提交 438a4ec6 编写于 作者: T Tao Luo 提交者: GitHub

Merge pull request #889 from luotao1/dir

update chinese catalog
./doc/howto/contribute_to_paddle_en.md
\ No newline at end of file
./doc/howto/dev/contribute_to_paddle_en.md
...@@ -72,7 +72,7 @@ function( Sphinx_add_target target_name builder conf cache source destination ) ...@@ -72,7 +72,7 @@ function( Sphinx_add_target target_name builder conf cache source destination )
${source} ${source}
${destination} ${destination}
COMMENT "Generating sphinx documentation: ${builder}" COMMENT "Generating sphinx documentation: ${builder}"
COMMAND ln -s ${destination}/index_*.html ${destination}/index.html COMMAND ln -sf ${destination}/index_*.html ${destination}/index.html
) )
set_property( set_property(
......
...@@ -16,7 +16,7 @@ set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees") ...@@ -16,7 +16,7 @@ set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html") set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
configure_file( configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.en.in" "${CMAKE_CURRENT_SOURCE_DIR}/templates/conf.py.en.in"
"${BINARY_BUILD_DIR_EN}/conf.py" "${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY) @ONLY)
...@@ -41,7 +41,7 @@ set(SPHINX_CACHE_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_doctrees") ...@@ -41,7 +41,7 @@ set(SPHINX_CACHE_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_doctrees")
set(SPHINX_HTML_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/html") set(SPHINX_HTML_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/html")
configure_file( configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.cn.in" "${CMAKE_CURRENT_SOURCE_DIR}/templates/conf.py.cn.in"
"${BINARY_BUILD_DIR_CN}/conf.py" "${BINARY_BUILD_DIR_CN}/conf.py"
@ONLY) @ONLY)
......
...@@ -11,4 +11,4 @@ We hope to build an active open source community both by providing feedback and ...@@ -11,4 +11,4 @@ We hope to build an active open source community both by providing feedback and
Credits Credits
-------- --------
We owe many thanks to `all contributors and developers <https://github.com/PaddlePaddle/Paddle/blob/develop/authors>`_ of PaddlePaddle! We owe many thanks to `all contributors and developers <https://github.com/PaddlePaddle/Paddle/graphs/contributors>`_ of PaddlePaddle!
API API中文手册
=== ============
DataProvider API DataProvider API
---------------- ----------------
......
简介 经典的线性回归任务
==== ==================
PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍将向你展示如何利用PaddlePaddle来解决一个经典的线性回归问题。 PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍将向你展示如何利用PaddlePaddle来解决一个经典的线性回归问题。
1. 一个经典的任务 任务简介
----------------- --------
我们展示如何用PaddlePaddle解决 `单变量的线性回归 <https://www.baidu.com/s?wd=单变量线性回归>`_ 问题。线性回归的输入是一批点 `(x, y)` ,其中 `y = wx + b + ε`, 而 ε 是一个符合高斯分布的随机变量。线性回归的输出是从这批点估计出来的参数 `w` 和 `b` 。 我们展示如何用PaddlePaddle解决 `单变量的线性回归 <https://www.baidu.com/s?wd=单变量线性回归>`_ 问题。线性回归的输入是一批点 `(x, y)` ,其中 `y = wx + b + ε`, 而 ε 是一个符合高斯分布的随机变量。线性回归的输出是从这批点估计出来的参数 `w` 和 `b` 。
一个例子是房产估值。我们假设房产的价格(y)是其大小(x)的一个线性函数,那么我们可以通过收集市场上房子的大小和价格,用来估计线性函数的参数w 和 b。 一个例子是房产估值。我们假设房产的价格(y)是其大小(x)的一个线性函数,那么我们可以通过收集市场上房子的大小和价格,用来估计线性函数的参数w 和 b。
2. 准备数据 准备数据
----------- -----------
假设变量 `x` 和 `y` 的真实关系为: `y = 2x + 0.3 + ε`,这里展示如何使用观测数据来拟合这一线性关系。首先,Python代码将随机产生2000个观测点,作为线性回归的输入。下面脚本符合PaddlePaddle期待的读取数据的Python程序的模式。 假设变量 `x` 和 `y` 的真实关系为: `y = 2x + 0.3 + ε`,这里展示如何使用观测数据来拟合这一线性关系。首先,Python代码将随机产生2000个观测点,作为线性回归的输入。下面脚本符合PaddlePaddle期待的读取数据的Python程序的模式。
...@@ -28,7 +28,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍 ...@@ -28,7 +28,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
x = random.random() x = random.random()
yield [x], [2*x+0.3] yield [x], [2*x+0.3]
3. 训练模型 训练模型
----------- -----------
为了还原 `y = 2x + 0.3`,我们先从一条随机的直线 `y' = wx + b` 开始,然后利用观测数据调整 `w` 和 `b` 使得 `y'` 和 `y` 的差距不断减小,最终趋于接近。这个过程就是模型的训练过程,而 `w` 和 `b` 就是模型的参数,即我们的训练目标。 为了还原 `y = 2x + 0.3`,我们先从一条随机的直线 `y' = wx + b` 开始,然后利用观测数据调整 `w` 和 `b` 使得 `y'` 和 `y` 的差距不断减小,最终趋于接近。这个过程就是模型的训练过程,而 `w` 和 `b` 就是模型的参数,即我们的训练目标。
...@@ -79,7 +79,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍 ...@@ -79,7 +79,7 @@ PaddlePaddle是源于百度的一个深度学习平台。这份简短的介绍
PaddlePaddle将在观测数据集上迭代训练30轮,并将每轮的模型结果存放在 `./output` 路径下。从输出日志可以看到,随着轮数增加误差代价函数的输出在不断的减小,这意味着模型在训练数据上不断的改进,直到逼近真实解:` y = 2x + 0.3 ` PaddlePaddle将在观测数据集上迭代训练30轮,并将每轮的模型结果存放在 `./output` 路径下。从输出日志可以看到,随着轮数增加误差代价函数的输出在不断的减小,这意味着模型在训练数据上不断的改进,直到逼近真实解:` y = 2x + 0.3 `
4. 模型检验 模型检验
----------- -----------
训练完成后,我们希望能够检验模型的好坏。一种常用的做法是用学习的模型对另外一组测试数据进行预测,评价预测的效果。在这个例子中,由于已经知道了真实答案,我们可以直接观察模型的参数是否符合预期来进行检验。 训练完成后,我们希望能够检验模型的好坏。一种常用的做法是用学习的模型对另外一组测试数据进行预测,评价预测的效果。在这个例子中,由于已经知道了真实答案,我们可以直接观察模型的参数是否符合预期来进行检验。
...@@ -106,10 +106,3 @@ PaddlePaddle将每个模型参数作为一个numpy数组单独存为一个文件 ...@@ -106,10 +106,3 @@ PaddlePaddle将每个模型参数作为一个numpy数组单独存为一个文件
从图中可以看到,虽然 `w` 和 `b` 都使用随机值初始化,但在起初的几轮训练中它们都在快速逼近真实值,并且后续仍在不断改进,使得最终得到的模型几乎与真实模型一致。 从图中可以看到,虽然 `w` 和 `b` 都使用随机值初始化,但在起初的几轮训练中它们都在快速逼近真实值,并且后续仍在不断改进,使得最终得到的模型几乎与真实模型一致。
这样,我们用PaddlePaddle解决了单变量线性回归问题, 包括数据输入、模型训练和最后的结果验证。 这样,我们用PaddlePaddle解决了单变量线性回归问题, 包括数据输入、模型训练和最后的结果验证。
5. 推荐后续阅读
---------------
- `安装/编译 <../build_and_install/index.html>`_ :PaddlePaddle的安装与编译文档。
- `快速入门 <../demo/quick_start/index.html>`_ :使用商品评论分类任务,系统性的介绍如何一步步改进,最终得到产品级的深度模型。
- `示例 <../demo/index.html>`_ :各种实用案例,涵盖图像、文本、推荐等多个领域。
\ No newline at end of file
Basic Usage Simple Linear Regression
============= ========================
PaddlePaddle is a deep learning platform open-sourced by Baidu. With PaddlePaddle, you can easily train a classic neural network within a couple lines of configuration, or you can build sophisticated models that provide state-of-the-art performance on difficult learning tasks like sentiment analysis, machine translation, image caption and so on. PaddlePaddle is a deep learning platform open-sourced by Baidu. With PaddlePaddle, you can easily train a classic neural network within a couple lines of configuration, or you can build sophisticated models that provide state-of-the-art performance on difficult learning tasks like sentiment analysis, machine translation, image caption and so on.
1. A Classic Problem Problem Background
--------------------- ------------------
Now, to give you a hint of what using PaddlePaddle looks like, let's start with a fundamental learning problem - `simple linear regression <https://en.wikipedia.org/wiki/Simple_linear_regression>`_: you have observed a set of two-dimensional data points of ``X`` and ``Y``, where ``X`` is an explanatory variable and ``Y`` is corresponding dependent variable, and you want to recover the underlying correlation between ``X`` and ``Y``. Linear regression can be used in many practical scenarios. For example, ``X`` can be a variable about house size, and ``Y`` a variable about house price. You can build a model that captures relationship between them by observing real estate markets. Now, to give you a hint of what using PaddlePaddle looks like, let's start with a fundamental learning problem - `simple linear regression <https://en.wikipedia.org/wiki/Simple_linear_regression>`_: you have observed a set of two-dimensional data points of ``X`` and ``Y``, where ``X`` is an explanatory variable and ``Y`` is corresponding dependent variable, and you want to recover the underlying correlation between ``X`` and ``Y``. Linear regression can be used in many practical scenarios. For example, ``X`` can be a variable about house size, and ``Y`` a variable about house price. You can build a model that captures relationship between them by observing real estate markets.
2. Prepare the Data Prepare the Data
-------------------- -----------------
Suppose the true relationship can be characterized as ``Y = 2X + 0.3``, let's see how to recover this pattern only from observed data. Here is a piece of python code that feeds synthetic data to PaddlePaddle. The code is pretty self-explanatory, the only extra thing you need to add for PaddlePaddle is a definition of input data types. Suppose the true relationship can be characterized as ``Y = 2X + 0.3``, let's see how to recover this pattern only from observed data. Here is a piece of python code that feeds synthetic data to PaddlePaddle. The code is pretty self-explanatory, the only extra thing you need to add for PaddlePaddle is a definition of input data types.
...@@ -26,8 +26,8 @@ Suppose the true relationship can be characterized as ``Y = 2X + 0.3``, let's se ...@@ -26,8 +26,8 @@ Suppose the true relationship can be characterized as ``Y = 2X + 0.3``, let's se
x = random.random() x = random.random()
yield [x], [2*x+0.3] yield [x], [2*x+0.3]
3. Train a NeuralNetwork Train a NeuralNetwork
------------------------- ----------------------
To recover this relationship between ``X`` and ``Y``, we use a neural network with one layer of linear activation units and a square error cost layer. Don't worry if you are not familiar with these terminologies, it's just saying that we are starting from a random line ``Y' = wX + b`` , then we gradually adapt ``w`` and ``b`` to minimize the difference between ``Y'`` and ``Y``. Here is what it looks like in PaddlePaddle: To recover this relationship between ``X`` and ``Y``, we use a neural network with one layer of linear activation units and a square error cost layer. Don't worry if you are not familiar with these terminologies, it's just saying that we are starting from a random line ``Y' = wX + b`` , then we gradually adapt ``w`` and ``b`` to minimize the difference between ``Y'`` and ``Y``. Here is what it looks like in PaddlePaddle:
...@@ -73,8 +73,8 @@ Now that everything is ready, you can train the network with a simple command li ...@@ -73,8 +73,8 @@ Now that everything is ready, you can train the network with a simple command li
This means that PaddlePaddle will train this network on the synthectic dataset for 30 passes, and save all the models under path ``./output``. You will see from the messages printed out during training phase that the model cost is decreasing as time goes by, which indicates we are getting a closer guess. This means that PaddlePaddle will train this network on the synthectic dataset for 30 passes, and save all the models under path ``./output``. You will see from the messages printed out during training phase that the model cost is decreasing as time goes by, which indicates we are getting a closer guess.
4. Evaluate the Model Evaluate the Model
----------------------- -------------------
Usually, a different dataset that left out during training phase should be used to evalute the models. However, we are lucky enough to know the real answer: ``w=2, b=0.3``, thus a better option is to check out model parameters directly. Usually, a different dataset that left out during training phase should be used to evalute the models. However, we are lucky enough to know the real answer: ``w=2, b=0.3``, thus a better option is to check out model parameters directly.
......
编译与安装 编译与安装
======================== ==========
安装 安装
++++ ++++
......
GET STARTED 新手入门
============ ============
.. toctree:: .. toctree::
......
TBD
目前正在书写中。敬请期待。
\ No newline at end of file
TBD
###
目前正在书写中。敬请期待。
\ No newline at end of file
How to Configure Deep Models
============================
.. toctree::
:maxdepth: 1
rnn/recurrent_group_cn.md
rnn/hierarchical_layer_cn.rst
rnn/hrnn_rnn_api_compare_cn.rst
rnn/hrnn_demo_cn.rst
How to Configure Deep Models
============================
.. toctree::
:maxdepth: 1
rnn/rnn_en.rst
.. _algo_hrnn_demo:
#################
双层RNN的使用示例
#################
TBD
\ No newline at end of file
RNN相关模型
===========
.. toctree::
:maxdepth: 1
recurrent_group_cn.md
hierarchical_layer_cn.rst
hrnn_rnn_api_compare_cn.rst
RNN Models
==========
.. toctree::
:maxdepth: 1
rnn_config_en.rst
# How to Contribute Code # Contribute Code
We sincerely appreciate your contributions. You can use fork and pull request We sincerely appreciate your contributions. You can use fork and pull request
workflow to merge your code. workflow to merge your code.
......
======================= ================
How to Write New Layers Write New Layers
======================= ================
This tutorial will guide you to write customized layers in PaddlePaddle. We will utilize fully connected layer as an example to guide you through the following steps for writing a new layer. This tutorial will guide you to write customized layers in PaddlePaddle. We will utilize fully connected layer as an example to guide you through the following steps for writing a new layer.
......
############################### ##################
如何贡献/修改PaddlePaddle的文档 如何贡献/修改文档
############################### ##################
PaddlePaddle的文档包括英文文档 ``doc`` 和中文文档 ``doc_cn`` 两个部分。文档都是通过 `cmake`_ 驱动 `sphinx`_ 编译生成,生成后的文档分别存储在编译目录的 ``doc`` 和 ``doc_cn`` 两个子目录下。 PaddlePaddle的文档包括英文文档 ``doc`` 和中文文档 ``doc_cn`` 两个部分。文档都是通过 `cmake`_ 驱动 `sphinx`_ 编译生成,生成后的文档分别存储在编译目录的 ``doc`` 和 ``doc_cn`` 两个子目录下。
......
HOW TO 进阶指南
======= ========
Usage 使用说明
------- --------
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
concepts/use_concepts_cn.rst usage/concepts/use_concepts_cn.rst
cluster/k8s/paddle_on_k8s_cn.md usage/cluster/k8s/k8s_cn.md
cluster/k8s/distributed_training_on_k8s_cn.md usage/cluster/k8s/k8s_distributed_cn.md
Development 开发标准
------------ --------
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
write_docs/index_cn.rst dev/write_docs_cn.rst
deep_model/index_cn.rst dev/contribute_to_paddle_cn.md
Optimization 模型配置
------------- --------
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
deep_model/rnn/index_cn.rst
性能优化
--------
.. toctree::
:maxdepth: 1
optimization/gpu_profiling_cn.rst
...@@ -7,9 +7,8 @@ Usage ...@@ -7,9 +7,8 @@ Usage
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
cmd_parameter/index_en.md usage/cmd_parameter/index_en.md
deep_model/index_en.rst usage/cluster/cluster_train_en.md
cluster/cluster_train_en.md
Development Development
------------ ------------
...@@ -17,8 +16,16 @@ Development ...@@ -17,8 +16,16 @@ Development
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
new_layer/index_en.rst dev/new_layer_en.rst
contribute_to_paddle_en.md dev/contribute_to_paddle_en.md
Configuration
-------------
.. toctree::
:maxdepth: 1
deep_model/rnn/index_en.rst
Optimization Optimization
------------- -------------
...@@ -26,4 +33,4 @@ Optimization ...@@ -26,4 +33,4 @@ Optimization
.. toctree:: .. toctree::
:maxdepth: 1 :maxdepth: 1
optimization/index_en.rst optimization/gpu_profiling_en.rst
PaddlePaddle 性能分析与调优 ==================
===================================== GPU性能分析与调优
==================
.. contents::
此教程将向您分步介绍如何使用内置的定时工具、 **nvprof** 或 **nvvp** 来运行性能分析和调优。 此教程将向您分步介绍如何使用内置的定时工具、 **nvprof** 或 **nvvp** 来运行性能分析和调优。
......
Profiling on PaddlePaddle ====================
========================= Tune GPU Performance
====================
.. contents::
This tutorial will guide you step-by-step through how to conduct profiling and performance tuning using built-in timer, **nvprof** and **nvvp**. This tutorial will guide you step-by-step through how to conduct profiling and performance tuning using built-in timer, **nvprof** and **nvvp**.
......
How to Tune GPU Performance
===========================
.. toctree::
:maxdepth: 3
gpu_profiling_en.rst
# How to Run Distributed Training # Run Distributed Training
In this article, we explain how to run distributed Paddle training jobs on clusters. We will create the distributed version of the single-process training example, [recommendation](https://github.com/baidu/Paddle/tree/develop/demo/recommendation). In this article, we explain how to run distributed Paddle training jobs on clusters. We will create the distributed version of the single-process training example, [recommendation](https://github.com/baidu/Paddle/tree/develop/demo/recommendation).
......
# Paddle On Kubernetes:单机训练 # Kubernetes 单机训练
在这篇文档里,我们介绍如何在 Kubernetes 集群上启动一个单机使用CPU的Paddle训练作业。在下一篇中,我们将介绍如何启动分布式训练作业。 在这篇文档里,我们介绍如何在 Kubernetes 集群上启动一个单机使用CPU的Paddle训练作业。在下一篇中,我们将介绍如何启动分布式训练作业。
......
# Kubernetes 分布式训练
# PaddlePaddle on Kubernetes:分布式训练
前一篇文章介绍了如何在Kubernetes集群上启动一个单机PaddlePaddle训练作业 (Job)。在这篇文章里,我们介绍如何在Kubernetes集群上进行分布式PaddlePaddle训练作业。关于PaddlePaddle的分布式训练,文章 [Cluster Training](https://github.com/baidu/Paddle/blob/develop/doc/cluster/opensource/cluster_train.md)介绍了一种通过SSH远程分发任务,进行分布式训练的方法,与此不同的是,本文将介绍在Kubernetes容器管理平台上快速构建PaddlePaddle容器集群,进行分布式训练的方案。 前一篇文章介绍了如何在Kubernetes集群上启动一个单机PaddlePaddle训练作业 (Job)。在这篇文章里,我们介绍如何在Kubernetes集群上进行分布式PaddlePaddle训练作业。关于PaddlePaddle的分布式训练,文章 [Cluster Training](https://github.com/baidu/Paddle/blob/develop/doc/cluster/opensource/cluster_train.md)介绍了一种通过SSH远程分发任务,进行分布式训练的方法,与此不同的是,本文将介绍在Kubernetes容器管理平台上快速构建PaddlePaddle容器集群,进行分布式训练的方案。
......
```eval_rst ```eval_rst
.. _cmd_line_index: .. _cmd_line_index:
``` ```
# How to Set Command-line Parameters # Set Command-line Parameters
* [Use Case](use_case_en.md) * [Use Case](use_case_en.md)
* [Arguments](arguments_en.md) * [Arguments](arguments_en.md)
......
######################### ############
PaddlePaddle 基本使用概念 基本使用概念
######################### ############
PaddlePaddle是一个深度学习框架,支持单机模式和多机模式。 PaddlePaddle是一个深度学习框架,支持单机模式和多机模式。
......
# TUTORIALS # 完整教程
There are several examples and demos here.
## Quick Start ## 快速入门
* [Quick Start](quick_start/index_cn.rst) 使用商品评论分类任务,系统性的介绍如何一步步改进,最终得到产品级的深度模型。
## Image * [阅读教程](quick_start/index_cn.rst)
## 图像
* TBD * TBD
## NLP ## 自然语言处理
* [Sentiment Analysis](sentiment_analysis/index_cn.md) * [情感分类](sentiment_analysis/index_cn.md)
* [Semantic Role Labeling](semantic_role_labeling/index_cn.rst) * [语义角色标注](semantic_role_labeling/index_cn.md)
## Recommendation ## 个性化推荐
* TBD * TBD
## Model Zoo ## 常用模型
* TBD * TBD
...@@ -17,7 +17,6 @@ There are several examples and demos here. ...@@ -17,7 +17,6 @@ There are several examples and demos here.
## Recommendation ## Recommendation
* [MovieLens Dataset](rec/ml_dataset_en.md)
* [MovieLens Regression](rec/ml_regression_en.rst) * [MovieLens Regression](rec/ml_regression_en.rst)
## Model Zoo ## Model Zoo
......
PaddlePaddle快速入门教程 =============
======================== 快速入门教程
=============
我们将以 `文本分类问题 <https://en.wikipedia.org/wiki/Document_classification>`_ 为例, 我们将以 `文本分类问题 <https://en.wikipedia.org/wiki/Document_classification>`_ 为例,
介绍PaddlePaddle的基本使用方法。 介绍PaddlePaddle的基本使用方法。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册