Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
47606f9a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
47606f9a
编写于
10月 15, 2020
作者:
K
Kaipeng Deng
提交者:
GitHub
10月 15, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add infer_cfg export in slim export_model (#1554)
上级
2e33bc59
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
198 addition
and
224 deletion
+198
-224
ppdet/utils/export_utils.py
ppdet/utils/export_utils.py
+194
-0
slim/prune/export_model.py
slim/prune/export_model.py
+2
-41
slim/quantization/export_model.py
slim/quantization/export_model.py
+1
-16
tools/export_model.py
tools/export_model.py
+1
-167
未找到文件。
ppdet/utils/export_utils.py
0 → 100644
浏览文件 @
47606f9a
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
yaml
import
numpy
as
np
from
collections
import
OrderedDict
import
logging
logger
=
logging
.
getLogger
(
__name__
)
import
paddle.fluid
as
fluid
__all__
=
[
'dump_infer_config'
,
'save_infer_model'
]
# Global dictionary
TRT_MIN_SUBGRAPH
=
{
'YOLO'
:
3
,
'SSD'
:
3
,
'RCNN'
:
40
,
'RetinaNet'
:
40
,
'EfficientDet'
:
40
,
'Face'
:
3
,
'TTFNet'
:
3
,
'FCOS'
:
3
,
'SOLOv2'
:
3
,
}
RESIZE_SCALE_SET
=
{
'RCNN'
,
'RetinaNet'
,
'FCOS'
,
'SOLOv2'
,
}
def
parse_reader
(
reader_cfg
,
metric
,
arch
):
preprocess_list
=
[]
image_shape
=
reader_cfg
[
'inputs_def'
].
get
(
'image_shape'
,
[
3
,
None
,
None
])
has_shape_def
=
not
None
in
image_shape
dataset
=
reader_cfg
[
'dataset'
]
anno_file
=
dataset
.
get_anno
()
with_background
=
dataset
.
with_background
use_default_label
=
dataset
.
use_default_label
if
metric
==
'COCO'
:
from
ppdet.utils.coco_eval
import
get_category_info
elif
metric
==
"VOC"
:
from
ppdet.utils.voc_eval
import
get_category_info
elif
metric
==
"WIDERFACE"
:
from
ppdet.utils.widerface_eval_utils
import
get_category_info
else
:
raise
ValueError
(
"metric only supports COCO, VOC, WIDERFACE, but received {}"
.
format
(
metric
))
clsid2catid
,
catid2name
=
get_category_info
(
anno_file
,
with_background
,
use_default_label
)
label_list
=
[
str
(
cat
)
for
cat
in
catid2name
.
values
()]
sample_transforms
=
reader_cfg
[
'sample_transforms'
]
for
st
in
sample_transforms
[
1
:]:
method
=
st
.
__class__
.
__name__
p
=
{
'type'
:
method
.
replace
(
'Image'
,
''
)}
params
=
st
.
__dict__
params
.
pop
(
'_id'
)
if
p
[
'type'
]
==
'Resize'
and
has_shape_def
:
params
[
'target_size'
]
=
min
(
image_shape
[
1
:])
if
arch
in
RESIZE_SCALE_SET
else
image_shape
[
1
]
params
[
'max_size'
]
=
max
(
image_shape
[
1
:])
if
arch
in
RESIZE_SCALE_SET
else
0
params
[
'image_shape'
]
=
image_shape
[
1
:]
if
'target_dim'
in
params
:
params
.
pop
(
'target_dim'
)
if
p
[
'type'
]
==
'ResizeAndPad'
:
assert
has_shape_def
,
"missing input shape"
p
[
'type'
]
=
'Resize'
p
[
'target_size'
]
=
params
[
'target_dim'
]
p
[
'max_size'
]
=
params
[
'target_dim'
]
p
[
'interp'
]
=
params
[
'interp'
]
p
[
'image_shape'
]
=
image_shape
[
1
:]
preprocess_list
.
append
(
p
)
continue
p
.
update
(
params
)
preprocess_list
.
append
(
p
)
batch_transforms
=
reader_cfg
.
get
(
'batch_transforms'
,
None
)
if
batch_transforms
:
methods
=
[
bt
.
__class__
.
__name__
for
bt
in
batch_transforms
]
for
bt
in
batch_transforms
:
method
=
bt
.
__class__
.
__name__
if
method
==
'PadBatch'
:
preprocess_list
.
append
({
'type'
:
'PadStride'
})
params
=
bt
.
__dict__
preprocess_list
[
-
1
].
update
({
'stride'
:
params
[
'pad_to_stride'
]})
break
return
with_background
,
preprocess_list
,
label_list
def
dump_infer_config
(
FLAGS
,
config
):
arch_state
=
0
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
if
not
os
.
path
.
exists
(
save_dir
):
os
.
makedirs
(
save_dir
)
from
ppdet.core.config.yaml_helpers
import
setup_orderdict
setup_orderdict
()
infer_cfg
=
OrderedDict
({
'use_python_inference'
:
False
,
'mode'
:
'fluid'
,
'draw_threshold'
:
0.5
,
'metric'
:
config
[
'metric'
]
})
infer_arch
=
config
[
'architecture'
]
for
arch
,
min_subgraph_size
in
TRT_MIN_SUBGRAPH
.
items
():
if
arch
in
infer_arch
:
infer_cfg
[
'arch'
]
=
arch
infer_cfg
[
'min_subgraph_size'
]
=
min_subgraph_size
arch_state
=
1
break
if
not
arch_state
:
logger
.
error
(
'Architecture: {} is not supported for exporting model now'
.
format
(
infer_arch
))
os
.
_exit
(
0
)
if
'Mask'
in
config
[
'architecture'
]:
infer_cfg
[
'mask_resolution'
]
=
config
[
'MaskHead'
][
'resolution'
]
infer_cfg
[
'with_background'
],
infer_cfg
[
'Preprocess'
],
infer_cfg
[
'label_list'
]
=
parse_reader
(
config
[
'TestReader'
],
config
[
'metric'
],
infer_cfg
[
'arch'
])
yaml
.
dump
(
infer_cfg
,
open
(
os
.
path
.
join
(
save_dir
,
'infer_cfg.yml'
),
'w'
))
logger
.
info
(
"Export inference config file to {}"
.
format
(
os
.
path
.
join
(
save_dir
,
'infer_cfg.yml'
)))
def
prune_feed_vars
(
feeded_var_names
,
target_vars
,
prog
):
"""
Filter out feed variables which are not in program,
pruned feed variables are only used in post processing
on model output, which are not used in program, such
as im_id to identify image order, im_shape to clip bbox
in image.
"""
exist_var_names
=
[]
prog
=
prog
.
clone
()
prog
=
prog
.
_prune
(
targets
=
target_vars
)
global_block
=
prog
.
global_block
()
for
name
in
feeded_var_names
:
try
:
v
=
global_block
.
var
(
name
)
exist_var_names
.
append
(
str
(
v
.
name
))
except
Exception
:
logger
.
info
(
'save_inference_model pruned unused feed '
'variables {}'
.
format
(
name
))
pass
return
exist_var_names
def
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
):
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
feed_var_names
=
[
var
.
name
for
var
in
feed_vars
.
values
()]
fetch_list
=
sorted
(
test_fetches
.
items
(),
key
=
lambda
i
:
i
[
0
])
target_vars
=
[
var
[
1
]
for
var
in
fetch_list
]
feed_var_names
=
prune_feed_vars
(
feed_var_names
,
target_vars
,
infer_prog
)
logger
.
info
(
"Export inference model to {}, input: {}, output: "
"{}..."
.
format
(
save_dir
,
feed_var_names
,
[
str
(
var
.
name
)
for
var
in
target_vars
]))
fluid
.
io
.
save_inference_model
(
save_dir
,
feeded_var_names
=
feed_var_names
,
target_vars
=
target_vars
,
executor
=
exe
,
main_program
=
infer_prog
,
params_filename
=
"__params__"
)
slim/prune/export_model.py
浏览文件 @
47606f9a
...
...
@@ -27,6 +27,7 @@ from paddle import fluid
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.utils.cli
import
ArgsParser
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.utils.export_utils
import
save_infer_model
,
dump_infer_config
from
ppdet.utils.check
import
check_config
,
check_version
from
paddleslim.prune
import
Pruner
from
paddleslim.analysis
import
flops
...
...
@@ -37,47 +38,6 @@ logging.basicConfig(level=logging.INFO, format=FORMAT)
logger
=
logging
.
getLogger
(
__name__
)
def
prune_feed_vars
(
feeded_var_names
,
target_vars
,
prog
):
"""
Filter out feed variables which are not in program,
pruned feed variables are only used in post processing
on model output, which are not used in program, such
as im_id to identify image order, im_shape to clip bbox
in image.
"""
exist_var_names
=
[]
prog
=
prog
.
clone
()
prog
=
prog
.
_prune
(
targets
=
target_vars
)
global_block
=
prog
.
global_block
()
for
name
in
feeded_var_names
:
try
:
v
=
global_block
.
var
(
name
)
exist_var_names
.
append
(
str
(
v
.
name
))
except
Exception
:
logger
.
info
(
'save_inference_model pruned unused feed '
'variables {}'
.
format
(
name
))
pass
return
exist_var_names
def
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
):
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
feed_var_names
=
[
var
.
name
for
var
in
feed_vars
.
values
()]
target_vars
=
list
(
test_fetches
.
values
())
feed_var_names
=
prune_feed_vars
(
feed_var_names
,
target_vars
,
infer_prog
)
logger
.
info
(
"Export inference model to {}, input: {}, output: "
"{}..."
.
format
(
save_dir
,
feed_var_names
,
[
str
(
var
.
name
)
for
var
in
target_vars
]))
fluid
.
io
.
save_inference_model
(
save_dir
,
feeded_var_names
=
feed_var_names
,
target_vars
=
target_vars
,
executor
=
exe
,
main_program
=
infer_prog
,
params_filename
=
"__params__"
)
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
merge_config
(
FLAGS
.
opt
)
...
...
@@ -132,6 +92,7 @@ def main():
exe
.
run
(
startup_prog
)
checkpoint
.
load_checkpoint
(
exe
,
infer_prog
,
cfg
.
weights
)
dump_infer_config
(
FLAGS
,
cfg
)
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
)
...
...
slim/quantization/export_model.py
浏览文件 @
47606f9a
...
...
@@ -27,6 +27,7 @@ from paddle import fluid
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.utils.cli
import
ArgsParser
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.utils.export_utils
import
save_infer_model
,
dump_infer_config
from
ppdet.utils.check
import
check_config
,
check_version
from
tools.export_model
import
prune_feed_vars
...
...
@@ -37,22 +38,6 @@ logger = logging.getLogger(__name__)
from
paddleslim.quant
import
quant_aware
,
convert
def
save_infer_model
(
save_dir
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
):
feed_var_names
=
[
var
.
name
for
var
in
feed_vars
.
values
()]
target_vars
=
list
(
test_fetches
.
values
())
feed_var_names
=
prune_feed_vars
(
feed_var_names
,
target_vars
,
infer_prog
)
logger
.
info
(
"Export inference model to {}, input: {}, output: "
"{}..."
.
format
(
save_dir
,
feed_var_names
,
[
str
(
var
.
name
)
for
var
in
target_vars
]))
fluid
.
io
.
save_inference_model
(
save_dir
,
feeded_var_names
=
feed_var_names
,
target_vars
=
target_vars
,
executor
=
exe
,
main_program
=
infer_prog
,
params_filename
=
"__params__"
)
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
merge_config
(
FLAGS
.
opt
)
...
...
tools/export_model.py
浏览文件 @
47606f9a
...
...
@@ -28,179 +28,13 @@ from paddle import fluid
from
ppdet.core.workspace
import
load_config
,
merge_config
,
create
from
ppdet.utils.cli
import
ArgsParser
import
ppdet.utils.checkpoint
as
checkpoint
from
ppdet.utils.export_utils
import
save_infer_model
,
dump_infer_config
from
ppdet.utils.check
import
check_config
,
check_version
,
check_py_func
import
yaml
import
logging
from
collections
import
OrderedDict
FORMAT
=
'%(asctime)s-%(levelname)s: %(message)s'
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
)
logger
=
logging
.
getLogger
(
__name__
)
# Global dictionary
TRT_MIN_SUBGRAPH
=
{
'YOLO'
:
3
,
'SSD'
:
3
,
'RCNN'
:
40
,
'RetinaNet'
:
40
,
'EfficientDet'
:
40
,
'Face'
:
3
,
'TTFNet'
:
3
,
'FCOS'
:
3
,
'SOLOv2'
:
3
,
}
RESIZE_SCALE_SET
=
{
'RCNN'
,
'RetinaNet'
,
'FCOS'
,
'SOLOv2'
,
}
def
parse_reader
(
reader_cfg
,
metric
,
arch
):
preprocess_list
=
[]
image_shape
=
reader_cfg
[
'inputs_def'
].
get
(
'image_shape'
,
[
3
,
None
,
None
])
has_shape_def
=
not
None
in
image_shape
dataset
=
reader_cfg
[
'dataset'
]
anno_file
=
dataset
.
get_anno
()
with_background
=
dataset
.
with_background
use_default_label
=
dataset
.
use_default_label
if
metric
==
'COCO'
:
from
ppdet.utils.coco_eval
import
get_category_info
elif
metric
==
"VOC"
:
from
ppdet.utils.voc_eval
import
get_category_info
elif
metric
==
"WIDERFACE"
:
from
ppdet.utils.widerface_eval_utils
import
get_category_info
else
:
raise
ValueError
(
"metric only supports COCO, VOC, WIDERFACE, but received {}"
.
format
(
metric
))
clsid2catid
,
catid2name
=
get_category_info
(
anno_file
,
with_background
,
use_default_label
)
label_list
=
[
str
(
cat
)
for
cat
in
catid2name
.
values
()]
sample_transforms
=
reader_cfg
[
'sample_transforms'
]
for
st
in
sample_transforms
[
1
:]:
method
=
st
.
__class__
.
__name__
p
=
{
'type'
:
method
.
replace
(
'Image'
,
''
)}
params
=
st
.
__dict__
params
.
pop
(
'_id'
)
if
p
[
'type'
]
==
'Resize'
and
has_shape_def
:
params
[
'target_size'
]
=
min
(
image_shape
[
1
:])
if
arch
in
RESIZE_SCALE_SET
else
image_shape
[
1
]
params
[
'max_size'
]
=
max
(
image_shape
[
1
:])
if
arch
in
RESIZE_SCALE_SET
else
0
params
[
'image_shape'
]
=
image_shape
[
1
:]
if
'target_dim'
in
params
:
params
.
pop
(
'target_dim'
)
if
p
[
'type'
]
==
'ResizeAndPad'
:
assert
has_shape_def
,
"missing input shape"
p
[
'type'
]
=
'Resize'
p
[
'target_size'
]
=
params
[
'target_dim'
]
p
[
'max_size'
]
=
params
[
'target_dim'
]
p
[
'interp'
]
=
params
[
'interp'
]
p
[
'image_shape'
]
=
image_shape
[
1
:]
preprocess_list
.
append
(
p
)
continue
p
.
update
(
params
)
preprocess_list
.
append
(
p
)
batch_transforms
=
reader_cfg
.
get
(
'batch_transforms'
,
None
)
if
batch_transforms
:
methods
=
[
bt
.
__class__
.
__name__
for
bt
in
batch_transforms
]
for
bt
in
batch_transforms
:
method
=
bt
.
__class__
.
__name__
if
method
==
'PadBatch'
:
preprocess_list
.
append
({
'type'
:
'PadStride'
})
params
=
bt
.
__dict__
preprocess_list
[
-
1
].
update
({
'stride'
:
params
[
'pad_to_stride'
]})
break
return
with_background
,
preprocess_list
,
label_list
def
dump_infer_config
(
FLAGS
,
config
):
arch_state
=
0
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
if
not
os
.
path
.
exists
(
save_dir
):
os
.
makedirs
(
save_dir
)
from
ppdet.core.config.yaml_helpers
import
setup_orderdict
setup_orderdict
()
infer_cfg
=
OrderedDict
({
'use_python_inference'
:
False
,
'mode'
:
'fluid'
,
'draw_threshold'
:
0.5
,
'metric'
:
config
[
'metric'
]
})
infer_arch
=
config
[
'architecture'
]
for
arch
,
min_subgraph_size
in
TRT_MIN_SUBGRAPH
.
items
():
if
arch
in
infer_arch
:
infer_cfg
[
'arch'
]
=
arch
infer_cfg
[
'min_subgraph_size'
]
=
min_subgraph_size
arch_state
=
1
break
if
not
arch_state
:
logger
.
error
(
'Architecture: {} is not supported for exporting model now'
.
format
(
infer_arch
))
os
.
_exit
(
0
)
if
'Mask'
in
config
[
'architecture'
]:
infer_cfg
[
'mask_resolution'
]
=
config
[
'MaskHead'
][
'resolution'
]
infer_cfg
[
'with_background'
],
infer_cfg
[
'Preprocess'
],
infer_cfg
[
'label_list'
]
=
parse_reader
(
config
[
'TestReader'
],
config
[
'metric'
],
infer_cfg
[
'arch'
])
yaml
.
dump
(
infer_cfg
,
open
(
os
.
path
.
join
(
save_dir
,
'infer_cfg.yml'
),
'w'
))
logger
.
info
(
"Export inference config file to {}"
.
format
(
os
.
path
.
join
(
save_dir
,
'infer_cfg.yml'
)))
def
prune_feed_vars
(
feeded_var_names
,
target_vars
,
prog
):
"""
Filter out feed variables which are not in program,
pruned feed variables are only used in post processing
on model output, which are not used in program, such
as im_id to identify image order, im_shape to clip bbox
in image.
"""
exist_var_names
=
[]
prog
=
prog
.
clone
()
prog
=
prog
.
_prune
(
targets
=
target_vars
)
global_block
=
prog
.
global_block
()
for
name
in
feeded_var_names
:
try
:
v
=
global_block
.
var
(
name
)
exist_var_names
.
append
(
str
(
v
.
name
))
except
Exception
:
logger
.
info
(
'save_inference_model pruned unused feed '
'variables {}'
.
format
(
name
))
pass
return
exist_var_names
def
save_infer_model
(
FLAGS
,
exe
,
feed_vars
,
test_fetches
,
infer_prog
):
cfg_name
=
os
.
path
.
basename
(
FLAGS
.
config
).
split
(
'.'
)[
0
]
save_dir
=
os
.
path
.
join
(
FLAGS
.
output_dir
,
cfg_name
)
feed_var_names
=
[
var
.
name
for
var
in
feed_vars
.
values
()]
fetch_list
=
sorted
(
test_fetches
.
items
(),
key
=
lambda
i
:
i
[
0
])
target_vars
=
[
var
[
1
]
for
var
in
fetch_list
]
feed_var_names
=
prune_feed_vars
(
feed_var_names
,
target_vars
,
infer_prog
)
logger
.
info
(
"Export inference model to {}, input: {}, output: "
"{}..."
.
format
(
save_dir
,
feed_var_names
,
[
str
(
var
.
name
)
for
var
in
target_vars
]))
fluid
.
io
.
save_inference_model
(
save_dir
,
feeded_var_names
=
feed_var_names
,
target_vars
=
target_vars
,
executor
=
exe
,
main_program
=
infer_prog
,
params_filename
=
"__params__"
)
def
main
():
cfg
=
load_config
(
FLAGS
.
config
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录