未验证 提交 3ef53438 编写于 作者: J JYChen 提交者: GitHub

add develop doc for vehicle attr (#6699)

上级 b84d8fd6
......@@ -128,7 +128,7 @@
- [快速开始](docs/tutorials/ppvehicle_attribute.md)
- 二次开发教程
- [二次开发教程](../../docs/advanced_tutorials/customization/ppvehicle_attribute.md)
#### 违章检测
......
简体中文 | [English](./pphuman_attribute_en.md)
# 属性识别任务二次开发
# 行人属性识别任务二次开发
## 数据准备
......
[简体中文](pphuman_attribute.md) | English
# Customized attribute recognition
# Customized Pedestrian Attribute Recognition
## Data Preparation
......@@ -51,7 +51,7 @@ After the annotation is completed, the model will use the detection box to inter
Model Training
## Model Training
Once the data is annotated, it can be used for model training to complete the optimization of the customized model.
......
简体中文 | [English](./ppvehicle_attribute_en.md)
# 车辆属性识别任务二次开发
## 数据准备
### 数据格式
车辆属性模型采用VeRi数据集的属性,共计10种车辆颜色及9种车型, 具体如下:
```
# 车辆颜色
- "yellow"
- "orange"
- "green"
- "gray"
- "red"
- "blue"
- "white"
- "golden"
- "brown"
- "black"
# 车型
- "sedan"
- "suv"
- "van"
- "hatchback"
- "mpv"
- "pickup"
- "bus"
- "truck"
- "estate"
```
在标注文件中使用长度为19的序列来表示上述属性。
举例:
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
前10位中,位序号0的值为1,表示车辆颜色为`"yellow"`
后9位中,位序号11的值为1,表示车型为`"suv"`
### 数据标注
理解了上面`数据格式`的含义后,就可以进行数据标注的工作。其本质是:每张车辆的图片,建立一组长度为19的标注项,分别对应各项属性值。
举例:
对于一张原始图片,
1) 使用检测框,标注图片中每台车辆的位置。
2) 每一个检测框(对应每辆车),包含一组19位的属性值数组,数组的每一位以0或1表示。对应上述19个属性分类。例如,如果颜色是'orange',则数组索引为1的位置值为1,如果车型是'sedan',则数组索引为10的位置值为1。
标注完成后利用检测框将每辆车截取成只包含单辆车的图片,则图片与19位属性标注建立了对应关系。也可先截取再进行标注,效果相同。
## 模型训练
数据标注完成后,就可以拿来做模型的训练,完成自定义模型的优化工作。
其主要有两步工作需要完成:1)将数据与标注数据整理成训练格式。2)修改配置文件开始训练。
### 训练数据格式
训练数据包括训练使用的图片和一个训练列表train.txt,其具体位置在训练配置中指定,其放置方式示例如下:
```
Attribute/
|-- data 训练图片文件夹
| |-- 00001.jpg
| |-- 00002.jpg
| `-- 0000x.jpg
`-- train.txt 训练数据列表
```
train.txt文件内为所有训练图片名称(相对于根路径的文件路径)+ 19个标注值
其每一行表示一辆车的图片和标注结果。其格式为:
```
00001.jpg 0,0,1,0,....
```
注意:1)图片与标注值之间是以Tab[\t]符号隔开, 2)标注值之间是以逗号[,]隔开。该格式不能错,否则解析失败。
### 修改配置开始训练
首先执行以下命令下载训练代码(更多环境问题请参考[Install_PaddleClas](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/en/installation/install_paddleclas_en.md)):
```shell
git clone https://github.com/PaddlePaddle/PaddleClas
```
需要在[配置文件](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml)中,修改的配置项如下:
```yaml
DataLoader:
Train:
dataset:
name: MultiLabelDataset
image_root: "dataset/VeRi/" # the root path of training images
cls_label_path: "dataset/VeRi/train_list.txt" # the location of the training list file
label_ratio: True
transform_ops:
...
Eval:
dataset:
name: MultiLabelDataset
image_root: "dataset/VeRi/" # the root path of evaluation images
cls_label_path: "dataset/VeRi/val_list.txt" # the location of the evaluation list file
label_ratio: True
transform_ops:
...
```
注意:
1. 这里image_root路径+train.txt中图片相对路径,对应图片的完整路径位置。
2. 如果有修改属性数量,则还需修改内容配置项中属性种类数量:
```yaml
# model architecture
Arch:
name: "PPLCNet_x1_0"
pretrained: True
use_ssld: True
class_num: 19 #属性种类数量
```
然后运行以下命令开始训练。
```
#多卡训练
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml
#单卡训练
python3 tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml
```
训练完成后可以执行以下命令进行性能评估:
```
#多卡评估
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/eval.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=./output/PPLCNet_x1_0/best_model
#单卡评估
python3 tools/eval.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=./output/PPLCNet_x1_0/best_model
```
### 模型导出
使用下述命令将训练好的模型导出为预测部署模型。
```
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_vehicle_attribute_model
```
导出模型后,如果希望在PP-Vehicle中使用,则需要下载[预测部署模型](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip),解压并将其中的配置文件`infer_cfg.yml`文件,放置到导出的模型文件夹`PPLCNet_x1_0_vehicle_attribute_model`中。
使用时在PP-Vehicle中的配置文件`./deploy/pipeline/config/infer_cfg_ppvehicle.yml`中修改新的模型路径`model_dir`项,并开启功能`enable: True`
```
VEHICLE_ATTR:
model_dir: [YOUR_DEPLOY_MODEL_DIR]/PPLCNet_x1_0_vehicle_attribute_infer/ #新导出的模型路径位置
enable: True #开启功能
```
然后可以使用-->至此即完成新增属性类别识别任务。
## 属性增减
该过程与行人属性的增减过程相似,如果需要增加、减少属性数量,则需要:
1)标注时需增加新属性类别信息或删减属性类别信息;
2)对应修改训练中train.txt所使用的属性数量和名称;
3)修改训练配置,例如``PaddleClas/blob/develop/ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml``文件中的属性数量,详细见上述`修改配置开始训练`部分。
增加属性示例:
1. 在标注数据时在19位后继续增加新的属性标注数值;
2. 在train.txt文件的标注数值中也增加新的属性数值。
3. 注意属性类型在train.txt中属性数值列表中的位置的对应关系需要固定。
<div width="500" align="center">
<img src="../../images/add_attribute.png"/>
</div>
删减属性同理。
## 修改后处理代码
修改了属性定义后,pipeline后处理部分也需要做相应修改,主要影响结果可视化时的显示结果。
相应代码在[文件](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/pipeline/ppvehicle/vehicle_attr.py#L108)`postprocess`函数。
其函数实现说明如下:
```python
# 在类的初始化函数中,定义了颜色/车型的名称
self.color_list = [
"yellow", "orange", "green", "gray", "red", "blue", "white",
"golden", "brown", "black"
]
self.type_list = [
"sedan", "suv", "van", "hatchback", "mpv", "pickup", "bus", "truck",
"estate"
]
...
def postprocess(self, inputs, result):
# postprocess output of predictor
im_results = result['output']
batch_res = []
for res in im_results:
res = res.tolist()
attr_res = []
color_res_str = "Color: "
type_res_str = "Type: "
color_idx = np.argmax(res[:10]) # 前10项表示各项颜色得分,取得分最大项作为颜色结果
type_idx = np.argmax(res[10:]) # 后9项表示各项车型得分,取得分最大项作为车型结果
# 颜色和车型的得分都需要超过对应阈值,否则视为'UnKnown'
if res[color_idx] >= self.color_threshold:
color_res_str += self.color_list[color_idx]
else:
color_res_str += "Unknown"
attr_res.append(color_res_str)
if res[type_idx + 10] >= self.type_threshold:
type_res_str += self.type_list[type_idx]
else:
type_res_str += "Unknown"
attr_res.append(type_res_str)
batch_res.append(attr_res)
result = {'output': batch_res}
return result
```
[简体中文](ppvehicle_attribute.md) | English
# Customized Vehicle Attribute Recognition
## Data Preparation
### Data Format
We use the VeRi attribute annotation format, with a total of 10 color and 9 model attributes shown as follows.
```
# colors
- "yellow"
- "orange"
- "green"
- "gray"
- "red"
- "blue"
- "white"
- "golden"
- "brown"
- "black"
# models
- "sedan"
- "suv"
- "van"
- "hatchback"
- "mpv"
- "pickup"
- "bus"
- "truck"
- "estate"
```
A sequence of length 19 is used in the annotation file to represent the above attributes.
Examples:
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
In the first 10 bits, the value of bit index 0 is 1, indicating that the vehicle color is `"yellow"`.
In the last 9 bits, the value of bit index 11 is 1, indicating that the model is `"suv"`.
### Data Annotation
After knowing the purpose of the above `Data format`, we can start to annotate data. The essence is that each single-vehicle image creates a set of 19 annotation items, corresponding to the attribute values at 19 positions.
Examples:
For an original image:
1) Using bounding boxes to annotate the position of each vehicle in the picture.
2) Each detection box (corresponding to each vehicle) contains 19 attribute values which are represented by 0 or 1. It corresponds to the above 19 attributes. For example, if the color is 'orange', then the index 1 bit of the array is 1. If the model is 'sedan', then the index 10 bit of the array is 1.
After the annotation is completed, the model will use the detection box to intercept each vehicle into a single-vehicle picture, and its picture establishes a corresponding relationship with the 19 attribute annotation. It is also possible to cut into a single-vehicle image first and then annotate it. The results are the same.
## Model Training
Once the data is annotated, it can be used for model training to complete the optimization of the customized model.
There are two main steps: 1) Organize the data and annotated data into the training format. 2) Modify the configuration file to start training.
### Training Data Format
The training data includes the images used for training and a training list called train.txt. Its location is specified in the training configuration, with the following example:
```
Attribute/
|-- data Training images folder
|-- 00001.jpg
|-- 00002.jpg
| `-- 0000x.jpg
train.txt List of training data
```
train.txt file contains the names of all training images (file path relative to the root path) + 19 annotation values
Each line of it represents a vehicle's image and annotation result. The format is as follows:
```
00001.jpg 0,0,1,0,....
```
Note 1) The images are separated by Tab[\t], 2) The annotated values are separated by commas [,]. If the format is wrong, the parsing will fail.
### Modify The Configuration To Start Training
First run the following command to download the training code (for more environmental issues, please refer to [Install_PaddleClas](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.4/docs/en/installation/ install_paddleclas_en.md)):
```
git clone https://github.com/PaddlePaddle/PaddleClas
```
You need to modify the following configuration in the configuration file `PaddleClas/blob/develop/ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml`
```yaml
DataLoader:
Train:
dataset:
name: MultiLabelDataset
image_root: "dataset/VeRi/" # the root path of training images
cls_label_path: "dataset/VeRi/train_list.txt" # the location of the training list file
label_ratio: True
transform_ops:
...
Eval:
dataset:
name: MultiLabelDataset
image_root: "dataset/VeRi/" # the root path of evaluation images
cls_label_path: "dataset/VeRi/val_list.txt" # the location of the training list file
label_ratio: True
transform_ops:
...
```
Note:
1. here image_root path and the relative path of the image in train.txt, corresponding to the full path of the image.
2. If you modify the number of attributes, the number of attribute types in the content configuration item should also be modified accordingly.
```yaml
# model architecture
Arch:
name: "PPLCNet_x1_0"
pretrained: True
use_ssld: True
class_num: 19 # Number of attribute classes
```
Then run the following command to start training:
```bash
#Multi-card training
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml
#Single card training
python3 tools/train.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml
```
You can run the following commands for performance evaluation after the training is completed:
```
#Multi-card evaluation
export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
--gpus="0,1,2,3" \
tools/eval.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=./output/PPLCNet_x1_0/best_model
#Single card evaluation
python3 tools/eval.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=./output/PPLCNet_x1_0/best_model
```
### Model Export
Use the following command to export the trained model as an inference deployment model.
```
python3 tools/export_model.py \
-c ./ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml \
-o Global.pretrained_model=output/PPLCNet_x1_0/best_model \
-o Global.save_inference_dir=deploy/models/PPLCNet_x1_0_vehicle_attribute_model
```
After exporting the model, if want to use it in PP-Vehicle, you need to download the [deploy infer model](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip) and copy `infer_cfg.yml` into the exported model folder `PPLCNet_x1_0_vehicle_attribute_model` .
When you use the model, you need to modify the new model path `model_dir` entry and set `enable: True` in the configuration file of PP-Vehicle `. /deploy/pipeline/config/infer_cfg_ppvehicle.yml` .
```
VEHICLE_ATTR:
model_dir: [YOUR_DEPLOY_MODEL_DIR]/PPLCNet_x1_0_vehicle_attribute_infer/ #The exported model location
enable: True #Whether to enable the function
```
To this point, a new attribute category recognition task is completed.
## Adding or deleting attributes
This is similar to the increase and decrease process of pedestrian attributes.
If the attributes need to be added or deleted, you need to
1) New attribute category information needs to be added or deleted when annotating the data.
2) Modify the number and name of attributes used in train.txt corresponding to the training.
3) Modify the training configuration, for example, the number of attributes in the ``PaddleClas/blob/develop/ppcls/configs/PULC/vehicle_attribute/PPLCNet_x1_0.yaml`` file, for details, please see the ``Modify configuration to start training`` section above.
Example of adding attributes.
1. Continue to add new attribute annotation values after 19 values when annotating the data.
2. Add new attribute values to the annotated values in the train.txt file as well.
3. The above is the annotation and training process with 19 attributes.
<div width="500" align="center">
<img src="../../images/add_attribute.png"/>
</div>
The same applies to the deletion of attributes.
## Modifications to post-processing code
After modifying the attribute definition, the post-processing part of the pipeline also needs to be modified accordingly, which mainly affects the display results when the results are visualized.
The code is at [file](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/pipeline/ppvehicle/vehicle_attr.py#L108), that is, the `postprocess` function.
The function implementation is described as follows:
```python
# The name of the color/model is defined in the initialization function of the class
self.color_list = [
"yellow", "orange", "green", "gray", "red", "blue", "white",
"golden", "brown", "black"
]
self.type_list = [
"sedan", "suv", "van", "hatchback", "mpv", "pickup", "bus", "truck",
"estate"
]
...
def postprocess(self, inputs, result):
# postprocess output of predictor
im_results = result['output']
batch_res = []
for res in im_results:
res = res.tolist()
attr_res = []
color_res_str = "Color: "
type_res_str = "Type: "
color_idx = np.argmax(res[:10]) # The first 10 items represent the color scores, and the item with the largest score is used as the color result
type_idx = np.argmax(res[10:]) # The last 9 items represent the model scores, and the item with the largest score is used as the model result.
# The score of color and model need to be larger than the corresponding threshold, otherwise it will be regarded as 'UnKnown'
if res[color_idx] >= self.color_threshold:
color_res_str += self.color_list[color_idx]
else:
color_res_str += "Unknown"
attr_res.append(color_res_str)
if res[type_idx + 10] >= self.type_threshold:
type_res_str += self.type_list[type_idx]
else:
type_res_str += "Unknown"
attr_res.append(type_res_str)
batch_res.append(attr_res)
result = {'output': batch_res}
return result
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册