Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
47897299
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
47897299
编写于
6月 30, 2022
作者:
Z
zhiboniu
提交者:
zhiboniu
7月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
cpp deploy smooth ok
上级
5c3d64a4
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
215 addition
and
38 deletion
+215
-38
deploy/cpp/include/keypoint_detector.h
deploy/cpp/include/keypoint_detector.h
+0
-6
deploy/cpp/include/keypoint_postprocess.h
deploy/cpp/include/keypoint_postprocess.h
+73
-2
deploy/cpp/src/keypoint_postprocess.cc
deploy/cpp/src/keypoint_postprocess.cc
+133
-30
deploy/cpp/src/main_keypoint.cc
deploy/cpp/src/main_keypoint.cc
+9
-0
未找到文件。
deploy/cpp/include/keypoint_detector.h
浏览文件 @
47897299
...
...
@@ -33,12 +33,6 @@
using
namespace
paddle_infer
;
namespace
PaddleDetection
{
// Object KeyPoint Result
struct
KeyPointResult
{
// Keypoints: shape(N x 3); N: number of Joints; 3: x,y,conf
std
::
vector
<
float
>
keypoints
;
int
num_joints
=
-
1
;
};
// Visualiztion KeyPoint Result
cv
::
Mat
VisualizeKptsResult
(
const
cv
::
Mat
&
img
,
...
...
deploy/cpp/include/keypoint_postprocess.h
浏览文件 @
47897299
...
...
@@ -14,11 +14,14 @@
#pragma once
#include <math.h>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <vector>
namespace
PaddleDetection
{
std
::
vector
<
float
>
get_3rd_point
(
std
::
vector
<
float
>&
a
,
std
::
vector
<
float
>&
b
);
std
::
vector
<
float
>
get_dir
(
float
src_point_x
,
float
src_point_y
,
float
rot_rad
);
...
...
@@ -37,7 +40,8 @@ void transform_preds(std::vector<float>& coords,
std
::
vector
<
float
>&
scale
,
std
::
vector
<
int
>&
output_size
,
std
::
vector
<
int
>&
dim
,
std
::
vector
<
float
>&
target_coords
);
std
::
vector
<
float
>&
target_coords
,
bool
affine
=
false
);
void
box_to_center_scale
(
std
::
vector
<
int
>&
box
,
int
width
,
...
...
@@ -61,3 +65,70 @@ void get_final_preds(std::vector<float>& heatmap,
std
::
vector
<
float
>&
preds
,
int
batchid
,
bool
DARK
=
true
);
// Object KeyPoint Result
struct
KeyPointResult
{
// Keypoints: shape(N x 3); N: number of Joints; 3: x,y,conf
std
::
vector
<
float
>
keypoints
;
int
num_joints
=
-
1
;
};
class
PoseSmooth
{
public:
explicit
PoseSmooth
(
const
int
width
,
const
int
height
,
std
::
string
filter_type
=
"OneEuro"
,
float
alpha
=
0.5
,
float
fc_d
=
0.1
,
float
fc_min
=
0.1
,
float
beta
=
0.1
,
float
thres_mult
=
0.3
)
:
width
(
width
),
height
(
height
),
alpha
(
alpha
),
fc_d
(
fc_d
),
fc_min
(
fc_min
),
beta
(
beta
),
filter_type
(
filter_type
),
thres_mult
(
thres_mult
){};
// Run predictor
KeyPointResult
smooth_process
(
KeyPointResult
*
result
);
void
PointSmooth
(
KeyPointResult
*
result
,
KeyPointResult
*
keypoint_smoothed
,
std
::
vector
<
float
>
thresholds
,
int
index
);
float
OneEuroFilter
(
float
x_cur
,
float
x_pre
,
int
loc
);
float
smoothing_factor
(
float
te
,
float
fc
);
float
ExpSmoothing
(
float
x_cur
,
float
x_pre
,
int
loc
=
0
);
private:
int
width
=
0
;
int
height
=
0
;
float
alpha
=
0.
;
float
fc_d
=
1.
;
float
fc_min
=
0.
;
float
beta
=
1.
;
float
thres_mult
=
1.
;
std
::
string
filter_type
=
"OneEuro"
;
std
::
vector
<
float
>
thresholds
=
{
0.005
,
0.005
,
0.005
,
0.005
,
0.005
,
0.01
,
0.01
,
0.01
,
0.01
,
0.01
,
0.01
,
0.01
,
0.01
,
0.01
,
0.01
,
0.01
,
0.01
};
KeyPointResult
x_prev_hat
;
KeyPointResult
dx_prev_hat
;
};
}
// namespace PaddleDetection
deploy/cpp/src/keypoint_postprocess.cc
浏览文件 @
47897299
...
...
@@ -11,11 +11,13 @@
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <math.h>
#include "include/keypoint_postprocess.h"
#include <math.h>
#define PI 3.1415926535
#define HALF_CIRCLE_DEGREE 180
namespace
PaddleDetection
{
cv
::
Point2f
get_3rd_point
(
cv
::
Point2f
&
a
,
cv
::
Point2f
&
b
)
{
cv
::
Point2f
direct
{
a
.
x
-
b
.
x
,
a
.
y
-
b
.
y
};
return
cv
::
Point2f
(
a
.
x
-
direct
.
y
,
a
.
y
+
direct
.
x
);
...
...
@@ -52,7 +54,7 @@ void get_affine_transform(std::vector<float>& center,
float
dst_h
=
static_cast
<
float
>
(
output_size
[
1
]);
float
rot_rad
=
rot
*
PI
/
HALF_CIRCLE_DEGREE
;
std
::
vector
<
float
>
src_dir
=
get_dir
(
-
0.5
*
src_w
,
0
,
rot_rad
);
std
::
vector
<
float
>
dst_dir
{
-
0.5
*
dst_w
,
0.0
};
std
::
vector
<
float
>
dst_dir
{
-
0.5
f
*
dst_w
,
0.0
};
cv
::
Point2f
srcPoint2f
[
3
],
dstPoint2f
[
3
];
srcPoint2f
[
0
]
=
cv
::
Point2f
(
center
[
0
],
center
[
1
]);
srcPoint2f
[
1
]
=
cv
::
Point2f
(
center
[
0
]
+
src_dir
[
0
],
center
[
1
]
+
src_dir
[
1
]);
...
...
@@ -74,11 +76,26 @@ void transform_preds(std::vector<float>& coords,
std
::
vector
<
float
>&
scale
,
std
::
vector
<
int
>&
output_size
,
std
::
vector
<
int
>&
dim
,
std
::
vector
<
float
>&
target_coords
)
{
std
::
vector
<
float
>&
target_coords
,
bool
affine
)
{
if
(
affine
)
{
cv
::
Mat
trans
(
2
,
3
,
CV_64FC1
);
get_affine_transform
(
center
,
scale
,
0
,
output_size
,
trans
,
1
);
for
(
int
p
=
0
;
p
<
dim
[
1
];
++
p
)
{
affine_tranform
(
coords
[
p
*
2
],
coords
[
p
*
2
+
1
],
trans
,
target_coords
,
p
);
affine_tranform
(
coords
[
p
*
2
],
coords
[
p
*
2
+
1
],
trans
,
target_coords
,
p
);
}
}
else
{
float
heat_w
=
static_cast
<
float
>
(
output_size
[
0
]);
float
heat_h
=
static_cast
<
float
>
(
output_size
[
1
]);
float
x_scale
=
scale
[
0
]
/
heat_w
;
float
y_scale
=
scale
[
1
]
/
heat_h
;
float
offset_x
=
center
[
0
]
-
scale
[
0
]
/
2.
;
float
offset_y
=
center
[
1
]
-
scale
[
1
]
/
2.
;
for
(
int
i
=
0
;
i
<
dim
[
1
];
i
++
)
{
target_coords
[
i
*
3
+
1
]
=
x_scale
*
coords
[
i
*
2
]
+
offset_x
;
target_coords
[
i
*
3
+
2
]
=
y_scale
*
coords
[
i
*
2
+
1
]
+
offset_y
;
}
}
}
...
...
@@ -114,7 +131,7 @@ void dark_parse(std::vector<float>& heatmap,
int
px
,
int
py
,
int
index
,
int
ch
){
int
ch
)
{
/*DARK postpocessing, Zhang et al. Distribution-Aware Coordinate
Representation for Human Pose Estimation (CVPR 2020).
1) offset = - hassian.inv() * derivative
...
...
@@ -124,16 +141,17 @@ void dark_parse(std::vector<float>& heatmap,
5) hassian = Mat([[dxx, dxy], [dxy, dyy]])
*/
std
::
vector
<
float
>::
const_iterator
first1
=
heatmap
.
begin
()
+
index
;
std
::
vector
<
float
>::
const_iterator
last1
=
heatmap
.
begin
()
+
index
+
dim
[
2
]
*
dim
[
3
];
std
::
vector
<
float
>::
const_iterator
last1
=
heatmap
.
begin
()
+
index
+
dim
[
2
]
*
dim
[
3
];
std
::
vector
<
float
>
heatmap_ch
(
first1
,
last1
);
cv
::
Mat
heatmap_mat
=
cv
::
Mat
(
heatmap_ch
).
reshape
(
0
,
dim
[
2
]);
cv
::
Mat
heatmap_mat
=
cv
::
Mat
(
heatmap_ch
).
reshape
(
0
,
dim
[
2
]);
heatmap_mat
.
convertTo
(
heatmap_mat
,
CV_32FC1
);
cv
::
GaussianBlur
(
heatmap_mat
,
heatmap_mat
,
cv
::
Size
(
3
,
3
),
0
,
0
);
heatmap_mat
=
heatmap_mat
.
reshape
(
1
,
1
);
heatmap_ch
=
std
::
vector
<
float
>
(
heatmap_mat
.
reshape
(
1
,
1
));
heatmap_mat
=
heatmap_mat
.
reshape
(
1
,
1
);
heatmap_ch
=
std
::
vector
<
float
>
(
heatmap_mat
.
reshape
(
1
,
1
));
float
epsilon
=
1e-10
;
//sample heatmap to get values in around target location
//
sample heatmap to get values in around target location
float
xy
=
log
(
fmax
(
heatmap_ch
[
py
*
dim
[
3
]
+
px
],
epsilon
));
float
xr
=
log
(
fmax
(
heatmap_ch
[
py
*
dim
[
3
]
+
px
+
1
],
epsilon
));
float
xl
=
log
(
fmax
(
heatmap_ch
[
py
*
dim
[
3
]
+
px
-
1
],
epsilon
));
...
...
@@ -149,22 +167,23 @@ void dark_parse(std::vector<float>& heatmap,
float
xlyu
=
log
(
fmax
(
heatmap_ch
[(
py
+
1
)
*
dim
[
3
]
+
px
-
1
],
epsilon
));
float
xlyd
=
log
(
fmax
(
heatmap_ch
[(
py
-
1
)
*
dim
[
3
]
+
px
-
1
],
epsilon
));
//compute dx/dy and dxx/dyy with sampled values
//
compute dx/dy and dxx/dyy with sampled values
float
dx
=
0.5
*
(
xr
-
xl
);
float
dy
=
0.5
*
(
yu
-
yd
);
float
dxx
=
0.25
*
(
xr2
-
2
*
xy
+
xl2
);
float
dxx
=
0.25
*
(
xr2
-
2
*
xy
+
xl2
);
float
dxy
=
0.25
*
(
xryu
-
xryd
-
xlyu
+
xlyd
);
float
dyy
=
0.25
*
(
yu2
-
2
*
xy
+
yd2
);
float
dyy
=
0.25
*
(
yu2
-
2
*
xy
+
yd2
);
//finally get offset by derivative and hassian, which combined by dx/dy and dxx/dyy
if
(
dxx
*
dyy
-
dxy
*
dxy
!=
0
){
// finally get offset by derivative and hassian, which combined by dx/dy and
// dxx/dyy
if
(
dxx
*
dyy
-
dxy
*
dxy
!=
0
)
{
float
M
[
2
][
2
]
=
{
dxx
,
dxy
,
dxy
,
dyy
};
float
D
[
2
]
=
{
dx
,
dy
};
cv
::
Mat
hassian
(
2
,
2
,
CV_32F
,
M
);
cv
::
Mat
derivative
(
2
,
1
,
CV_32F
,
D
);
cv
::
Mat
offset
=
-
hassian
.
inv
()
*
derivative
;
coords
[
ch
*
2
]
+=
offset
.
at
<
float
>
(
0
,
0
);
coords
[
ch
*
2
+
1
]
+=
offset
.
at
<
float
>
(
1
,
0
);
cv
::
Mat
hassian
(
2
,
2
,
CV_32F
,
M
);
cv
::
Mat
derivative
(
2
,
1
,
CV_32F
,
D
);
cv
::
Mat
offset
=
-
hassian
.
inv
()
*
derivative
;
coords
[
ch
*
2
]
+=
offset
.
at
<
float
>
(
0
,
0
);
coords
[
ch
*
2
+
1
]
+=
offset
.
at
<
float
>
(
1
,
0
);
}
}
...
...
@@ -193,10 +212,10 @@ void get_final_preds(std::vector<float>& heatmap,
int
px
=
int
(
coords
[
j
*
2
]
+
0.5
);
int
py
=
int
(
coords
[
j
*
2
+
1
]
+
0.5
);
if
(
DARK
&&
px
>
1
&&
px
<
heatmap_width
-
2
&&
py
>
1
&&
py
<
heatmap_height
-
2
){
if
(
DARK
&&
px
>
1
&&
px
<
heatmap_width
-
2
&&
py
>
1
&&
py
<
heatmap_height
-
2
)
{
dark_parse
(
heatmap
,
dim
,
coords
,
px
,
py
,
index
,
j
);
}
else
{
}
else
{
if
(
px
>
0
&&
px
<
heatmap_width
-
1
)
{
float
diff_x
=
heatmap
[
index
+
py
*
dim
[
3
]
+
px
+
1
]
-
heatmap
[
index
+
py
*
dim
[
3
]
+
px
-
1
];
...
...
@@ -213,3 +232,87 @@ void get_final_preds(std::vector<float>& heatmap,
std
::
vector
<
int
>
img_size
{
heatmap_width
,
heatmap_height
};
transform_preds
(
coords
,
center
,
scale
,
img_size
,
dim
,
preds
);
}
// Run predictor
KeyPointResult
PoseSmooth
::
smooth_process
(
KeyPointResult
*
result
)
{
KeyPointResult
keypoint_smoothed
=
*
result
;
if
(
this
->
x_prev_hat
.
num_joints
==
-
1
)
{
this
->
x_prev_hat
=
*
result
;
this
->
dx_prev_hat
=
*
result
;
std
::
fill
(
dx_prev_hat
.
keypoints
.
begin
(),
dx_prev_hat
.
keypoints
.
end
(),
0.
);
return
keypoint_smoothed
;
}
else
{
for
(
int
i
=
0
;
i
<
result
->
num_joints
;
i
++
)
{
this
->
PointSmooth
(
result
,
&
keypoint_smoothed
,
this
->
thresholds
,
i
);
}
return
keypoint_smoothed
;
}
}
void
PoseSmooth
::
PointSmooth
(
KeyPointResult
*
result
,
KeyPointResult
*
keypoint_smoothed
,
std
::
vector
<
float
>
thresholds
,
int
index
)
{
float
distance
=
sqrt
(
pow
((
result
->
keypoints
[
index
*
3
+
1
]
-
this
->
x_prev_hat
.
keypoints
[
index
*
3
+
1
])
/
this
->
width
,
2
)
+
pow
((
result
->
keypoints
[
index
*
3
+
2
]
-
this
->
x_prev_hat
.
keypoints
[
index
*
3
+
2
])
/
this
->
height
,
2
));
if
(
distance
<
thresholds
[
index
]
*
this
->
thres_mult
)
{
keypoint_smoothed
->
keypoints
[
index
*
3
+
1
]
=
this
->
x_prev_hat
.
keypoints
[
index
*
3
+
1
];
keypoint_smoothed
->
keypoints
[
index
*
3
+
2
]
=
this
->
x_prev_hat
.
keypoints
[
index
*
3
+
2
];
}
else
{
if
(
this
->
filter_type
==
"OneEuro"
)
{
keypoint_smoothed
->
keypoints
[
index
*
3
+
1
]
=
this
->
OneEuroFilter
(
result
->
keypoints
[
index
*
3
+
1
],
this
->
x_prev_hat
.
keypoints
[
index
*
3
+
1
],
index
*
3
+
1
);
keypoint_smoothed
->
keypoints
[
index
*
3
+
2
]
=
this
->
OneEuroFilter
(
result
->
keypoints
[
index
*
3
+
2
],
this
->
x_prev_hat
.
keypoints
[
index
*
3
+
2
],
index
*
3
+
2
);
}
else
{
keypoint_smoothed
->
keypoints
[
index
*
3
+
1
]
=
this
->
ExpSmoothing
(
result
->
keypoints
[
index
*
3
+
1
],
this
->
x_prev_hat
.
keypoints
[
index
*
3
+
1
],
index
*
3
+
1
);
keypoint_smoothed
->
keypoints
[
index
*
3
+
2
]
=
this
->
ExpSmoothing
(
result
->
keypoints
[
index
*
3
+
2
],
this
->
x_prev_hat
.
keypoints
[
index
*
3
+
2
],
index
*
3
+
2
);
}
}
return
;
}
float
PoseSmooth
::
OneEuroFilter
(
float
x_cur
,
float
x_pre
,
int
loc
)
{
float
te
=
1.0
;
this
->
alpha
=
this
->
smoothing_factor
(
te
,
this
->
fc_d
);
float
dx_cur
=
(
x_cur
-
x_pre
)
/
te
;
float
dx_cur_hat
=
this
->
ExpSmoothing
(
dx_cur
,
this
->
dx_prev_hat
.
keypoints
[
loc
]);
float
fc
=
this
->
fc_min
+
this
->
beta
*
abs
(
dx_cur_hat
);
this
->
alpha
=
this
->
smoothing_factor
(
te
,
fc
);
float
x_cur_hat
=
this
->
ExpSmoothing
(
x_cur
,
x_pre
);
// printf("alpha:%f, x_cur:%f, x_pre:%f, x_cur_hat:%f\n", this->alpha, x_cur,
// x_pre, x_cur_hat);
this
->
x_prev_hat
.
keypoints
[
loc
]
=
x_cur_hat
;
this
->
dx_prev_hat
.
keypoints
[
loc
]
=
dx_cur_hat
;
return
x_cur_hat
;
}
float
PoseSmooth
::
smoothing_factor
(
float
te
,
float
fc
)
{
float
r
=
2
*
PI
*
fc
*
te
;
return
r
/
(
r
+
1
);
}
float
PoseSmooth
::
ExpSmoothing
(
float
x_cur
,
float
x_pre
,
int
loc
)
{
return
this
->
alpha
*
x_cur
+
(
1
-
this
->
alpha
)
*
x_pre
;
}
}
// namespace PaddleDetection
deploy/cpp/src/main_keypoint.cc
浏览文件 @
47897299
...
...
@@ -219,6 +219,8 @@ void PredictVideo(const std::string& video_path,
printf
(
"create video writer failed!
\n
"
);
return
;
}
PaddleDetection
::
PoseSmooth
smoother
=
PaddleDetection
::
PoseSmooth
(
video_width
,
video_height
);
std
::
vector
<
PaddleDetection
::
ObjectResult
>
result
;
std
::
vector
<
int
>
bbox_num
;
...
...
@@ -307,6 +309,13 @@ void PredictVideo(const std::string& video_path,
scale_bs
.
clear
();
}
}
if
(
result_kpts
.
size
()
==
1
)
{
for
(
int
i
=
0
;
i
<
result_kpts
.
size
();
i
++
)
{
result_kpts
[
i
]
=
smoother
.
smooth_process
(
&
(
result_kpts
[
i
]));
}
}
cv
::
Mat
out_im
=
VisualizeKptsResult
(
frame
,
result_kpts
,
colormap_kpts
);
video_out
.
write
(
out_im
);
}
else
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录