
list(REMOVE_DUPLICATES libs_deps)
if(APPLE) # Use OSX's libtool to merge archives
# To produce a library we need at least one source file.
......
add_subdirectory(detail)
cc_library(memory SRCS memory.cc)
cc_library(paddle_memory
DEPS
memory meta_data
meta_cache memory_block
buddy_allocator system_allocator)
cc_test(memory_test SRCS memory_test.cc DEPS place paddle_memory)
if(${WITH_GPU})
nv_library(system_allocator SRCS system_allocator.cc DEPS gflags)
nv_test(system_allocator_test SRCS system_allocator_test.cc DEPS system_allocator gflags)
nv_library(system_allocator SRCS system_allocator.cc DEPS gflags cpu_info gpu_info)
else(${WITH_GPU})
cc_library(system_allocator SRCS system_allocator.cc DEPS gflags)
cc_test(system_allocator_test SRCS system_allocator_test.cc DEPS system_allocator gflags)
cc_library(system_allocator SRCS system_allocator.cc DEPS gflags cpu_info)
endif(${WITH_GPU})
cc_test(system_allocator_test SRCS system_allocator_test.cc DEPS system_allocator)
cc_library(meta_data SRCS meta_data.cc)
cc_library(meta_cache SRCS meta_cache.cc)
cc_library(memory_block SRCS memory_block.cc)
cc_library(buddy_allocator SRCS buddy_allocator.cc DEPS glog)
......@@ -12,22 +12,317 @@
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/memory/detail/buddy_allocator.h"
#include "glog/logging.h"
namespace paddle {
namespace memory {
namespace detail {
BuddyAllocator::BuddyAllocator(size_t pool_size, size_t max_pools,
SystemAllocator* system_allocator)
: pool_size_(pool_size),
max_pools_(max_pools),
system_allocator_(system_allocator) {
PADDLE_ASSERT(pool_size > 0);
PADDLE_ASSERT(max_pools > 0);
PADDLE_ASSERT(system_allocator != nullptr);
BuddyAllocator::BuddyAllocator(SystemAllocator* system_allocator,
size_t min_chunk_size, size_t max_chunk_size)
: min_chunk_size_(min_chunk_size),
max_chunk_size_(max_chunk_size),
cache_(system_allocator->UseGpu()),
system_allocator_(std::move(system_allocator)) {}
BuddyAllocator::~BuddyAllocator() {
DLOG(INFO) << "BuddyAllocator Disconstructor makes sure that all of these "
"have actually been freed";
while (!pool_.empty()) {
auto block = static_cast<MemoryBlock*>(std::get<2>(*pool_.begin()));
DLOG(INFO) << "Free from block (" << block << ", " << max_chunk_size_
<< ")";
system_allocator_->Free(block, max_chunk_size_, block->index(cache_));
cache_.invalidate(block);
pool_.erase(pool_.begin());
}
}
inline size_t align(size_t size, size_t alignment) {
size_t remaining = size % alignment;
return remaining == 0 ? size : size + (alignment - remaining);
}
void* BuddyAllocator::Alloc(size_t unaligned_size) {
// adjust allocation alignment
size_t size = align(unaligned_size + sizeof(Metadata), min_chunk_size_);
// acquire the allocator lock
std::lock_guard<std::mutex> lock(mutex_);
DLOG(INFO) << "Allocate " << unaligned_size << " bytes from chunk size "
<< size;
// if the allocation is huge, send directly to the system allocator
if (size > max_chunk_size_) {
DLOG(INFO) << "Allocate from system allocator.";
return SystemAlloc(size);
}
// query and allocate from the existing chunk
auto it = FindExistChunk(size);
// refill the pool if failure
if (it == pool_.end()) {
it = RefillPool();
// if still failure, fail fatally
if (it == pool_.end()) {
return nullptr;
}
} else {
DLOG(INFO) << "Allocation from existing memory block " << std::get<2>(*it)
<< " at address "
<< reinterpret_cast<MemoryBlock*>(std::get<2>(*it))->data();
}
total_used_ += size;
total_free_ -= size;
// split the allocation and return data for use
return reinterpret_cast<MemoryBlock*>(SplitToAlloc(it, size))->data();
}
void BuddyAllocator::Free(void* p) {
// Point back to metadata
auto block = static_cast<MemoryBlock*>(p)->metadata();
// Acquire the allocator lock
std::lock_guard<std::mutex> lock(mutex_);
DLOG(INFO) << "Free from address " << block;
if (block->type(cache_) == MemoryBlock::HUGE_CHUNK) {
DLOG(INFO) << "Free directly from system allocator";
system_allocator_->Free(block, block->total_size(cache_),
block->index(cache_));
// Invalidate GPU allocation from cache
cache_.invalidate(block);
return;
}
block->mark_as_free(cache_);
total_used_ -= block->total_size(cache_);
total_free_ += block->total_size(cache_);
// Trying to merge the right buddy
if (block->has_right_buddy(cache_)) {
DLOG(INFO) << "Merging this block " << block << " with its right buddy "
<< block->right_buddy(cache_);
auto right_buddy = block->right_buddy(cache_);
if (right_buddy->type(cache_) == MemoryBlock::FREE_CHUNK) {
// Take away right buddy from pool
pool_.erase(IndexSizeAddress(right_buddy->index(cache_),
right_buddy->total_size(cache_),
right_buddy));
// merge its right buddy to the block
block->merge(cache_, right_buddy);
}
}
// Trying to merge the left buddy
if (block->has_left_buddy(cache_)) {
DLOG(INFO) << "Merging this block " << block << " with its left buddy "
<< block->left_buddy(cache_);
auto left_buddy = block->left_buddy(cache_);
if (left_buddy->type(cache_) == MemoryBlock::FREE_CHUNK) {
// Take away right buddy from pool
pool_.erase(IndexSizeAddress(left_buddy->index(cache_),
left_buddy->total_size(cache_), left_buddy));
// merge the block to its left buddy
left_buddy->merge(cache_, block);
block = left_buddy;
}
}
// Dumping this block into pool
DLOG(INFO) << "Inserting free block (" << block << ", "
<< block->total_size(cache_) << ")";
pool_.insert(
IndexSizeAddress(block->index(cache_), block->total_size(cache_), block));
// Clean up if existing too much free memory
// Prefer freeing fallback allocation first
CleanIdleFallBackAlloc();
// Free normal allocation
CleanIdleNormalAlloc();
}
size_t BuddyAllocator::Used() { return total_used_; }
void* BuddyAllocator::SystemAlloc(size_t size) {
size_t index = 0;
void* p = system_allocator_->Alloc(index, size);
DLOG(INFO) << "Allocated " << p << " from system allocator.";
if (p == nullptr) return nullptr;
static_cast<MemoryBlock*>(p)->init(cache_, MemoryBlock::HUGE_CHUNK, index,
size, nullptr, nullptr);
return static_cast<MemoryBlock*>(p)->data();
}
BuddyAllocator::PoolSet::iterator BuddyAllocator::RefillPool() {
#ifndef PADDLE_ONLY_CPU
if (system_allocator_->UseGpu()) {
if ((total_used_ + total_free_) == 0) {
// Compute the maximum allocation size for the first allocation.
max_chunk_size_ = platform::GpuMaxChunkSize();
}
}
#endif // PADDLE_ONLY_CPU
// Allocate a new maximum sized block
size_t index = 0;
void* p = system_allocator_->Alloc(index, max_chunk_size_);
if (p == nullptr) return pool_.end();
DLOG(INFO) << "Creating and inserting new block " << p
<< " from system allocator";
static_cast<MemoryBlock*>(p)->init(cache_, MemoryBlock::FREE_CHUNK, index,
max_chunk_size_, nullptr, nullptr);
// gpu fallback allocation
if (system_allocator_->UseGpu() &&
static_cast<MemoryBlock*>(p)->index(cache_) == 1) {
fallback_alloc_count_++;
}
total_free_ += max_chunk_size_;
// dump the block into pool
return pool_.insert(IndexSizeAddress(index, max_chunk_size_, p)).first;
}
BuddyAllocator::PoolSet::iterator BuddyAllocator::FindExistChunk(size_t size) {
size_t index = 0;
while (1) {
auto it = pool_.lower_bound(IndexSizeAddress(index, size, nullptr));
// no match chunk memory
if (it == pool_.end()) return it;
if (std::get<0>(*it) > index) {
// find suitable one
if (std::get<1>(*it) >= size) {
return it;
}
// update and continue
index = std::get<0>(*it);
continue;
}
return it;
}
}
void* BuddyAllocator::SplitToAlloc(BuddyAllocator::PoolSet::iterator it,
size_t size) {
auto block = static_cast<MemoryBlock*>(std::get<2>(*it));
pool_.erase(it);
DLOG(INFO) << "Split block (" << block << ", " << block->total_size(cache_)
<< ") into";
block->split(cache_, size);
DLOG(INFO) << "Left block (" << block << ", " << block->total_size(cache_)
<< ")";
block->set_type(cache_, MemoryBlock::ARENA_CHUNK);
// the rest of memory if exist
if (block->has_right_buddy(cache_)) {
if (block->right_buddy(cache_)->type(cache_) == MemoryBlock::FREE_CHUNK) {
DLOG(INFO) << "Insert right block (" << block->right_buddy(cache_) << ", "
<< block->right_buddy(cache_)->total_size(cache_) << ")";
pool_.insert(
IndexSizeAddress(block->right_buddy(cache_)->index(cache_),
block->right_buddy(cache_)->total_size(cache_),
block->right_buddy(cache_)));
}
}
return block;
}
void BuddyAllocator::CleanIdleFallBackAlloc() {
// If fallback allocation does not exist, return directly
if (!fallback_alloc_count_) return;
for (auto pool = pool_.rbegin(); pool != pool_.rend();) {
// If free memory block less than max_chunk_size_, return directly
if (std::get<1>(*pool) < max_chunk_size_) return;
MemoryBlock* block = static_cast<MemoryBlock*>(std::get<2>(*pool));
// If no GPU fallback allocator, return
if (!system_allocator_->UseGpu() || block->index(cache_) == 0) {
return;
}
DLOG(INFO) << "Return block " << block << " to fallback allocator.";
system_allocator_->Free(block, max_chunk_size_, block->index(cache_));
cache_.invalidate(block);
pool = PoolSet::reverse_iterator(pool_.erase(std::next(pool).base()));
total_free_ -= max_chunk_size_;
fallback_alloc_count_--;
// If no fall allocation exists, return directly
if (!fallback_alloc_count_) return;
}
}
void BuddyAllocator::CleanIdleNormalAlloc() {
auto shall_free_alloc = [&]() -> bool {
// free all fallback allocations
if (fallback_alloc_count_ > 0) {
return true;
}
// keep 2x overhead if we haven't fallen back
if ((total_used_ + max_chunk_size_) * 2 < total_free_) {
return true;
}
return false;
};
if (!shall_free_alloc()) return;
for (auto pool = pool_.rbegin(); pool != pool_.rend();) {
// If free memory block less than max_chunk_size_, return directly
if (std::get<1>(*pool) < max_chunk_size_) return;
MemoryBlock* block = static_cast<MemoryBlock*>(std::get<2>(*pool));
DLOG(INFO) << "Return block " << block << " to base allocator.";
system_allocator_->Free(block, max_chunk_size_, block->index(cache_));
cache_.invalidate(block);
pool = PoolSet::reverse_iterator(pool_.erase(std::next(pool).base()));
total_free_ -= max_chunk_size_;
if (!shall_free_alloc()) return;
}
}
} // namespace detail
......
......@@ -14,9 +14,16 @@
#pragma once
#include "paddle/memory/detail/meta_cache.h"
#include "paddle/memory/detail/meta_data.h"
#include "paddle/memory/detail/system_allocator.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/cpu_info.h"
#include "paddle/platform/gpu_info.h"
#include <mutex>
#include <set>
#include <unordered_map>
#include <vector>
namespace paddle {
......@@ -25,61 +32,80 @@ namespace detail {
class BuddyAllocator {
public:
BuddyAllocator(size_t pool_size, size_t max_pools,
SystemAllocator* system_allocator);
BuddyAllocator(SystemAllocator* system_allocator, size_t min_chunk_size,
size_t max_chunk_size);
~BuddyAllocator();
void* Alloc(size_t size);
public:
void* Alloc(size_t unaligned_size);
void Free(void*);
size_t Used();
public:
// Disable copy and assignment
BuddyAllocator(const BuddyAllocator&) = delete;
BuddyAllocator& operator=(const BuddyAllocator&) = delete;
private:
struct Block {
size_t size_;
Block* left_; // left buddy
Block* right_; // right buddy
};
// Tuple (allocator index, memory size, memory address)
using IndexSizeAddress = std::tuple<size_t, size_t, void*>;
// Each element in PoolSet is a free allocation
using PoolSet = std::set<IndexSizeAddress>;
// Initially, there is only one pool. If a Alloc founds not enough
// memory from that pool, and there has not been max_num_pools_,
// create a new pool by calling system_allocator_.Alloc(pool_size_).
std::vector<void*> pools_;
/*! \brief Allocate fixed-size memory from system */
void* SystemAlloc(size_t size);
size_t pool_size_; // the size of each pool;
size_t max_num_pools_; // the size of all pools;
/*! \brief If existing chunks are not suitable, refill pool */
PoolSet::iterator RefillPool();
SystemAllocator* system_allocator_;
/**
* \brief Find the suitable chunk from existing pool and split
* it to left and right buddies
*
* \param it the iterator of pool list
* \param size the size of allocation
*
* \return the left buddy address
*/
void* SplitToAlloc(PoolSet::iterator it, size_t size);
std::mutex mutex_;
/*! \brief Find the existing chunk which used to allocation */
PoolSet::iterator FindExistChunk(size_t size);
// Disable copy and assignment.
BuddyAllocator(const BuddyAllocator&) = delete;
BuddyAllocator& operator=(const BuddyAllocator&) = delete;
};
/*! \brief Clean idle fallback allocation */
void CleanIdleFallBackAlloc();
/*! \brief Clean idle normal allocation */
void CleanIdleNormalAlloc();
BuddyAllocator<CPUAllocator>* GetCPUBuddyAllocator() {
static BuddyAllocator<CPUAllocator>* a = nullptr;
if (a == nullptr) {
a = new BuddyAllocator<CPUAllocator>();
}
return a;
}
#ifndef PADDLE_ONLY_CPU // The following code are for CUDA.
BuddyAllocator<GPUAllocator>* GetGPUBuddyAllocator(int gpu_id) {
static BuddyAllocator<GPUAllocator>** as = NULL;
if (as == NULL) {
int gpu_num = platform::GetDeviceCount();
as = new BuddyAllocator<GPUAllocator>*[gpu_num];
for (int gpu = 0; gpu < gpu_num; gpu++) {
as[gpu] = new BuddyAllocator<GPUAllocator>();
}
}
return as[gpu_id];
}
#endif // PADDLE_ONLY_CPU
private:
size_t total_used_ = 0; // the total size of used memory
size_t total_free_ = 0; // the total size of free memory
size_t min_chunk_size_; // the minimum size of each chunk
size_t max_chunk_size_; // the maximum size of each chunk
private:
/**
* \brief A list of free allocation
*
* \note Only store free chunk memory in pool
*/
PoolSet pool_;
/*! Record fallback allocation count for auto-scaling */
size_t fallback_alloc_count_ = 0;
private:
/*! Unify the metadata format between GPU and CPU allocations */
MetadataCache cache_;
private:
/*! Allocate CPU/GPU memory from system */
SystemAllocator* system_allocator_;
std::mutex mutex_;
};
} // namespace detail
} // namespace memory
......
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/memory/detail/memory_block.h"
#include "paddle/memory/detail/meta_cache.h"
#include "paddle/memory/detail/meta_data.h"
#include "paddle/platform/assert.h"
namespace paddle {
namespace memory {
namespace detail {
void MemoryBlock::init(MetadataCache& cache, Type t, size_t index, size_t size,
void* left_buddy, void* right_buddy) {
cache.store(this, Metadata(t, index, size - sizeof(Metadata), size,
static_cast<MemoryBlock*>(left_buddy),
static_cast<MemoryBlock*>(right_buddy)));
}
MemoryBlock::Type MemoryBlock::type(MetadataCache& cache) const {
return cache.load(this).type;
}
size_t MemoryBlock::size(MetadataCache& cache) const {
return cache.load(this).size;
}
size_t MemoryBlock::total_size(MetadataCache& cache) const {
return cache.load(this).total_size;
}
MemoryBlock* MemoryBlock::left_buddy(MetadataCache& cache) const {
return cache.load(this).left_buddy;
}
MemoryBlock* MemoryBlock::right_buddy(MetadataCache& cache) const {
return cache.load(this).right_buddy;
}
void MemoryBlock::split(MetadataCache& cache, size_t size) {
// make sure the split fits
PADDLE_ASSERT(total_size(cache) >= size);
// bail out if there is no room for another partition
if (total_size(cache) - size <= sizeof(Metadata)) {
return;
}
// find the position of the split
void* right_partition = reinterpret_cast<uint8_t*>(this) + size;
size_t remaining_size = total_size(cache) - size;
// Add the new block as a buddy
auto metadata = cache.load(this);
// Write the metadata for the new block
auto new_block_right_buddy = metadata.right_buddy;
cache.store(
static_cast<MemoryBlock*>(right_partition),
Metadata(FREE_CHUNK, index(cache), remaining_size - sizeof(Metadata),
remaining_size, this, new_block_right_buddy));
metadata.right_buddy = static_cast<MemoryBlock*>(right_partition);
metadata.size = size - sizeof(Metadata);
metadata.total_size = size;
cache.store(this, metadata);
// Write metadata for the new block's right buddy
if (new_block_right_buddy != nullptr) {
auto buddy_metadata = cache.load(new_block_right_buddy);
buddy_metadata.left_buddy = static_cast<MemoryBlock*>(right_partition);
cache.store(new_block_right_buddy, buddy_metadata);
}
}
void MemoryBlock::merge(MetadataCache& cache, MemoryBlock* right_buddy) {
// only free blocks can be merged
PADDLE_ASSERT(type(cache) == FREE_CHUNK);
PADDLE_ASSERT(right_buddy->type(cache) == FREE_CHUNK);
auto metadata = cache.load(this);
// link this->buddy's buddy
metadata.right_buddy = right_buddy->right_buddy(cache);
// link buddy's buddy -> this
if (metadata.right_buddy != nullptr) {
auto buddy_metadata = cache.load(metadata.right_buddy);
buddy_metadata.left_buddy = this;
cache.store(metadata.right_buddy, buddy_metadata);
}
metadata.size += right_buddy->total_size(cache);
metadata.total_size += right_buddy->total_size(cache);
cache.store(this, metadata);
cache.store(right_buddy, Metadata(INVALID_CHUNK, 0, 0, 0, nullptr, nullptr));
}
void MemoryBlock::mark_as_free(MetadataCache& cache) {
// check for double free or corruption
PADDLE_ASSERT(type(cache) != FREE_CHUNK);
PADDLE_ASSERT(type(cache) != INVALID_CHUNK);
set_type(cache, FREE_CHUNK);
}
void MemoryBlock::set_type(MetadataCache& cache, Type t) {
auto metadata = cache.load(this);
metadata.type = t;
cache.store(this, metadata);
}
bool MemoryBlock::has_left_buddy(MetadataCache& cache) const {
return left_buddy(cache) != nullptr;
}
bool MemoryBlock::has_right_buddy(MetadataCache& cache) const {
return right_buddy(cache) != nullptr;
}
size_t MemoryBlock::index(MetadataCache& cache) const {
return cache.load(this).index;
}
void* MemoryBlock::data() const {
return const_cast<Metadata*>(reinterpret_cast<const Metadata*>(this)) + 1;
}
MemoryBlock* MemoryBlock::metadata() const {
return const_cast<MemoryBlock*>(reinterpret_cast<const MemoryBlock*>(
reinterpret_cast<const Metadata*>(this) - 1));
}
} // detail
} // memory
} // paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <cstddef>
namespace paddle {
namespace memory {
namespace detail {
// Forward Declarations
class MetadataCache;
/*! \brief A class used to interpret the contents of a memory block */
class MemoryBlock {
public:
enum Type {
FREE_CHUNK, // memory is free and idle
ARENA_CHUNK, // memory is being occupied
HUGE_CHUNK, // memory is out of management
INVALID_CHUNK // memory is invalid
};
public:
void init(MetadataCache& cache, Type t, size_t index, size_t size,
void* left_buddy, void* right_buddy);
public:
/*! \brief The type of the allocation */
Type type(MetadataCache& cache) const;
/*! \brief The size of the data region */
size_t size(MetadataCache& cache) const;
/*! \brief An index to track the allocator */
size_t index(MetadataCache& cache) const;
/*! \brief The total size of the block */
size_t total_size(MetadataCache& cache) const;
/*! \brief Check the left buddy of the block */
bool has_left_buddy(MetadataCache& cache) const;
/*! \brief Check the right buddy of the block */
bool has_right_buddy(MetadataCache& cache) const;
/*! \brief Get the left buddy */
MemoryBlock* left_buddy(MetadataCache& cache) const;
/*! \brief Get the right buddy */
MemoryBlock* right_buddy(MetadataCache& cache) const;
public:
/*! \brief Split the allocation into left/right blocks */
void split(MetadataCache& cache, size_t size);
/*! \brief Merge left and right blocks together */
void merge(MetadataCache& cache, MemoryBlock* right_buddy);
/*! \brief Mark the allocation as free */
void mark_as_free(MetadataCache& cache);
/*! \brief Change the type of the allocation */
void set_type(MetadataCache& cache, Type t);
public:
/*! \brief Get a pointer to the memory block's data */
void* data() const;
/*! \brief Get a pointer to the memory block's metadata */
MemoryBlock* metadata() const;
public:
static size_t overhead();
};
} // namespace detail
} // namespace memory
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/memory/detail/meta_cache.h"
#include "paddle/memory/detail/memory_block.h"
#include "paddle/platform/assert.h"
namespace paddle {
namespace memory {
namespace detail {
MetadataCache::MetadataCache(bool uses_gpu) : uses_gpu_(uses_gpu) {}
Metadata MetadataCache::load(const MemoryBlock* block) {
if (uses_gpu_) {
auto existing_metadata = cache_.find(block);
PADDLE_ASSERT(existing_metadata->second.check_guards());
return existing_metadata->second;
} else {
PADDLE_ASSERT(reinterpret_cast<const Metadata*>(block)->check_guards());
return *reinterpret_cast<const Metadata*>(block);
}
}
void MetadataCache::store(MemoryBlock* block,
const Metadata& original_metadata) {
auto metadata = original_metadata;
metadata.update_guards();
if (uses_gpu_) {
cache_[block] = metadata;
} else {
*reinterpret_cast<Metadata*>(block) = metadata;
}
}
void MetadataCache::invalidate(MemoryBlock* block) {
if (uses_gpu_) {
cache_.erase(block);
}
}
} // namespace detail
} // namespace memory
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/memory/detail/memory_block.h"
#include "paddle/memory/detail/meta_data.h"
#include <unordered_map>
namespace paddle {
namespace memory {
namespace detail {
/**
* \brief A cache for accessing memory block meta-data that may be expensive
* to access directly.
*
* \note This class exists to unify the metadata format between GPU and CPU
* allocations. It should be removed when the CPU can access all GPU
* allocations directly via UVM.
*/
class MetadataCache {
public:
MetadataCache(bool uses_gpu);
public:
/*! \brief Load the associated metadata for the specified memory block. */
Metadata load(const MemoryBlock*);
/*! \brief Store the associated metadata for the specified memory block. */
void store(MemoryBlock*, const Metadata&);
/*! \brief Indicate that the specified metadata will no longer be used. */
void invalidate(MemoryBlock*);
public:
MetadataCache(const MetadataCache&) = delete;
MetadataCache& operator=(const MetadataCache&) = delete;
private:
bool uses_gpu_;
private:
typedef std::unordered_map<const MemoryBlock*, Metadata> MetadataMap;
private:
MetadataMap cache_;
};
} // namespace detail
} // namespace memory
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/memory/detail/meta_data.h"
#include <functional>
namespace paddle {
namespace memory {
namespace detail {
Metadata::Metadata(MemoryBlock::Type t, size_t i, size_t s, size_t ts,
MemoryBlock* l, MemoryBlock* r)
: type(t),
index(i),
size(s),
total_size(ts),
left_buddy(l),
right_buddy(r) {}
Metadata::Metadata()
: type(MemoryBlock::INVALID_CHUNK),
index(0),
size(0),
total_size(0),
left_buddy(nullptr),
right_buddy(nullptr) {}
template <class T>
inline void hash_combine(std::size_t& seed, const T& v) {
std::hash<T> hasher;
seed ^= hasher(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
inline size_t hash(const Metadata* metadata, size_t initial_seed) {
size_t seed = initial_seed;
hash_combine(seed, (size_t)metadata->type);
hash_combine(seed, metadata->index);
hash_combine(seed, metadata->size);
hash_combine(seed, metadata->total_size);
hash_combine(seed, metadata->left_buddy);
hash_combine(seed, metadata->right_buddy);
return seed;
}
void Metadata::update_guards() {
guard_begin = hash(this, 1);
guard_end = hash(this, 2);
}
bool Metadata::check_guards() const {
return guard_begin == hash(this, 1) && guard_end == hash(this, 2);
}
} // namespace detail
} // namespace memory
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/memory/detail/memory_block.h"
#include <stddef.h>
namespace paddle {
namespace memory {
namespace detail {
class Metadata {
public:
Metadata(MemoryBlock::Type t, size_t i, size_t s, size_t ts, MemoryBlock* l,
MemoryBlock* r);
Metadata();
public:
/*! \brief Update the guards when metadata is changed */
void update_guards();
/*! \brief Check consistency to previous modification */
bool check_guards() const;
public:
// TODO(gangliao): compress this
// clang-format off
size_t guard_begin = 0;
MemoryBlock::Type type = MemoryBlock::INVALID_CHUNK;
size_t index = 0;
size_t size = 0;
size_t total_size = 0;
MemoryBlock* left_buddy = nullptr;
MemoryBlock* right_buddy = nullptr;
size_t guard_end = 0;
// clang-format on
};
} // namespace detail
} // namespace memory
} // namespace paddle
......@@ -13,76 +13,128 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/memory/detail/system_allocator.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/error.h"
#include "paddle/platform/gpu_info.h"
#include <stdlib.h> // for malloc and free
#include <sys/mman.h> // for mlock and munlock
#include "gflags/gflags.h"
#include "paddle/platform/assert.h"
#include "paddle/platform/cuda.h"
// If use_pinned_memory is true, CPUAllocator calls mlock, which
// returns pinned and locked memory as staging areas for data exchange
// between host and device. Allocates too much would reduce the amount
// of memory available to the system for paging. So, by default, we
// should set false to use_pinned_memory.
DEFINE_bool(use_pinned_memory, false,
"If set, allocate cpu/gpu pinned memory.");
DEFINE_bool(use_pinned_memory, false, "If set, allocate cpu pinned memory.");
namespace paddle {
namespace memory {
namespace detail {
void* CPUAllocator::Alloc(size_t size) {
void* CPUAllocator::Alloc(size_t& index, size_t size) {
// According to http://www.cplusplus.com/reference/cstdlib/malloc/,
// malloc might not return nullptr if size is zero, but the returned
// pointer shall not be dereferenced -- so we make it nullptr.
if (size <= 0) return nullptr;
index = 0; // unlock memory
void* p = malloc(size);
if (p != nullptr && FLAGS_use_pinned_memory) {
mlock(p, size);
if (p != nullptr) {
if (FLAGS_use_pinned_memory) {
index = 1;
mlock(p, size); // lock memory
}
}
return p;
}
void CPUAllocator::Free(void* p, size_t size) {
if (p != nullptr && FLAGS_use_pinned_memory) {
void CPUAllocator::Free(void* p, size_t size, size_t index) {
if (p != nullptr && index == 1) {
munlock(p, size);
}
free(p);
}
bool CPUAllocator::UseGpu() const { return false; }
#ifndef PADDLE_ONLY_CPU
void* GPUAllocator::Alloc(size_t size) {
void* GPUAllocator::Alloc(size_t& index, size_t size) {
// CUDA documentation doesn't explain if cudaMalloc returns nullptr
// if size is 0. We just make sure it does.
if (size <= 0) {
return nullptr;
}
if (size <= 0) return nullptr;
size_t available = 0;
size_t capacity = 0;
paddle::platform::GpuMemoryUsage(available, capacity);
// Reserve memory for page tables, etc.
size_t reserving = capacity - paddle::platform::GpuMaxAllocSize();
size_t usable = available > reserving ? available - reserving : 0;
// If remaining size no less than expected size, using general
// cudaMalloc to allocate GPU memory.
void* p = 0;
cudaError_t result =
FLAGS_use_pinned_memory ? cudaMallocHost(&p, size) : cudaMalloc(&p, size);
if (result != cudaSuccess) {
cudaGetLastError(); // clear error if there is any.
if (size <= usable) {
cudaError_t result = cudaMalloc(&p, size);
if (result == cudaSuccess) {
index = 0;
gpu_alloc_size_ += size;
return p;
}
}
// If remaining size less than expected size or cudaMalloc failed,
// cudaMallocHost will be considered as a fallback allocator.
//
// NOTE: here, we use GpuMaxAllocSize() as the maximum memory size
// of host fallback allocation. Allocates too much would reduce
// the amount of memory available to the underlying system for paging.
usable = paddle::platform::GpuMaxAllocSize() - fallback_alloc_size_;
if (size > usable) return nullptr;
cudaError_t result = cudaMallocHost(&p, size);
if (result == cudaSuccess) {
index = 1;
fallback_alloc_size_ += size;
return p;
}
return result == cudaSuccess ? p : nullptr;
return nullptr;
}
void GPUAllocator::Free(void* p, size_t size) {
void GPUAllocator::Free(void* p, size_t size, size_t index) {
cudaError_t err;
if (index == 0) {
PADDLE_ASSERT(gpu_alloc_size_ >= size);
gpu_alloc_size_ -= size;
err = cudaFree(p);
} else {
PADDLE_ASSERT(fallback_alloc_size_ >= size);
fallback_alloc_size_ -= size;
err = cudaFreeHost(p);
}
// Purposefully allow cudaErrorCudartUnloading, because
// that is returned if you ever call cudaFree after the
// driver has already shutdown. This happens only if the
// process is terminating, in which case we don't care if
// cudaFree succeeds.
cudaError_t err = FLAGS_use_pinned_memory ? cudaFreeHost(p) : cudaFree(p);
if (err != cudaErrorCudartUnloading) {
platform::throw_on_error(err, "cudaFree{Host} failed");
platform::throw_on_error(err,
"cudaFree{Host} failed in GPUAllocator::Free.");
}
}
bool GPUAllocator::UseGpu() const { return true; }
#endif // PADDLE_ONLY_CPU
} // namespace detail
......
......@@ -20,31 +20,36 @@ namespace paddle {
namespace memory {
namespace detail {
// SystemAllocator is the parent class of CPUAllocator and
// GPUAllocator. A BuddyAllocator object uses a SystemAllocator*
// pointing to the underlying system allocator. An alternative to
// this class hierarchy is to pass a system allocator class to
// BuddyAllocator as a template parameter. This approach makes
// BuddyAllocator a class template, and it's very complicated
// algorithm would make the buddy_allocator.h messy.
/**
* \brief SystemAllocator is the parent class of CPUAllocator and GPUAllocator.
* A BuddyAllocator object uses a SystemAllocator* pointing to the
* underlying system allocator.
*/
class SystemAllocator {
public:
virtual ~SystemAllocator() {}
virtual void* Alloc(size_t size) = 0;
virtual void Free(void* p, size_t size) = 0;
virtual void* Alloc(size_t& index, size_t size) = 0;
virtual void Free(void* p, size_t size, size_t index) = 0;
virtual bool UseGpu() const = 0;
};
class CPUAllocator : public SystemAllocator {
public:
virtual void* Alloc(size_t size);
virtual void Free(void* p, size_t size);
virtual void* Alloc(size_t& index, size_t size);
virtual void Free(void* p, size_t size, size_t index);
virtual bool UseGpu() const;
};
#ifndef PADDLE_ONLY_CPU
class GPUAllocator : public SystemAllocator {
public:
virtual void* Alloc(size_t size);
virtual void Free(void* p, size_t size);
virtual void* Alloc(size_t& index, size_t size);
virtual void Free(void* p, size_t size, size_t index);
virtual bool UseGpu() const;
private:
size_t gpu_alloc_size_ = 0;
size_t fallback_alloc_size_ = 0;
};
#endif // PADDLE_ONLY_CPU
......
......@@ -25,7 +25,8 @@ DECLARE_bool(use_pinned_memory);
void TestAllocator(paddle::memory::detail::SystemAllocator& a, size_t size) {
bool freed = false;
{
void* p = a.Alloc(size);
size_t index;
void* p = a.Alloc(index, size);
if (size > 0) {
EXPECT_NE(p, nullptr);
} else {
......@@ -35,7 +36,7 @@ void TestAllocator(paddle::memory::detail::SystemAllocator& a, size_t size) {
int* i = static_cast<int*>(p);
std::shared_ptr<int> ptr(i, [&](void* p) {
freed = true;
a.Free(p, size);
a.Free(p, size, index);
});
}
EXPECT_TRUE(freed);
......@@ -56,14 +57,7 @@ TEST(CPUAllocator, LockMem) {
}
#ifndef PADDLE_ONLY_CPU
TEST(GPUAllocator, NoStaging) {
FLAGS_use_pinned_memory = false;
paddle::memory::detail::GPUAllocator a;
TestAllocator(a, 2048);
TestAllocator(a, 0);
}
TEST(GPUAllocator, Staging) {
FLAGS_use_pinned_memory = true;
TEST(GPUAllocator, Alloc) {
paddle::memory::detail::GPUAllocator a;
TestAllocator(a, 2048);
TestAllocator(a, 0);
......
......@@ -22,38 +22,64 @@ limitations under the License. */
namespace paddle {
namespace memory {
void* Alloc(platform::Place pl, size_t size) {
#ifndef PADDLE_ONLY_CPU
if (paddle::platform::is_gpu_place(pl)) {
size_t gpu_id = boost::get<platform::GPUPlace>(pl).device;
return detail::GetGPUBuddyAllocator(gpu_id)->Alloc(size);
detail::BuddyAllocator* GetCPUBuddyAllocator() {
static detail::BuddyAllocator* a = nullptr;
if (a == nullptr) {
a = new detail::BuddyAllocator(new detail::CPUAllocator,
platform::CpuMinChunkSize(),
platform::CpuMaxChunkSize());
}
#endif // PADDLE_ONLY_CPU
PADDLE_ASSERT(paddle::platform::is_cpu_place(pl));
return detail::GetCPUBuddyAllocator()->Alloc(size);
return a;
}
void Free(paddle::platform::Place pl, void* p) {
#ifndef PADDLE_ONLY_CPU
if (paddle::platform::is_gpu_place(pl)) {
size_t gpu_id = boost::get<platform::GPUPlace>(pl).device;
detail::GetGPUBuddyAllocator(gpu_id)->Free(p);
}
#endif // PADDLE_ONLY_CPU
PADDLE_ASSERT(paddle::platform::is_cpu_place(pl));
detail::GetCPUBuddyAllocator()->Free(p);
template <>
void* Alloc<platform::CPUPlace>(platform::CPUPlace place, size_t size) {
return GetCPUBuddyAllocator()->Alloc(size);
}
template <>
void Free<platform::CPUPlace>(platform::CPUPlace place, void* p) {
GetCPUBuddyAllocator()->Free(p);
}
template <>
size_t Used<platform::CPUPlace>(platform::CPUPlace place) {
return GetCPUBuddyAllocator()->Used();
}
size_t Used(paddle::platform::Place pl) {
#ifndef PADDLE_ONLY_CPU
if (paddle::platform::is_gpu_place(pl)) {
size_t gpu_id = boost::get<platform::GPUPlace>(pl).device;
return detail::GetGPUBuddyAllocator(gpu_id)->Used();
detail::BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) {
static detail::BuddyAllocator** as = NULL;
if (as == NULL) {
int gpu_num = platform::GetDeviceCount();
as = new detail::BuddyAllocator*[gpu_num];
for (int gpu = 0; gpu < gpu_num; gpu++) {
platform::SetDeviceId(gpu);
as[gpu] = new detail::BuddyAllocator(new detail::GPUAllocator,
platform::GpuMinChunkSize(),
platform::GpuMaxChunkSize());
}
#endif // PADDLE_ONLY_CPU
PADDLE_ASSERT(paddle::platform::is_cpu_place(pl));
return detail::GetCPUBuddyAllocator()->Used();
}
return as[gpu_id];
}
template <>
void* Alloc<platform::GPUPlace>(platform::GPUPlace place, size_t size) {
return GetGPUBuddyAllocator(place.device)->Alloc(size);
}
template <>
void Free<platform::GPUPlace>(platform::GPUPlace place, void* p) {
GetGPUBuddyAllocator(place.device)->Free(p);
}
template <>
size_t Used<platform::GPUPlace>(platform::GPUPlace place) {
return GetGPUBuddyAllocator(place.device)->Used();
}
#endif // PADDLE_ONLY_CPU
} // namespace memory
} // namespace paddle
......@@ -19,9 +19,14 @@ limitations under the License. */
namespace paddle {
namespace memory {
void* Alloc(paddle::platform::Place, size_t);
void Free(paddle::platform::Place, void*);
size_t Used(paddle::platform::Place);
template <class Place>
void* Alloc(Place, size_t);
template <class Place>
void Free(Place, void*);
template <class Place>
size_t Used(Place);
} // namespace memory
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/memory/memory.h"
#include "paddle/memory/detail/memory_block.h"
#include "paddle/memory/detail/meta_data.h"
#include "paddle/platform/cpu_info.h"
#include "paddle/platform/gpu_info.h"
#include "paddle/platform/place.h"
#include <gtest/gtest.h>
#include <unordered_map>
inline bool is_aligned(void const *p) {
return 0 == (reinterpret_cast<uintptr_t>(p) & 0x3);
}
size_t align(size_t size, paddle::platform::CPUPlace place) {
size += sizeof(paddle::memory::detail::Metadata);
size_t alignment = paddle::platform::CpuMinChunkSize();
size_t remaining = size % alignment;
return remaining == 0 ? size : size + (alignment - remaining);
}
TEST(BuddyAllocator, CPUAllocation) {
void *p = nullptr;
EXPECT_EQ(p, nullptr);
paddle::platform::CPUPlace cpu;
p = paddle::memory::Alloc(cpu, 4096);
EXPECT_NE(p, nullptr);
paddle::memory::Free(cpu, p);
}
TEST(BuddyAllocator, CPUMultAlloc) {
paddle::platform::CPUPlace cpu;
std::unordered_map<void *, size_t> ps;
size_t total_size = paddle::memory::Used(cpu);
EXPECT_EQ(total_size, 0UL);
for (auto size :
{128, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304}) {
ps[paddle::memory::Alloc(cpu, size)] = size;
// Buddy Allocator doesn't manage too large memory chunk
if (paddle::memory::Used(cpu) == total_size) continue;
size_t aligned_size = align(size, cpu);
total_size += aligned_size;
EXPECT_EQ(total_size, paddle::memory::Used(cpu));
}
for (auto p : ps) {
EXPECT_EQ(is_aligned(p.first), true);
paddle::memory::Free(cpu, p.first);
// Buddy Allocator doesn't manage too large memory chunk
if (paddle::memory::Used(cpu) == total_size) continue;
size_t aligned_size = align(p.second, cpu);
total_size -= aligned_size;
EXPECT_EQ(total_size, paddle::memory::Used(cpu));
}
}
#ifndef PADDLE_ONLY_CPU
size_t align(size_t size, paddle::platform::GPUPlace place) {
size += sizeof(paddle::memory::detail::Metadata);
size_t alignment = paddle::platform::GpuMinChunkSize();
size_t remaining = size % alignment;
return remaining == 0 ? size : size + (alignment - remaining);
}
TEST(BuddyAllocator, GPUAllocation) {
void *p = nullptr;
EXPECT_EQ(p, nullptr);
paddle::platform::GPUPlace gpu(0);
p = paddle::memory::Alloc(gpu, 4096);
EXPECT_NE(p, nullptr);
paddle::memory::Free(gpu, p);
}
TEST(BuddyAllocator, GPUMultAlloc) {
paddle::platform::GPUPlace gpu;
std::unordered_map<void *, size_t> ps;
size_t total_size = paddle::memory::Used(gpu);
EXPECT_EQ(total_size, 0UL);
for (auto size :
{128, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304}) {
ps[paddle::memory::Alloc(gpu, size)] = size;
// Buddy Allocator doesn't manage too large memory chunk
if (paddle::memory::Used(gpu) == total_size) continue;
size_t aligned_size = align(size, gpu);
total_size += aligned_size;
EXPECT_EQ(total_size, paddle::memory::Used(gpu));
}
for (auto p : ps) {
EXPECT_EQ(is_aligned(p.first), true);
paddle::memory::Free(gpu, p.first);
// Buddy Allocator doesn't manage too large memory chunk
if (paddle::memory::Used(gpu) == total_size) continue;
size_t aligned_size = align(p.second, gpu);
total_size -= aligned_size;
EXPECT_EQ(total_size, paddle::memory::Used(gpu));
}
}
#endif // PADDLE_ONLY_CPU
add_subdirectory(dynload)
cc_library(cpu_info SRCS cpu_info.cc DEPS gflags glog)
cc_test(cpu_info_test SRCS cpu_info_test.cc DEPS cpu_info)
nv_test(cuda_test SRCS cuda_test.cu)
nv_library(gpu_info SRCS gpu_info.cc DEPS gflags)
cc_library(place SRCS place.cc)
cc_test(place_test SRCS place_test.cc DEPS place glog gflags)
add_subdirectory(dynload)
IF(WITH_GPU)
set(GPU_CTX_DEPS dynload_cuda dynamic_loader)
ELSE()
......@@ -12,4 +15,4 @@ ELSE()
ENDIF()
cc_library(device_context SRCS device_context.cc DEPS place eigen3 ${GPU_CTX_DEPS})
nv_test(device_context_test SRCS device_context_test.cc DEPS device_context glog gflags)
nv_test(device_context_test SRCS device_context_test.cc DEPS device_context gpu_info)
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/platform/cpu_info.h"
#ifdef __APPLE__
#include <sys/sysctl.h>
#include <sys/types.h>
#else
#include <unistd.h>
#endif
#include "gflags/gflags.h"
#include "paddle/platform/error.h"
DEFINE_double(fraction_of_cpu_memory_to_use, 1,
"Default use 100% of CPU memory for PaddlePaddle,"
"reserve the rest for page tables, etc");
namespace paddle {
namespace platform {
inline size_t CpuTotalPhysicalMemory() {
#ifdef __APPLE__
int mib[2];
mib[0] = CTL_HW;
mib[1] = HW_MEMSIZE;
int64_t size = 0;
size_t len = sizeof(size);
if (sysctl(mib, 2, &size, &len, NULL, 0) == 0) return (size_t)size;
return 0L;
#else
long pages = sysconf(_SC_PHYS_PAGES);
long page_size = sysconf(_SC_PAGE_SIZE);
return pages * page_size;
#endif
}
size_t CpuMaxAllocSize() {
// For distributed systems, it requires configuring and limiting
// the fraction of memory to use.
return FLAGS_fraction_of_cpu_memory_to_use * CpuTotalPhysicalMemory();
}
size_t CpuMinChunkSize() {
// Allow to allocate the minimum chunk size is 4 KB.
return 1 << 12;
}
size_t CpuMaxChunkSize() {
// Allow to allocate the maximum chunk size is roughly 3% of CPU memory.
return CpuMaxAllocSize() / 32;
}
} // namespace platform
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <stddef.h>
namespace paddle {
namespace platform {
//! Get the maximum allocation size for a machine.
size_t CpuMaxAllocSize();
//! Get the minimum chunk size for buddy allocator.
size_t CpuMinChunkSize();
//! Get the maximum chunk size for buddy allocator.
size_t CpuMaxChunkSize();
} // namespace platform
} // namespace paddle
#include "paddle/platform/cpu_info.h"
#include "paddle/string/printf.h"
#include <ostream>
#include <sstream>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
DECLARE_double(fraction_of_cpu_memory_to_use);
TEST(CpuMemoryUsage, Print) {
std::stringstream ss;
size_t memory_size = paddle::platform::CpuMaxAllocSize() / 1024 / 1024 / 1024;
float use_percent = FLAGS_fraction_of_cpu_memory_to_use * 100;
std::cout << paddle::string::Sprintf("\n%.2f %% of CPU Memory Usage: %d GB\n",
use_percent, memory_size)
<< std::endl;
}
#include <cuda_runtime.h>
#include <stdio.h>
#include "gtest/gtest.h"
#define CHECK_ERR(x) \
if (x != cudaSuccess) { \
fprintf(stderr, \
"%s in %s at line %d\n", \
cudaGetErrorString(err), \
__FILE__, \
__LINE__); \
exit(-1); \
}
__global__ void vecAdd(float *d_A, float *d_B, float *d_C, int n) {
int i = blockDim.x * blockIdx.x + threadIdx.x;
if (i < n) {
d_C[i] = d_A[i] + d_B[i];
}
}
TEST(Cuda, Equality) {
int n = 10;
// Memory allocation for h_A, h_B and h_C (in the host)
float h_A[10] = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 0.0};
float h_B[10] = {0.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0};
float h_C[10];
float *d_A, *d_B, *d_C;
cudaError_t err;
// Memory allocation for d_A, d_B and d_C (in the device)
err = cudaMalloc((void **)&d_A, sizeof(float) * n);
CHECK_ERR(err);
err = cudaMalloc((void **)&d_B, sizeof(float) * n);
CHECK_ERR(err);
err = cudaMalloc((void **)&d_C, sizeof(float) * n);
CHECK_ERR(err);
// Copying memory to device
err = cudaMemcpy(d_A, h_A, sizeof(float) * n, cudaMemcpyHostToDevice);
CHECK_ERR(err);
err = cudaMemcpy(d_B, h_B, sizeof(float) * n, cudaMemcpyHostToDevice);
CHECK_ERR(err);
// Calling the kernel
vecAdd<<<ceil(n / 256.0), 256>>>(d_A, d_B, d_C, n);
// Copying results back to host
err = cudaMemcpy(h_C, d_C, sizeof(float) * n, cudaMemcpyDeviceToHost);
CHECK_ERR(err);
EXPECT_EQ(h_C[0], 1.0);
for (int i = 1; i < n - 1; ++i) {
EXPECT_EQ(h_C[i], 11.0);
}
EXPECT_EQ(h_C[9], 1.0);
}
......@@ -13,10 +13,11 @@ limitations under the License. */
#include "paddle/framework/enforce.h"
#ifndef PADDLE_ONLY_CPU
#include "paddle/platform/cuda.h"
#include "paddle/platform/dynload/cublas.h"
#include "paddle/platform/dynload/cudnn.h"
#include "paddle/platform/dynload/curand.h"
#include "paddle/platform/error.h"
#include "paddle/platform/gpu_info.h"
#define EIGEN_USE_GPU
#endif
#include <paddle/platform/place.h>
......
#pragma once
#include <sstream>
#include <stdexcept>
#include <string>
#ifndef PADDLE_ONLY_CPU
#include <cublas_v2.h>
#include <cudnn.h>
#include <curand.h>
#include <thrust/system/cuda/error.h>
#include <thrust/system_error.h>
#endif // PADDLE_ONLY_CPU
namespace paddle {
namespace platform {
#ifndef PADDLE_ONLY_CPU
inline void throw_on_error(cudaError_t e, const char* message) {
if (e) {
throw thrust::system_error(e, thrust::cuda_category(), message);
}
}
inline void throw_on_error(curandStatus_t stat, const char* message) {
if (stat != CURAND_STATUS_SUCCESS) {
throw thrust::system_error(cudaErrorLaunchFailure, thrust::cuda_category(),
message);
}
}
inline void throw_on_error(cudnnStatus_t stat, const char* message) {
std::stringstream ss;
if (stat == CUDNN_STATUS_SUCCESS) {
return;
} else {
ss << cudnnGetErrorString(stat);
ss << ", " << message;
throw std::runtime_error(ss.str());
}
}
inline void throw_on_error(cublasStatus_t stat, const char* message) {
std::stringstream ss;
if (stat == CUBLAS_STATUS_SUCCESS) {
return;
} else if (stat == CUBLAS_STATUS_NOT_INITIALIZED) {
ss << "CUBLAS: not initialized";
} else if (stat == CUBLAS_STATUS_ALLOC_FAILED) {
ss << "CUBLAS: alloc failed";
} else if (stat == CUBLAS_STATUS_INVALID_VALUE) {
ss << "CUBLAS: invalid value";
} else if (stat == CUBLAS_STATUS_ARCH_MISMATCH) {
ss << "CUBLAS: arch mismatch";
} else if (stat == CUBLAS_STATUS_MAPPING_ERROR) {
ss << "CUBLAS: mapping error";
} else if (stat == CUBLAS_STATUS_EXECUTION_FAILED) {
ss << "CUBLAS: execution failed";
} else if (stat == CUBLAS_STATUS_INTERNAL_ERROR) {
ss << "CUBLAS: internal error";
} else if (stat == CUBLAS_STATUS_NOT_SUPPORTED) {
ss << "CUBLAS: not supported";
} else if (stat == CUBLAS_STATUS_LICENSE_ERROR) {
ss << "CUBLAS: license error";
}
ss << ", " << message;
throw std::runtime_error(ss.str());
}
inline void throw_on_error(cublasStatus_t stat) {
const char* message = "";
throw_on_error(stat, message);
}
#endif // PADDLE_ONLY_CPU
inline void throw_on_error(int stat, const char* message) {
if (stat) {
throw std::runtime_error(message + (", stat = " + std::to_string(stat)));
}
}
} // namespace platform
} // namespace paddle
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/platform/gpu_info.h"
#include "gflags/gflags.h"
#include "paddle/platform/error.h"
DEFINE_double(fraction_of_gpu_memory_to_use, 0.95,
"Default use 95% of GPU memory for PaddlePaddle,"
"reserve the rest for page tables, etc");
namespace paddle {
namespace platform {
int GetDeviceCount() {
int count;
throw_on_error(
cudaGetDeviceCount(&count),
"cudaGetDeviceCount failed in paddle::platform::GetDeviceCount");
return count;
}
int GetCurrentDeviceId() {
int device_id;
throw_on_error(
cudaGetDevice(&device_id),
"cudaGetDevice failed in paddle::platform::GetCurrentDeviceId");
return device_id;
}
void SetDeviceId(int id) {
throw_on_error(cudaSetDevice(id),
"cudaSetDevice failed in paddle::platform::SetDeviceId");
}
void GpuMemoryUsage(size_t& available, size_t& total) {
throw_on_error(cudaMemGetInfo(&available, &total),
"cudaMemGetInfo failed in paddle::platform::GetMemoryUsage");
}
size_t GpuMaxAllocSize() {
size_t total = 0;
size_t available = 0;
GpuMemoryUsage(available, total);
// Reserve the rest for page tables, etc.
return static_cast<size_t>(total * FLAGS_fraction_of_gpu_memory_to_use);
}
size_t GpuMinChunkSize() {
// Allow to allocate the minimum chunk size is 256 bytes.
return 1 << 8;
}
size_t GpuMaxChunkSize() {
size_t total = 0;
size_t available = 0;
GpuMemoryUsage(available, total);
// Reserving the rest memory for page tables, etc.
size_t reserving = (1 - FLAGS_fraction_of_gpu_memory_to_use) * total;
// If available less than minimum chunk size, no usable memory exists.
available = std::max(available, GpuMinChunkSize()) - GpuMinChunkSize();
// If available less than reserving, no usable memory exists.
size_t usable = std::max(available, reserving) - reserving;
return usable;
}
} // namespace platform
} // namespace paddle
......@@ -16,33 +16,31 @@ limitations under the License. */
#ifndef PADDLE_ONLY_CPU
#include <thrust/system/cuda/error.h>
#include <thrust/system_error.h>
#include <stddef.h>
namespace paddle {
namespace platform {
inline void throw_on_error(cudaError_t e, const char* message) {
if (e) {
throw thrust::system_error(e, thrust::cuda_category(), message);
}
}
inline int GetDeviceCount(void) {
int count;
throw_on_error(cudaGetDeviceCount(&count), "cudaGetDeviceCount failed");
return count;
}
inline int GetCurrentDeviceId(void) {
int device_id;
throw_on_error(cudaGetDevice(&device_id), "cudaGetDevice failed");
return device_id;
}
inline void SetDeviceId(int device_id) {
throw_on_error(cudaSetDevice(device_id), "cudaSetDevice failed");
}
//! Get the total number of GPU devices in system.
int GetDeviceCount();
//! Get the current GPU device id in system.
int GetCurrentDeviceId();
//! Set the GPU device id for next execution.
void SetDeviceId(int device_id);
//!Get the memory usage of current GPU device.
void GpuMemoryUsage(size_t& available, size_t& total);
//! Get the maximum allocation size of current GPU device.
size_t GpuMaxAllocSize();
//! Get the minimum chunk size for GPU buddy allocator.
size_t GpuMinChunkSize();
//! Get the maximum chunk size for GPU buddy allocator.
size_t GpuMaxChunkSize();
} // namespace platform
} // namespace paddle
......
......@@ -35,7 +35,7 @@ public:
// We provide non-explicit singleton constructors so users can
// pass in a "const char*" or a "string" wherever a "Piece"
// is expected. These contructors ensure that if data_ is NULL,
// is expected. These constructors ensure that if data_ is NULL,
// size_ is 0.
Piece();
Piece(const char* d, size_t n);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册