Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3eb55f06
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3eb55f06
编写于
9月 05, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into refine/op/peephole
上级
d7ac1cc8
6e03f790
变更
31
显示空白变更内容
内联
并排
Showing
31 changed file
with
647 addition
and
378 deletion
+647
-378
doc/fluid/new_docs/user_guides/howto/inference/native_infer.rst
...uid/new_docs/user_guides/howto/inference/native_infer.rst
+3
-5
paddle/fluid/API.spec
paddle/fluid/API.spec
+2
-2
paddle/fluid/framework/details/multi_devices_graph_pass.cc
paddle/fluid/framework/details/multi_devices_graph_pass.cc
+1
-27
paddle/fluid/framework/details/multi_devices_graph_pass.h
paddle/fluid/framework/details/multi_devices_graph_pass.h
+0
-7
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
+22
-10
paddle/fluid/framework/ir/fc_lstm_fuse_pass.h
paddle/fluid/framework/ir/fc_lstm_fuse_pass.h
+2
-0
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+0
-1
paddle/fluid/framework/ir/graph_pattern_detector.h
paddle/fluid/framework/ir/graph_pattern_detector.h
+3
-0
paddle/fluid/inference/analysis/CMakeLists.txt
paddle/fluid/inference/analysis/CMakeLists.txt
+15
-3
paddle/fluid/inference/analysis/analyzer.cc
paddle/fluid/inference/analysis/analyzer.cc
+18
-19
paddle/fluid/inference/analysis/analyzer.h
paddle/fluid/inference/analysis/analyzer.h
+20
-7
paddle/fluid/inference/analysis/analyzer_tester.cc
paddle/fluid/inference/analysis/analyzer_tester.cc
+7
-2
paddle/fluid/inference/analysis/flags.h
paddle/fluid/inference/analysis/flags.h
+22
-0
paddle/fluid/inference/analysis/fluid_to_ir_pass.h
paddle/fluid/inference/analysis/fluid_to_ir_pass.h
+6
-3
paddle/fluid/inference/analysis/test_text_classification.cc
paddle/fluid/inference/analysis/test_text_classification.cc
+109
-0
paddle/fluid/inference/api/CMakeLists.txt
paddle/fluid/inference/api/CMakeLists.txt
+13
-1
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+17
-11
paddle/fluid/inference/api/analysis_predictor.h
paddle/fluid/inference/api/analysis_predictor.h
+4
-2
paddle/fluid/inference/api/api_impl.cc
paddle/fluid/inference/api/api_impl.cc
+2
-1
paddle/fluid/inference/api/paddle_inference_api.h
paddle/fluid/inference/api/paddle_inference_api.h
+15
-0
paddle/fluid/operators/auc_op.cc
paddle/fluid/operators/auc_op.cc
+12
-17
paddle/fluid/operators/auc_op.h
paddle/fluid/operators/auc_op.h
+66
-87
paddle/fluid/operators/lookup_table_op.h
paddle/fluid/operators/lookup_table_op.h
+1
-1
paddle/fluid/operators/rmsprop_op.cc
paddle/fluid/operators/rmsprop_op.cc
+24
-1
paddle/fluid/operators/rmsprop_op.h
paddle/fluid/operators/rmsprop_op.h
+17
-4
python/paddle/fluid/layers/metric_op.py
python/paddle/fluid/layers/metric_op.py
+14
-19
python/paddle/fluid/metrics.py
python/paddle/fluid/metrics.py
+32
-44
python/paddle/fluid/optimizer.py
python/paddle/fluid/optimizer.py
+29
-3
python/paddle/fluid/tests/unittests/op_test.py
python/paddle/fluid/tests/unittests/op_test.py
+5
-5
python/paddle/fluid/tests/unittests/test_auc_op.py
python/paddle/fluid/tests/unittests/test_auc_op.py
+9
-13
python/paddle/fluid/tests/unittests/test_rmsprop_op.py
python/paddle/fluid/tests/unittests/test_rmsprop_op.py
+157
-83
未找到文件。
doc/fluid/new_docs/user_guides/howto/inference/native_infer.rst
浏览文件 @
3eb55f06
...
...
@@ -4,13 +4,12 @@ Paddle 预测 API
为了更简单方便的预测部署,Fluid 提供了一套高层 API
用来隐藏底层不同的优化实现。
`预测库相关代码 <https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
contrib/inference>`_
_
`预测库相关代码 <https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/
fluid/inference/api>`
_
包括
- 头文件 ``paddle_inference_api.h`` 定义了所有的接口
- 库文件\ ``libpaddle_fluid.so`` 或 ``libpaddle_fluid.a``
- 库文件 ``libpaddle_inference_api.so`` 或
``libpaddle_inference_api.a``
编译和依赖可以参考 :ref:`install_or_build_cpp_inference_lib` 。
...
...
@@ -97,8 +96,7 @@ engine
CHECK(predictor->Run(slots, &outputs));
// 获取 outputs ...
编译时,联编 ``libpaddle_fluid.a/.so`` 和
``libpaddle_inference_api.a/.so`` 便可。
编译时,联编 ``libpaddle_fluid.a/.so`` 便可。
详细代码参考
------------
...
...
paddle/fluid/API.spec
浏览文件 @
3eb55f06
...
...
@@ -312,7 +312,7 @@ paddle.fluid.layers.iou_similarity ArgSpec(args=[], varargs='args', keywords='kw
paddle.fluid.layers.box_coder ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.polygon_box_transform ArgSpec(args=[], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk'], varargs=None, keywords=None, defaults=('ROC',
200
, 1))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk'], varargs=None, keywords=None, defaults=('ROC',
4095
, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.natural_exp_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.layers.inverse_time_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
...
...
@@ -376,7 +376,7 @@ paddle.fluid.optimizer.DecayedAdagradOptimizer.__init__ ArgSpec(args=['self', 'l
paddle.fluid.optimizer.DecayedAdagradOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.FtrlOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'l1', 'l2', 'lr_power'], varargs=None, keywords='kwargs', defaults=(0.0, 0.0, -0.5))
paddle.fluid.optimizer.FtrlOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.RMSPropOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'rho', 'epsilon', 'momentum'
], varargs=None, keywords='kwargs', defaults=(0.95, 1e-06, 0.0
))
paddle.fluid.optimizer.RMSPropOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'rho', 'epsilon', 'momentum'
, 'centered'], varargs=None, keywords='kwargs', defaults=(0.95, 1e-06, 0.0, False
))
paddle.fluid.optimizer.RMSPropOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.AdadeltaOptimizer.__init__ ArgSpec(args=['self', 'learning_rate', 'epsilon', 'rho'], varargs=None, keywords='kwargs', defaults=(1e-06, 0.95))
paddle.fluid.optimizer.AdadeltaOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.cc
浏览文件 @
3eb55f06
...
...
@@ -326,7 +326,7 @@ std::unique_ptr<ir::Graph> MultiDevSSAGraphBuilder::ApplyImpl(
ir
::
Graph
&
result
=
*
graph
;
for
(
auto
&
node
:
nodes
)
{
if
(
node
->
NodeType
()
==
ir
::
Node
::
Type
::
kVariable
&&
node
->
Var
())
{
if
(
node
->
IsVar
()
&&
node
->
Var
())
{
all_vars_
.
emplace
(
node
->
Name
(),
node
->
Var
());
}
}
...
...
@@ -583,18 +583,6 @@ void MultiDevSSAGraphBuilder::InsertDataBalanceOp(
}
}
bool
MultiDevSSAGraphBuilder
::
IsParameterGradientOnce
(
const
std
::
string
&
og
,
std
::
unordered_set
<
std
::
string
>
*
og_has_been_broadcast
)
const
{
bool
is_pg_once
=
grad_names_
.
count
(
og
)
!=
0
&&
og_has_been_broadcast
->
count
(
og
)
==
0
;
if
(
is_pg_once
)
{
// Insert NCCL AllReduce Op
og_has_been_broadcast
->
insert
(
og
);
}
return
is_pg_once
;
}
int
MultiDevSSAGraphBuilder
::
GetOpDeviceID
(
const
ir
::
Graph
&
graph
,
ir
::
Node
*
node
)
const
{
if
(
strategy_
.
reduce_
!=
BuildStrategy
::
ReduceStrategy
::
kReduce
)
{
...
...
@@ -688,20 +676,6 @@ VarHandle *MultiDevSSAGraphBuilder::CreateReduceOp(ir::Graph *result,
return
var
;
}
// Find the first occurence of `prev_op_name` and make current `op` depend
// on it.
void
MultiDevSSAGraphBuilder
::
ConnectOp
(
ir
::
Graph
*
result
,
OpHandleBase
*
op
,
const
std
::
string
&
prev_op_name
)
const
{
for
(
auto
&
prev_op
:
result
->
Get
<
GraphOps
>
(
kGraphOps
))
{
if
(
prev_op
->
Name
()
==
prev_op_name
)
{
auto
*
dep_var
=
new
DummyVarHandle
(
result
->
CreateControlDepVar
());
prev_op
->
AddOutput
(
dep_var
);
result
->
Get
<
GraphDepVars
>
(
kGraphDepVars
).
emplace
(
dep_var
);
op
->
AddInput
(
dep_var
);
}
}
}
void
MultiDevSSAGraphBuilder
::
CreateDistTrainOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
)
const
{
int
op_dev_id
=
-
1
;
...
...
paddle/fluid/framework/details/multi_devices_graph_pass.h
浏览文件 @
3eb55f06
...
...
@@ -69,9 +69,6 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
std
::
vector
<
std
::
string
>
FindDistTrainRecvVars
(
const
std
::
vector
<
ir
::
Node
*>
&
nodes
)
const
;
void
ConnectOp
(
ir
::
Graph
*
result
,
OpHandleBase
*
op
,
const
std
::
string
&
prev_op_name
)
const
;
void
CreateComputationalOps
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
size_t
num_places
)
const
;
...
...
@@ -83,10 +80,6 @@ class MultiDevSSAGraphBuilder : public ir::Pass {
void
CreateComputationalOp
(
ir
::
Graph
*
result
,
ir
::
Node
*
node
,
int
dev_id
)
const
;
bool
IsParameterGradientOnce
(
const
std
::
string
&
og
,
std
::
unordered_set
<
std
::
string
>
*
og_has_been_broadcast
)
const
;
int
GetOpDeviceID
(
const
ir
::
Graph
&
graph
,
ir
::
Node
*
node
)
const
;
void
InsertAllReduceOp
(
ir
::
Graph
*
result
,
const
std
::
string
&
og
)
const
;
...
...
paddle/fluid/framework/ir/fc_lstm_fuse_pass.cc
浏览文件 @
3eb55f06
...
...
@@ -87,15 +87,24 @@ int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
}
op_desc
.
SetInput
(
"Bias"
,
{
new_bias_var
});
}
#undef GET_NODE
// Create temp variables.
scope
->
Var
(
name_scope
+
"/BatchedInput.new"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
scope
->
Var
(
name_scope
+
"/BatchCellPreAct.new"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
scope
->
Var
(
name_scope
+
"/BatchedGate.new"
)
->
GetMutable
<
framework
::
LoDTensor
>
();
op_desc
.
SetInput
(
"H0"
,
{});
op_desc
.
SetInput
(
"C0"
,
{});
op_desc
.
SetOutput
(
"Hidden"
,
{
hidden_n
->
Name
()});
op_desc
.
SetOutput
(
"Cell"
,
{
cell_n
->
Name
()});
op_desc
.
SetOutput
(
"XX"
,
{
xx_n
->
Name
()});
op_desc
.
SetOutput
(
"BatchedInput"
,
{
"blstm_0.tmp_2"
});
op_desc
.
SetOutput
(
"BatchedGate"
,
{
name_scope
+
"/BatchedGate.new"
});
op_desc
.
SetOutput
(
"BatchCellPreAct"
,
{
name_scope
+
"/BatchCellPreAct.new"
});
op_desc
.
SetOutput
(
"BatchedInput"
,
{
name_scope
+
"/BatchedInput.new"
});
op_desc
.
SetAttr
(
"is_reverse"
,
lstm_n
->
Op
()
->
GetAttr
(
"is_reverse"
));
op_desc
.
SetAttr
(
"use_peepholes"
,
lstm_n
->
Op
()
->
GetAttr
(
"use_peepholes"
));
// TODO(TJ): get from attr
...
...
@@ -131,8 +140,8 @@ int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
int
fusion_count
{
0
};
auto
fc_no_bias_handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
auto
handler
=
[
&
](
const
GraphPatternDetector
::
subgraph_t
&
subgraph
,
Graph
*
g
)
{
#define GET_NODE(name__) \
std::string name__##key = name_scope + "/" + #name__; \
auto* name__##n = pattern->RetrieveNode(name__##key); \
...
...
@@ -153,21 +162,24 @@ int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
if
(
with_fc_bias
)
{
GET_NODE
(
fc_bias
);
GET_NODE
(
elementwise_add
);
lstm_creator
(
lstm
,
x
,
w
,
Weight
,
Bias
,
Hidden
,
Cell
,
fc_out
,
fc_bias
);
// Remove unneeded nodes.
std
::
unordered_set
<
const
Node
*>
marked_nodes
(
{
mul_n
,
lstm_n
,
elementwise_add_n
});
GraphSafeRemoveNodes
(
graph
,
marked_nodes
);
}
else
{
lstm_creator
(
lstm
,
x
,
w
,
Weight
,
Bias
,
Hidden
,
Cell
,
fc_out
,
-
1
);
}
#undef GET_NODE
// Remove unneeded nodes.
std
::
unordered_set
<
const
Node
*>
marked_nodes
({
mul_n
,
lstm_n
});
GraphSafeRemoveNodes
(
graph
,
marked_nodes
);
}
#undef GET_NODE
++
fusion_count
;
};
gpd
(
graph
,
fc_no_bias_
handler
);
gpd
(
graph
,
handler
);
return
fusion_count
;
}
...
...
paddle/fluid/framework/ir/fc_lstm_fuse_pass.h
浏览文件 @
3eb55f06
...
...
@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
3eb55f06
...
...
@@ -73,7 +73,6 @@ void PDPattern::AddEdge(PDNode* a, PDNode* b) {
void
GraphPatternDetector
::
operator
()(
Graph
*
graph
,
GraphPatternDetector
::
handle_t
handler
)
{
if
(
!
MarkPDNodesInGraph
(
*
graph
))
{
LOG
(
INFO
)
<<
"Mark failed"
;
return
;
}
...
...
paddle/fluid/framework/ir/graph_pattern_detector.h
浏览文件 @
3eb55f06
...
...
@@ -19,6 +19,9 @@
#endif
#include <numeric>
#include <string>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/inference/analysis/dot.h"
...
...
paddle/fluid/inference/analysis/CMakeLists.txt
浏览文件 @
3eb55f06
...
...
@@ -74,7 +74,7 @@ inference_analysis_test(test_model_store_pass SRCS model_store_pass_tester.cc)
set
(
CHINESE_NER_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/chinese_ner_model.tar.gz"
)
set
(
CHINESE_NER_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/chinese_ner-data.txt.tar.gz"
)
set
(
CHINESE_NER_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/chinese_ner"
CACHE PATH
"Chinese ner model and data root."
FORCE
)
if
(
NOT EXISTS
${
CHINESE_NER_INSTALL_DIR
}
AND WITH_TESTING
)
if
(
NOT EXISTS
${
CHINESE_NER_INSTALL_DIR
}
AND WITH_TESTING
AND WITH_INFERENCE
)
inference_download_and_uncompress
(
${
CHINESE_NER_INSTALL_DIR
}
${
CHINESE_NER_MODEL_URL
}
"chinese_ner_model.tar.gz"
)
inference_download_and_uncompress
(
${
CHINESE_NER_INSTALL_DIR
}
${
CHINESE_NER_DATA_URL
}
"chinese_ner-data.txt.tar.gz"
)
endif
()
...
...
@@ -87,7 +87,7 @@ inference_analysis_test(test_analyzer_ner SRCS analyzer_ner_tester.cc
set
(
LAC_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/lac_model.tar.gz"
)
set
(
LAC_DATA_URL
"http://paddle-inference-dist.bj.bcebos.com/lac_data.txt.tar.gz"
)
set
(
LAC_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/lac"
CACHE PATH
"LAC model and data root."
FORCE
)
if
(
NOT EXISTS
${
LAC_INSTALL_DIR
}
AND WITH_TESTING
)
if
(
NOT EXISTS
${
LAC_INSTALL_DIR
}
AND WITH_TESTING
AND WITH_INFERENCE
)
inference_download_and_uncompress
(
${
LAC_INSTALL_DIR
}
${
LAC_MODEL_URL
}
"lac_model.tar.gz"
)
inference_download_and_uncompress
(
${
LAC_INSTALL_DIR
}
${
LAC_DATA_URL
}
"lac_data.txt.tar.gz"
)
endif
()
...
...
@@ -96,3 +96,15 @@ inference_analysis_test(test_analyzer_lac SRCS analyzer_lac_tester.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api
ARGS --infer_model=
${
LAC_INSTALL_DIR
}
/model
--infer_data=
${
LAC_INSTALL_DIR
}
/data.txt
)
set
(
TEXT_CLASSIFICATION_MODEL_URL
"http://paddle-inference-dist.bj.bcebos.com/text-classification-Senta.tar.gz"
)
set
(
TEXT_CLASSIFICATION_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo/text_classification"
CACHE PATH
"Text Classification model and data root."
FORCE
)
if
(
NOT EXISTS
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
AND WITH_TESTING AND WITH_INFERENCE
)
inference_download_and_uncompress
(
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
${
TEXT_CLASSIFICATION_MODEL_URL
}
"text-classification-Senta.tar.gz"
)
endif
()
inference_analysis_test
(
test_text_classification SRCS test_text_classification.cc
EXTRA_DEPS paddle_inference_api paddle_fluid_api analysis_predictor
ARGS --infer_model=
${
TEXT_CLASSIFICATION_INSTALL_DIR
}
/text-classification-Senta
)
paddle/fluid/inference/analysis/analyzer.cc
浏览文件 @
3eb55f06
...
...
@@ -14,6 +14,7 @@
#include "paddle/fluid/inference/analysis/analyzer.h"
#include <string>
#include <vector>
#include "paddle/fluid/inference/analysis/data_flow_graph_to_fluid_pass.h"
#include "paddle/fluid/inference/analysis/dfg_graphviz_draw_pass.h"
#include "paddle/fluid/inference/analysis/fluid_to_data_flow_graph_pass.h"
...
...
@@ -41,20 +42,16 @@ class DfgPassManagerImpl final : public DfgPassManager {
public:
DfgPassManagerImpl
()
{
// TODO(Superjomn) set the key with pass reprs.
LOG
(
INFO
)
<<
"-----------------------------------------------------------------"
;
if
(
FLAGS_IA_enable_ir
)
{
AddPass
(
"fluid-to-ir-pass"
,
new
FluidToIrPass
);
}
else
{
if
(
!
FLAGS_IA_enable_ir
)
{
AddPass
(
"fluid-to-data-flow-graph"
,
new
FluidToDataFlowGraphPass
);
}
else
{
AddPass
(
"fluid-to-ir-pass"
,
new
FluidToIrPass
);
}
TryAddTensorRtPass
();
AddPass
(
"data-flow-graph-to-fluid"
,
new
DataFlowGraphToFluidPass
);
if
(
!
FLAGS_IA_output_storage_path
.
empty
())
{
AddPass
(
"model-store-pass"
,
new
ModelStorePass
);
}
LOG
(
INFO
)
<<
"-----------------------------------------------------------------"
;
}
std
::
string
repr
()
const
override
{
return
"dfg-pass-manager"
;
}
...
...
@@ -101,19 +98,16 @@ class DfgPassManagerImpl final : public DfgPassManager {
Analyzer
::
Analyzer
()
{
Register
(
"manager1"
,
new
DfgPassManagerImpl
);
}
void
Analyzer
::
Run
(
Argument
*
argument
)
{
std
::
vector
<
std
::
string
>
passes
;
for
(
auto
&
pass
:
all_ir_passes_
)
{
if
(
!
disabled_ir_passes_
.
count
(
pass
))
{
passes
.
push_back
(
pass
);
passes
.
push_back
(
"graph_viz_pass"
);
// add graphviz for debug.
}
}
passes
.
push_back
(
"graph_viz_pass"
);
// Ugly support fluid-to-ir-pass
argument
->
Set
(
kFluidToIrPassesAttr
,
new
std
::
vector
<
std
::
string
>
({
// Manual update the passes here.
"graph_viz_pass"
,
//
"infer_clean_graph_pass"
,
"graph_viz_pass"
,
//
"attention_lstm_fuse_pass"
,
"graph_viz_pass"
,
//
"fc_lstm_fuse_pass"
,
"graph_viz_pass"
,
//
"mul_lstm_fuse_pass"
,
"graph_viz_pass"
,
//
"seq_concat_fc_fuse_pass"
,
"graph_viz_pass"
,
//
"fc_fuse_pass"
,
"graph_viz_pass"
//
}));
argument
->
Set
(
kFluidToIrPassesAttr
,
new
std
::
vector
<
std
::
string
>
(
passes
));
for
(
auto
&
x
:
data_
)
{
PADDLE_ENFORCE
(
x
->
Initialize
(
argument
));
...
...
@@ -122,6 +116,11 @@ void Analyzer::Run(Argument* argument) {
}
}
Analyzer
&
Analyzer
::
DisableIrPasses
(
const
std
::
vector
<
std
::
string
>&
passes
)
{
disabled_ir_passes_
.
insert
(
passes
.
begin
(),
passes
.
end
());
return
*
this
;
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/analyzer.h
浏览文件 @
3eb55f06
...
...
@@ -36,16 +36,10 @@ limitations under the License. */
*/
#include <gflags/gflags.h>
#include "paddle/fluid/inference/analysis/flags.h"
#include "paddle/fluid/inference/analysis/pass.h"
#include "paddle/fluid/inference/analysis/pass_manager.h"
// TODO(Superjomn) add a definition flag like PADDLE_WITH_TENSORRT and hide this
// flag if not available.
DECLARE_bool
(
IA_enable_tensorrt_subgraph_engine
);
DECLARE_string
(
IA_graphviz_log_root
);
DECLARE_string
(
IA_output_storage_path
);
DECLARE_bool
(
IA_enable_ir
);
namespace
paddle
{
namespace
inference
{
namespace
analysis
{
...
...
@@ -57,7 +51,26 @@ class Analyzer : public OrderedRegistry<PassManager> {
void
Run
(
Argument
*
argument
);
Analyzer
&
DisableIrPasses
(
const
std
::
vector
<
std
::
string
>&
passes
);
DISABLE_COPY_AND_ASSIGN
(
Analyzer
);
private:
// All avaiable IR passes.
// The bigger fuse comes first, so that the small operators prefer to be
// merged in a larger fuse op. The small fusion will not break the pattern of
// larger fusion.
const
std
::
vector
<
std
::
string
>
all_ir_passes_
{{
// Manual update the passes here.
"infer_clean_graph_pass"
,
//
"attention_lstm_fuse_pass"
,
//
"fc_lstm_fuse_pass"
,
//
"mul_lstm_fuse_pass"
,
//
"seq_concat_fc_fuse_pass"
,
//
"fc_fuse_pass"
,
//
}};
std
::
unordered_set
<
std
::
string
>
disabled_ir_passes_
;
};
}
// namespace analysis
...
...
paddle/fluid/inference/analysis/analyzer_tester.cc
浏览文件 @
3eb55f06
...
...
@@ -271,17 +271,22 @@ void TestDituRNNPrediction(const std::string &model_path,
const
std
::
string
&
data_path
,
int
batch_size
,
bool
use_analysis
,
bool
activate_ir
,
int
num_times
=
1
)
{
Native
Config
config
;
Analysis
Config
config
;
config
.
prog_file
=
FLAGS_infer_ditu_rnn_model
+
"/__model__"
;
config
.
param_file
=
FLAGS_infer_ditu_rnn_model
+
"/param"
;
config
.
use_gpu
=
false
;
config
.
device
=
0
;
config
.
specify_input_name
=
true
;
config
.
enable_ir_optim
=
activate_ir
;
PADDLE_ENFORCE
(
config
.
ir_mode
==
AnalysisConfig
::
IrPassMode
::
kExclude
);
// default
config
.
ir_passes
.
clear
();
// Do not exclude any pass.
auto
base_predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kNative
>
(
config
);
auto
predictor
=
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
std
::
vector
<
PaddleTensor
>
input_slots
;
DataRecord
data
(
data_path
,
batch_size
);
// Prepare inputs.
...
...
paddle/fluid/inference/analysis/flags.h
0 → 100644
浏览文件 @
3eb55f06
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
// TODO(Superjomn) add a definition flag like PADDLE_WITH_TENSORRT and hide this
// flag if not available.
DECLARE_bool
(
IA_enable_tensorrt_subgraph_engine
);
DECLARE_string
(
IA_graphviz_log_root
);
DECLARE_string
(
IA_output_storage_path
);
DECLARE_bool
(
IA_enable_ir
);
paddle/fluid/inference/analysis/fluid_to_ir_pass.h
浏览文件 @
3eb55f06
...
...
@@ -15,6 +15,7 @@
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/inference/analysis/flags.h"
#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
#include "paddle/fluid/inference/analysis/pass.h"
...
...
@@ -85,9 +86,11 @@ class FluidToIrPass final : public DataFlowGraphPass {
new
Scope
*
(
&
argument_
->
Get
<
Scope
>
(
ir
::
kParamScopeAttr
)));
}
if
(
FLAGS_IA_enable_ir
)
{
const
auto
&
ir_passes_to_apply
=
argument_
->
Get
<
std
::
vector
<
std
::
string
>>
(
kFluidToIrPassesAttr
);
ir_passes
.
Apply
(
ir_passes_to_apply
);
}
PADDLE_ENFORCE
(
argument_
->
main_dfg
.
get
());
argument_
->
main_dfg
->
Build
(
ir_passes
.
graph
());
...
...
paddle/fluid/inference/analysis/test_text_classification.cc
0 → 100644
浏览文件 @
3eb55f06
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <glog/logging.h> // use glog instead of PADDLE_ENFORCE to avoid importing other paddle header files.
#include <gtest/gtest.h>
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/api/timer.h"
DEFINE_string
(
infer_model
,
""
,
"Directory of the inference model."
);
DEFINE_string
(
infer_data
,
""
,
"Path of the dataset."
);
DEFINE_int32
(
batch_size
,
1
,
"batch size."
);
DEFINE_int32
(
repeat
,
1
,
"How many times to repeat run."
);
namespace
paddle
{
template
<
typename
T
>
std
::
string
to_string
(
const
std
::
vector
<
T
>
&
vec
)
{
std
::
stringstream
ss
;
for
(
const
auto
&
c
:
vec
)
{
ss
<<
c
<<
" "
;
}
return
ss
.
str
();
}
void
PrintTime
(
const
double
latency
,
const
int
bs
,
const
int
repeat
)
{
LOG
(
INFO
)
<<
"===========profile result==========="
;
LOG
(
INFO
)
<<
"batch_size: "
<<
bs
<<
", repeat: "
<<
repeat
<<
", avg latency: "
<<
latency
/
repeat
<<
"ms"
;
LOG
(
INFO
)
<<
"====================================="
;
}
void
Main
(
int
batch_size
)
{
// Three sequence inputs.
std
::
vector
<
PaddleTensor
>
input_slots
(
1
);
// one batch starts
// data --
int64_t
data0
[]
=
{
0
,
1
,
2
};
for
(
auto
&
input
:
input_slots
)
{
input
.
data
.
Reset
(
data0
,
sizeof
(
data0
));
input
.
shape
=
std
::
vector
<
int
>
({
3
,
1
});
// dtype --
input
.
dtype
=
PaddleDType
::
INT64
;
// LoD --
input
.
lod
=
std
::
vector
<
std
::
vector
<
size_t
>>
({{
0
,
3
}});
}
// shape --
// Create Predictor --
AnalysisConfig
config
;
config
.
model_dir
=
FLAGS_infer_model
;
config
.
use_gpu
=
false
;
config
.
enable_ir_optim
=
true
;
config
.
ir_passes
.
push_back
(
"fc_lstm_fuse_pass"
);
auto
predictor
=
CreatePaddlePredictor
<
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
config
);
inference
::
Timer
timer
;
double
sum
=
0
;
std
::
vector
<
PaddleTensor
>
output_slots
;
for
(
int
i
=
0
;
i
<
FLAGS_repeat
;
i
++
)
{
timer
.
tic
();
CHECK
(
predictor
->
Run
(
input_slots
,
&
output_slots
));
sum
+=
timer
.
toc
();
}
PrintTime
(
sum
,
batch_size
,
FLAGS_repeat
);
// Get output
LOG
(
INFO
)
<<
"get outputs "
<<
output_slots
.
size
();
for
(
auto
&
output
:
output_slots
)
{
LOG
(
INFO
)
<<
"output.shape: "
<<
to_string
(
output
.
shape
);
// no lod ?
CHECK_EQ
(
output
.
lod
.
size
(),
0UL
);
LOG
(
INFO
)
<<
"output.dtype: "
<<
output
.
dtype
;
std
::
stringstream
ss
;
for
(
int
i
=
0
;
i
<
5
;
i
++
)
{
ss
<<
static_cast
<
float
*>
(
output
.
data
.
data
())[
i
]
<<
" "
;
}
LOG
(
INFO
)
<<
"output.data summary: "
<<
ss
.
str
();
// one batch ends
}
}
TEST
(
text_classification
,
basic
)
{
Main
(
FLAGS_batch_size
);
}
}
// namespace paddle
USE_PASS
(
fc_fuse_pass
);
USE_PASS
(
seq_concat_fc_fuse_pass
);
USE_PASS
(
fc_lstm_fuse_pass
);
USE_PASS
(
graph_viz_pass
);
USE_PASS
(
infer_clean_graph_pass
);
USE_PASS
(
attention_lstm_fuse_pass
);
paddle/fluid/inference/api/CMakeLists.txt
浏览文件 @
3eb55f06
...
...
@@ -44,7 +44,19 @@ function(inference_api_test TARGET_NAME)
endfunction
(
inference_api_test
)
cc_library
(
paddle_inference_api SRCS api.cc api_impl.cc helper.cc DEPS lod_tensor
)
cc_library
(
analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api
)
cc_library
(
analysis_predictor SRCS analysis_predictor.cc DEPS paddle_inference_api
analysis
ir_pass_manager
pass
fc_fuse_pass
fc_lstm_fuse_pass
seq_concat_fc_fuse_pass
graph_viz_pass
infer_clean_graph_pass
graph_pattern_detector
infer_clean_graph_pass
attention_lstm_fuse_pass
)
cc_test
(
test_paddle_inference_api
SRCS api_tester.cc
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
3eb55f06
...
...
@@ -14,6 +14,8 @@
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include <memory>
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/scope.h"
...
...
@@ -28,6 +30,8 @@ bool AnalysisPredictor::Init(
VLOG
(
3
)
<<
"Predictor::init()"
;
if
(
config_
.
use_gpu
)
{
place_
=
paddle
::
platform
::
CUDAPlace
(
config_
.
device
);
LOG
(
WARNING
)
<<
"ir optimize only supports CPU currently"
;
config_
.
enable_ir_optim
=
false
;
}
else
{
place_
=
paddle
::
platform
::
CPUPlace
();
}
...
...
@@ -73,7 +77,7 @@ bool AnalysisPredictor::Init(
void
AnalysisPredictor
::
OptimizeInferenceProgram
()
{
LOG
(
INFO
)
<<
"optimize begin"
;
FLAGS_IA_enable_ir
=
true
;
FLAGS_IA_enable_ir
=
config_
.
enable_ir_optim
;
FLAGS_IA_enable_tensorrt_subgraph_engine
=
false
;
FLAGS_IA_output_storage_path
=
""
;
// Don't output the model.
// Analyze inference_program
...
...
@@ -90,24 +94,26 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
}
argument_
.
origin_program_desc
.
reset
(
new
ProgramDesc
(
*
inference_program_
->
Proto
()));
Analyzer
().
Run
(
&
argument_
);
PADDLE_ENFORCE
(
config_
.
ir_mode
==
AnalysisConfig
::
IrPassMode
::
kExclude
,
"Only kExclude is supported yet."
);
Analyzer
().
DisableIrPasses
(
config_
.
ir_passes
).
Run
(
&
argument_
);
CHECK
(
argument_
.
transformed_program_desc
);
VLOG
(
5
)
<<
"to prepare executor"
;
// LOG(INFO) << "transformed_parogram_desc " <<
// argument.transformed_program_desc->DebugString();
inference_program_
.
reset
(
new
framework
::
ProgramDesc
(
*
argument_
.
transformed_program_desc
));
PADDLE_ENFORCE
(
argument_
.
Has
(
framework
::
ir
::
kParamScopeAttr
));
if
(
argument_
.
Has
(
framework
::
ir
::
kParamScopeAttr
))
{
// Update scope.
scope_
.
reset
(
argument_
.
Release
<
framework
::
Scope
>
(
framework
::
ir
::
kParamScopeAttr
));
LOG
(
INFO
)
<<
"optimize end =="
;
}
LOG
(
INFO
)
<<
"== optimize end =="
;
}
template
<
>
std
::
unique_ptr
<
PaddlePredictor
>
CreatePaddlePredictor
<
NativeConfig
,
PaddleEngineKind
::
kAnalysis
>
(
const
Native
Config
&
config
)
{
VLOG
(
3
)
<<
"create
NativePredictor
"
;
AnalysisConfig
,
PaddleEngineKind
::
kAnalysis
>
(
const
Analysis
Config
&
config
)
{
VLOG
(
3
)
<<
"create
AnalysisConfig
"
;
if
(
config
.
use_gpu
)
{
// 1. GPU memeroy
PADDLE_ENFORCE_GT
(
...
...
paddle/fluid/inference/api/analysis_predictor.h
浏览文件 @
3eb55f06
...
...
@@ -12,6 +12,8 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include <string>
#include <vector>
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/api/api_impl.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
...
...
@@ -28,7 +30,7 @@ using framework::proto::ProgramDesc;
*/
class
AnalysisPredictor
:
public
NativePaddlePredictor
{
public:
explicit
AnalysisPredictor
(
const
Native
Config
&
config
)
explicit
AnalysisPredictor
(
const
Analysis
Config
&
config
)
:
NativePaddlePredictor
(
config
),
config_
(
config
)
{}
bool
Init
(
const
std
::
shared_ptr
<
framework
::
Scope
>&
parent_scope
);
...
...
@@ -44,7 +46,7 @@ class AnalysisPredictor : public NativePaddlePredictor {
Argument
&
analysis_argument
()
{
return
argument_
;
}
private:
Native
Config
config_
;
Analysis
Config
config_
;
Argument
argument_
;
};
...
...
paddle/fluid/inference/api/api_impl.cc
浏览文件 @
3eb55f06
...
...
@@ -176,7 +176,8 @@ bool NativePaddlePredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
framework
::
Scope
*
scope
)
{
VLOG
(
3
)
<<
"Predictor::set_feed"
;
if
(
inputs
.
size
()
!=
feeds_
.
size
())
{
LOG
(
ERROR
)
<<
"wrong feed input size."
;
LOG
(
ERROR
)
<<
"wrong feed input size, need "
<<
feeds_
.
size
()
<<
" but get "
<<
inputs
.
size
();
return
false
;
}
for
(
size_t
i
=
0
;
i
<
inputs
.
size
();
++
i
)
{
...
...
paddle/fluid/inference/api/paddle_inference_api.h
浏览文件 @
3eb55f06
...
...
@@ -150,6 +150,21 @@ struct TensorRTConfig : public NativeConfig {
int
workspace_size
{
1
<<
30
};
};
// NOTE WIP, not stable yet.
struct
AnalysisConfig
:
public
NativeConfig
{
//
enum
class
IrPassMode
{
kSystem
,
// Use system default passes, not customize.
kInclude
,
// Specify the passes in `ir_passes`.
kExclude
// Specify the disabled passes in `ir_passes`.
};
bool
enable_ir_optim
=
true
;
IrPassMode
ir_mode
{
IrPassMode
::
kExclude
};
// attention lstm fuse works only on some specific models, disable as default.
std
::
vector
<
std
::
string
>
ir_passes
{
"attention_lstm_fuse_pass"
};
};
// A factory to help create different predictors.
//
// FOR EXTENSION DEVELOPER:
...
...
paddle/fluid/operators/auc_op.cc
浏览文件 @
3eb55f06
...
...
@@ -13,7 +13,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/auc_op.h"
#include <string>
namespace
paddle
{
namespace
operators
{
...
...
@@ -36,15 +35,12 @@ class AucOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
predict_height
,
label_height
,
"Out and Label should have same height."
);
int
num_
thres
=
ctx
->
Attrs
().
Get
<
int
>
(
"num_thresholds"
)
;
int
num_
pred_buckets
=
ctx
->
Attrs
().
Get
<
int
>
(
"num_thresholds"
)
+
1
;
ctx
->
SetOutputDim
(
"AUC"
,
{
1
});
ctx
->
SetOutputDim
(
"TPOut"
,
{
num_thres
});
ctx
->
SetOutputDim
(
"TNOut"
,
{
num_thres
});
ctx
->
SetOutputDim
(
"FPOut"
,
{
num_thres
});
ctx
->
SetOutputDim
(
"FNOut"
,
{
num_thres
});
ctx
->
ShareLoD
(
"Predict"
,
/*->*/
"AUC"
);
ctx
->
SetOutputDim
(
"BatchAUC"
,
{
1
});
ctx
->
SetOutputDim
(
"StatPosOut"
,
{
num_pred_buckets
});
ctx
->
SetOutputDim
(
"StatNegOut"
,
{
num_pred_buckets
});
}
protected:
...
...
@@ -66,25 +62,24 @@ class AucOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"Label"
,
"A 2D int tensor indicating the label of the training data. "
"shape: [batch_size, 1]"
);
AddInput
(
"TP"
,
"True-Positive value."
);
AddInput
(
"FP"
,
"False-Positive value."
);
AddInput
(
"TN"
,
"True-Negative value."
);
AddInput
(
"FN"
,
"False-Negative value."
);
// TODO(typhoonzero): support weight input
AddInput
(
"StatPos"
,
"Statistic value when label = 1"
);
AddInput
(
"StatNeg"
,
"Statistic value when label = 0"
);
AddOutput
(
"AUC"
,
"A scalar representing the "
"current area-under-the-curve."
);
AddOutput
(
"TPOut"
,
"True-Positive value."
);
AddOutput
(
"FPOut"
,
"False-Positive value."
);
AddOutput
(
"TNOut"
,
"True-Negative value."
);
AddOutput
(
"FNOut"
,
"False-Negative value."
);
AddOutput
(
"BatchAUC"
,
"The AUC for current batch"
);
AddOutput
(
"StatPosOut"
,
"Statistic value when label = 1"
);
AddOutput
(
"StatNegOut"
,
"Statistic value when label = 0"
);
AddAttr
<
std
::
string
>
(
"curve"
,
"Curve type, can be 'ROC' or 'PR'."
)
.
SetDefault
(
"ROC"
);
AddAttr
<
int
>
(
"num_thresholds"
,
"The number of thresholds to use when discretizing the"
" roc curve."
)
.
SetDefault
(
200
);
.
SetDefault
(
(
2
<<
12
)
-
1
);
AddComment
(
R"DOC(
Area Under The Curve (AUC) Operator.
...
...
paddle/fluid/operators/auc_op.h
浏览文件 @
3eb55f06
...
...
@@ -13,9 +13,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
...
...
@@ -23,106 +23,85 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
T
>
class
AucKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
predict
=
ctx
.
Input
<
Tensor
>
(
"Predict"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
auto
*
auc
=
ctx
.
Output
<
Tensor
>
(
"AUC"
);
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
predict
=
ctx
.
Input
<
Tensor
>
(
"Predict"
);
auto
*
label
=
ctx
.
Input
<
Tensor
>
(
"Label"
);
std
::
string
curve
=
ctx
.
Attr
<
std
::
string
>
(
"curve"
);
int
num_thresholds
=
ctx
.
Attr
<
int
>
(
"num_thresholds"
);
int
num_pred_buckets
=
num_thresholds
+
1
;
// Only use output var for now, make sure it's persistable and
// not cleaned up for each batch.
auto
*
true_positive
=
ctx
.
Output
<
Tensor
>
(
"TPOut"
);
auto
*
false_positive
=
ctx
.
Output
<
Tensor
>
(
"FPOut"
);
auto
*
true_negative
=
ctx
.
Output
<
Tensor
>
(
"TNOut"
);
auto
*
false_negative
=
ctx
.
Output
<
Tensor
>
(
"FNOut"
);
auto
*
auc
=
ctx
.
Output
<
Tensor
>
(
"AUC"
);
auto
*
stat_pos
=
ctx
.
Output
<
Tensor
>
(
"StatPosOut"
);
auto
*
stat_neg
=
ctx
.
Output
<
Tensor
>
(
"StatNegOut"
);
auto
*
auc_data
=
auc
->
mutable_data
<
double
>
(
ctx
.
GetPlace
());
auto
*
stat_pos_data
=
stat_pos
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
auto
*
stat_neg_data
=
stat_neg
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
calcAuc
(
ctx
,
label
,
predict
,
stat_pos_data
,
stat_neg_data
,
num_thresholds
,
auc
);
std
::
string
curve
=
ctx
.
Attr
<
std
::
string
>
(
"curve"
);
int
num_thresholds
=
ctx
.
Attr
<
int
>
(
"num_thresholds"
);
std
::
vector
<
double
>
thresholds_list
;
thresholds_list
.
reserve
(
num_thresholds
);
for
(
int
i
=
1
;
i
<
num_thresholds
-
1
;
i
++
)
{
thresholds_list
[
i
]
=
static_cast
<
double
>
(
i
)
/
(
num_thresholds
-
1
);
auto
*
batch_auc
=
ctx
.
Output
<
Tensor
>
(
"BatchAUC"
);
std
::
vector
<
int64_t
>
stat_pos_batch
(
num_pred_buckets
,
0
);
std
::
vector
<
int64_t
>
stat_neg_batch
(
num_pred_buckets
,
0
);
calcAuc
(
ctx
,
label
,
predict
,
stat_pos_batch
.
data
(),
stat_neg_batch
.
data
(),
num_thresholds
,
batch_auc
);
}
private:
inline
static
double
trapezoidArea
(
double
X1
,
double
X2
,
double
Y1
,
double
Y2
)
{
return
(
X1
>
X2
?
(
X1
-
X2
)
:
(
X2
-
X1
))
*
(
Y1
+
Y2
)
/
2.0
;
}
const
double
kEpsilon
=
1e-7
;
thresholds_list
[
0
]
=
0.0
f
-
kEpsilon
;
thresholds_list
[
num_thresholds
-
1
]
=
1.0
f
+
kEpsilon
;
inline
static
void
calcAuc
(
const
framework
::
ExecutionContext
&
ctx
,
const
framework
::
Tensor
*
label
,
const
framework
::
Tensor
*
predict
,
int64_t
*
stat_pos
,
int64_t
*
stat_neg
,
int
num_thresholds
,
framework
::
Tensor
*
auc_tensor
)
{
size_t
batch_size
=
predict
->
dims
()[
0
];
size_t
inference_width
=
predict
->
dims
()[
1
];
const
T
*
inference_data
=
predict
->
data
<
T
>
();
const
auto
*
label_data
=
label
->
data
<
int64_t
>
();
const
T
*
inference_data
=
predict
->
data
<
T
>
();
const
auto
*
label_data
=
label
->
data
<
int64_t
>
();
auto
*
tp_data
=
true_positive
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
auto
*
fn_data
=
false_negative
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
auto
*
tn_data
=
true_negative
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
auto
*
fp_data
=
false_positive
->
mutable_data
<
int64_t
>
(
ctx
.
GetPlace
());
auto
*
auc
=
auc_tensor
->
mutable_data
<
double
>
(
ctx
.
GetPlace
());
for
(
int
idx_thresh
=
0
;
idx_thresh
<
num_thresholds
;
idx_thresh
++
)
{
// calculate TP, FN, TN, FP for current thresh
int64_t
tp
=
0
,
fn
=
0
,
tn
=
0
,
fp
=
0
;
for
(
size_t
i
=
0
;
i
<
batch_size
;
i
++
)
{
// NOTE: label_data used as bool, labels > 0 will be treated as true.
uint32_t
binIdx
=
static_cast
<
uint32_t
>
(
inference_data
[
i
*
inference_width
+
1
]
*
num_thresholds
);
if
(
label_data
[
i
])
{
if
(
inference_data
[
i
*
inference_width
+
1
]
>=
(
thresholds_list
[
idx_thresh
]))
{
tp
++
;
}
else
{
fn
++
;
}
}
else
{
if
(
inference_data
[
i
*
inference_width
+
1
]
>=
(
thresholds_list
[
idx_thresh
]))
{
fp
++
;
stat_pos
[
binIdx
]
+=
1.0
;
}
else
{
tn
++
;
}
}
}
// store rates
tp_data
[
idx_thresh
]
+=
tp
;
fn_data
[
idx_thresh
]
+=
fn
;
tn_data
[
idx_thresh
]
+=
tn
;
fp_data
[
idx_thresh
]
+=
fp
;
}
// epsilon to avoid divide by zero.
double
epsilon
=
1e-6
;
// Riemann sum to caculate auc.
Tensor
tp_rate
,
fp_rate
,
rec_rate
;
tp_rate
.
Resize
({
num_thresholds
});
fp_rate
.
Resize
({
num_thresholds
});
rec_rate
.
Resize
({
num_thresholds
});
auto
*
tp_rate_data
=
tp_rate
.
mutable_data
<
double
>
(
ctx
.
GetPlace
());
auto
*
fp_rate_data
=
fp_rate
.
mutable_data
<
double
>
(
ctx
.
GetPlace
());
auto
*
rec_rate_data
=
rec_rate
.
mutable_data
<
double
>
(
ctx
.
GetPlace
());
for
(
int
i
=
0
;
i
<
num_thresholds
;
i
++
)
{
tp_rate_data
[
i
]
=
(
static_cast
<
double
>
(
tp_data
[
i
])
+
epsilon
)
/
(
tp_data
[
i
]
+
fn_data
[
i
]
+
epsilon
);
fp_rate_data
[
i
]
=
static_cast
<
double
>
(
fp_data
[
i
])
/
(
fp_data
[
i
]
+
tn_data
[
i
]
+
epsilon
);
rec_rate_data
[
i
]
=
(
static_cast
<
double
>
(
tp_data
[
i
])
+
epsilon
)
/
(
tp_data
[
i
]
+
fp_data
[
i
]
+
epsilon
);
stat_neg
[
binIdx
]
+=
1.0
;
}
*
auc_data
=
0.0
f
;
if
(
curve
==
"ROC"
)
{
for
(
int
i
=
0
;
i
<
num_thresholds
-
1
;
i
++
)
{
auto
dx
=
fp_rate_data
[
i
]
-
fp_rate_data
[
i
+
1
];
auto
y
=
(
tp_rate_data
[
i
]
+
tp_rate_data
[
i
+
1
])
/
2.0
f
;
*
auc_data
=
*
auc_data
+
dx
*
y
;
}
}
else
if
(
curve
==
"PR"
)
{
for
(
int
i
=
1
;
i
<
num_thresholds
;
i
++
)
{
auto
dx
=
tp_rate_data
[
i
]
-
tp_rate_data
[
i
-
1
];
auto
y
=
(
rec_rate_data
[
i
]
+
rec_rate_data
[
i
-
1
])
/
2.0
f
;
*
auc_data
=
*
auc_data
+
dx
*
y
;
*
auc
=
0.0
f
;
double
totPos
=
0.0
;
double
totNeg
=
0.0
;
double
totPosPrev
=
0.0
;
double
totNegPrev
=
0.0
;
int
idx
=
num_thresholds
;
while
(
idx
>=
0
)
{
totPosPrev
=
totPos
;
totNegPrev
=
totNeg
;
totPos
+=
stat_pos
[
idx
];
totNeg
+=
stat_neg
[
idx
];
*
auc
+=
trapezoidArea
(
totNeg
,
totNegPrev
,
totPos
,
totPosPrev
);
--
idx
;
}
if
(
totPos
>
0.0
&&
totNeg
>
0.0
)
{
*
auc
=
*
auc
/
totPos
/
totNeg
;
}
}
};
...
...
paddle/fluid/operators/lookup_table_op.h
浏览文件 @
3eb55f06
...
...
@@ -57,7 +57,7 @@ class LookupTableKernel : public framework::OpKernel<T> {
memset
(
output
+
i
*
row_width
,
0
,
row_width
*
sizeof
(
T
));
}
else
{
PADDLE_ENFORCE_LT
(
ids
[
i
],
row_number
);
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
);
PADDLE_ENFORCE_GE
(
ids
[
i
],
0
,
"ids %d"
,
i
);
memcpy
(
output
+
i
*
row_width
,
table
+
ids
[
i
]
*
row_width
,
row_width
*
sizeof
(
T
));
}
...
...
paddle/fluid/operators/rmsprop_op.cc
浏览文件 @
3eb55f06
...
...
@@ -36,9 +36,13 @@ class RmspropOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"ParamOut"
),
"Output(param_out) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MomentOut"
),
"Output(Moment
um_o
ut) of RmspropOp should not be null."
);
"Output(Moment
O
ut) of RmspropOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MeanSquareOut"
),
"Output(MeanSquareOut) of RmspropOp should not be null."
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"centered"
))
{
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"MeanGradOut"
),
"Output(MeanGradOut) of RmspropOp should not be null."
);
}
auto
param_dim
=
ctx
->
GetInputDim
(
"Param"
);
PADDLE_ENFORCE_EQ
(
...
...
@@ -58,6 +62,9 @@ class RmspropOp : public framework::OperatorWithKernel {
ctx
->
SetOutputDim
(
"ParamOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"MomentOut"
,
param_dim
);
ctx
->
SetOutputDim
(
"MeanSquareOut"
,
param_dim
);
if
(
ctx
->
Attrs
().
Get
<
bool
>
(
"centered"
))
{
ctx
->
SetOutputDim
(
"MeanGradOut"
,
param_dim
);
}
}
};
...
...
@@ -70,6 +77,10 @@ class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput
(
"MeanSquare"
,
"(Tensor, default Tensor<float>)"
" The mean square value that gets updated."
);
AddInput
(
"MeanGrad"
,
"(Tensor, default Tensor<float>)"
" The moving average of gradient"
)
.
AsDispensable
();
AddInput
(
"LearningRate"
,
"(Tensor, default Tensor<float>) "
"The learning rate should be a tensor of size 1."
);
...
...
@@ -82,6 +93,8 @@ class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"ParamOut"
,
"(Tensor) Output updated parameter value."
);
AddOutput
(
"MomentOut"
,
"(Tensor) Output updated moment."
);
AddOutput
(
"MeanSquareOut"
,
"(Tensor) Output Mean squared updated value."
);
AddOutput
(
"MeanGradOut"
,
"(Tensor) Output moving average of gradient updated value."
);
AddAttr
<
float
>
(
"epsilon"
,
"(float, default 1e-10) Constant "
...
...
@@ -93,6 +106,8 @@ class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
.
SetDefault
(
0.9
f
);
AddAttr
<
float
>
(
"momentum"
,
"(float, default 0.0) Constant value."
)
.
SetDefault
(
0.0
f
);
AddAttr
<
bool
>
(
"centered"
,
"(bool, default false) use centered rmsprop."
)
.
SetDefault
(
false
);
AddComment
(
R"DOC(
Rmsprop Optimizer.
...
...
@@ -103,6 +118,14 @@ MomentOut = momentum * Moment +
ParamOut = Param - MomentOut
$$
if centered is true:
mean_grad = decay * mean_square{t-1} + (1-decay) * gradient
mean_square = decay * mean_square{t-1} + (1-decay) * gradient ** 2
mom = momentum * mom{t-1} + learning_rate * g_t /
sqrt(mean_square - mean_grad**2 + epsilon)
param -= mom
The original slides that proposed Rmsprop: Slide 29 of
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
...
...
paddle/fluid/operators/rmsprop_op.h
浏览文件 @
3eb55f06
...
...
@@ -41,6 +41,7 @@ class RmspropOpKernel : public framework::OpKernel<T> {
float
epsilon
=
ctx
.
Attr
<
float
>
(
"epsilon"
);
float
rho
=
ctx
.
Attr
<
float
>
(
"decay"
);
float
momentum
=
ctx
.
Attr
<
float
>
(
"momentum"
);
bool
centered
=
ctx
.
Attr
<
bool
>
(
"centered"
);
auto
p
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"Param"
));
auto
ms
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"MeanSquare"
));
...
...
@@ -53,12 +54,24 @@ class RmspropOpKernel : public framework::OpKernel<T> {
auto
ms_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_square_out
);
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
Eigen
::
DSizes
<
int
,
1
>
grad_dsize
(
grad
->
numel
(
));
Eigen
::
DSizes
<
int
,
1
>
grad_dsize
(
static_cast
<
int
>
(
grad
->
numel
()
));
ms_out
.
device
(
place
)
=
rho
*
ms
+
(
1
-
rho
)
*
g
*
g
;
if
(
centered
)
{
auto
mg
=
EigenVector
<
T
>::
Flatten
(
*
ctx
.
Input
<
Tensor
>
(
"MeanGrad"
));
auto
*
mean_grad_out
=
ctx
.
Output
<
Tensor
>
(
"MeanGradOut"
);
mean_grad_out
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
mg_out
=
EigenVector
<
T
>::
Flatten
(
*
mean_grad_out
);
mg_out
.
device
(
place
)
=
rho
*
mg
+
(
1
-
rho
)
*
g
;
mom_out
.
device
(
place
)
=
momentum
*
mom
+
lr
.
broadcast
(
grad_dsize
)
*
g
/
(
ms_out
-
mg_out
.
square
()
+
epsilon
).
sqrt
();
}
else
{
mom_out
.
device
(
place
)
=
momentum
*
mom
+
lr
.
broadcast
(
grad_dsize
)
*
g
/
(
ms_out
+
epsilon
).
sqrt
();
}
p_out
.
device
(
place
)
=
p
-
mom_out
;
}
};
...
...
python/paddle/fluid/layers/metric_op.py
浏览文件 @
3eb55f06
...
...
@@ -78,7 +78,7 @@ def accuracy(input, label, k=1, correct=None, total=None):
return
acc_out
def
auc
(
input
,
label
,
curve
=
'ROC'
,
num_thresholds
=
2
00
,
topk
=
1
):
def
auc
(
input
,
label
,
curve
=
'ROC'
,
num_thresholds
=
2
**
12
-
1
,
topk
=
1
):
"""
**Area Under the Curve (AUC) Layer**
...
...
@@ -118,16 +118,14 @@ def auc(input, label, curve='ROC', num_thresholds=200, topk=1):
"""
helper
=
LayerHelper
(
"auc"
,
**
locals
())
auc_out
=
helper
.
create_tmp_variable
(
dtype
=
"float64"
)
batch_auc_out
=
helper
.
create_tmp_variable
(
dtype
=
"float64"
)
# make tp, tn, fp, fn persistable, so that can accumulate all batches.
tp
=
helper
.
create_global_variable
(
persistable
=
True
,
dtype
=
'int64'
,
shape
=
[
num_thresholds
])
tn
=
helper
.
create_global_variable
(
persistable
=
True
,
dtype
=
'int64'
,
shape
=
[
num_thresholds
])
fp
=
helper
.
create_global_variable
(
persistable
=
True
,
dtype
=
'int64'
,
shape
=
[
num_thresholds
])
fn
=
helper
.
create_global_variable
(
persistable
=
True
,
dtype
=
'int64'
,
shape
=
[
num_thresholds
])
for
var
in
[
tp
,
tn
,
fp
,
fn
]:
stat_pos
=
helper
.
create_global_variable
(
persistable
=
True
,
dtype
=
'int64'
,
shape
=
[
num_thresholds
+
1
])
stat_neg
=
helper
.
create_global_variable
(
persistable
=
True
,
dtype
=
'int64'
,
shape
=
[
num_thresholds
+
1
])
for
var
in
[
stat_pos
,
stat_neg
]:
helper
.
set_variable_initializer
(
var
,
Constant
(
value
=
0.0
,
force_cpu
=
True
))
...
...
@@ -137,18 +135,15 @@ def auc(input, label, curve='ROC', num_thresholds=200, topk=1):
inputs
=
{
"Predict"
:
[
input
],
"Label"
:
[
label
],
"TP"
:
[
tp
],
"TN"
:
[
tn
],
"FP"
:
[
fp
],
"FN"
:
[
fn
]
"StatPos"
:
[
stat_pos
],
"StatNeg"
:
[
stat_neg
]
},
attrs
=
{
"curve"
:
curve
,
"num_thresholds"
:
num_thresholds
},
outputs
=
{
"AUC"
:
[
auc_out
],
"TPOut"
:
[
tp
],
"TNOut"
:
[
tn
],
"FPOut"
:
[
fp
],
"FNOut"
:
[
fn
]
"BatchAUC"
:
[
batch_auc_out
],
"StatPosOut"
:
[
stat_pos
],
"StatNegOut"
:
[
stat_neg
]
})
return
auc_out
,
[
tp
,
tn
,
fp
,
fn
]
return
auc_out
,
batch_auc_out
,
[
stat_pos
,
stat_neg
]
python/paddle/fluid/metrics.py
浏览文件 @
3eb55f06
...
...
@@ -558,8 +558,6 @@ class Auc(MetricBase):
name: metric name
curve: Specifies the name of the curve to be computed, 'ROC' [default] or
'PR' for the Precision-Recall-curve.
num_thresholds: The number of thresholds to use when discretizing the roc
curve.
"NOTE: only implement the ROC curve type via Python now."
...
...
@@ -574,15 +572,14 @@ class Auc(MetricBase):
numpy_auc = metric.eval()
"""
def
__init__
(
self
,
name
,
curve
=
'ROC'
,
num_thresholds
=
200
):
def
__init__
(
self
,
name
,
curve
=
'ROC'
,
num_thresholds
=
4095
):
super
(
Auc
,
self
).
__init__
(
name
=
name
)
self
.
_curve
=
curve
self
.
_num_thresholds
=
num_thresholds
self
.
_epsilon
=
1e-6
self
.
tp_list
=
np
.
zeros
((
num_thresholds
,
))
self
.
fn_list
=
np
.
zeros
((
num_thresholds
,
))
self
.
tn_list
=
np
.
zeros
((
num_thresholds
,
))
self
.
fp_list
=
np
.
zeros
((
num_thresholds
,
))
_num_pred_buckets
=
num_thresholds
+
1
self
.
_stat_pos
=
[
0
]
*
_num_pred_buckets
self
.
_stat_neg
=
[
0
]
*
_num_pred_buckets
def
update
(
self
,
preds
,
labels
):
if
not
_is_numpy_
(
labels
):
...
...
@@ -590,41 +587,32 @@ class Auc(MetricBase):
if
not
_is_numpy_
(
preds
):
raise
ValueError
(
"The 'predictions' must be a numpy ndarray."
)
kepsilon
=
1e-7
# to account for floating point imprecisions
thresholds
=
[(
i
+
1
)
*
1.0
/
(
self
.
_num_thresholds
-
1
)
for
i
in
range
(
self
.
_num_thresholds
-
2
)]
thresholds
=
[
0.0
-
kepsilon
]
+
thresholds
+
[
1.0
+
kepsilon
]
# calculate TP, FN, TN, FP count
for
idx_thresh
,
thresh
in
enumerate
(
thresholds
):
tp
,
fn
,
tn
,
fp
=
0
,
0
,
0
,
0
for
i
,
lbl
in
enumerate
(
labels
):
value
=
preds
[
i
,
1
]
bin_idx
=
int
(
value
*
self
.
_num_thresholds
)
assert
bin_idx
<=
self
.
_num_thresholds
if
lbl
:
if
preds
[
i
,
1
]
>=
thresh
:
tp
+=
1
else
:
fn
+=
1
self
.
_stat_pos
[
bin_idx
]
+=
1.0
else
:
if
preds
[
i
,
1
]
>=
thresh
:
fp
+=
1
else
:
tn
+=
1
self
.
tp_list
[
idx_thresh
]
+=
tp
self
.
fn_list
[
idx_thresh
]
+=
fn
self
.
tn_list
[
idx_thresh
]
+=
tn
self
.
fp_list
[
idx_thresh
]
+=
fp
self
.
_stat_neg
[
bin_idx
]
+=
1.0
@
staticmethod
def
trapezoid_area
(
x1
,
x2
,
y1
,
y2
):
return
abs
(
x1
-
x2
)
*
(
y1
+
y2
)
/
2.0
def
eval
(
self
):
epsilon
=
self
.
_epsilon
num_thresholds
=
self
.
_num_thresholds
tpr
=
(
self
.
tp_list
.
astype
(
"float32"
)
+
epsilon
)
/
(
self
.
tp_list
+
self
.
fn_list
+
epsilon
)
fpr
=
self
.
fp_list
.
astype
(
"float32"
)
/
(
self
.
fp_list
+
self
.
tn_list
+
epsilon
)
rec
=
(
self
.
tp_list
.
astype
(
"float32"
)
+
epsilon
)
/
(
self
.
tp_list
+
self
.
fp_list
+
epsilon
)
x
=
fpr
[:
num_thresholds
-
1
]
-
fpr
[
1
:]
y
=
(
tpr
[:
num_thresholds
-
1
]
+
tpr
[
1
:])
/
2.0
auc_value
=
np
.
sum
(
x
*
y
)
return
auc_value
tot_pos
=
0.0
tot_neg
=
0.0
auc
=
0.0
idx
=
self
.
_num_thresholds
while
idx
>=
0
:
tot_pos_prev
=
tot_pos
tot_neg_prev
=
tot_neg
tot_pos
+=
self
.
_stat_pos
[
idx
]
tot_neg
+=
self
.
_stat_neg
[
idx
]
auc
+=
self
.
trapezoid_area
(
tot_neg
,
tot_neg_prev
,
tot_pos
,
tot_pos_prev
)
idx
-=
1
return
auc
/
tot_pos
/
tot_neg
if
tot_pos
>
0.0
and
tot_neg
>
0.0
else
0.0
python/paddle/fluid/optimizer.py
浏览文件 @
3eb55f06
...
...
@@ -897,7 +897,20 @@ class RMSPropOptimizer(Optimizer):
r(w, t) & =
\\
rho r(w, t-1) + (1 -
\\
rho)(
\\
nabla Q_{i}(w))^2
v(w, t) & =
\\
beta v(w, t-1) +
\\
frac{
\\
eta} {
\\
sqrt{v(w,t) +
v(w, t) & =
\\
beta v(w, t-1) +
\\
frac{
\\
eta} {
\\
sqrt{r(w,t) +
\\
epsilon}}
\\
nabla Q_{i}(w)
w & = w - v(w, t)
if centered is True:
.. math::
r(w, t) & =
\\
rho r(w, t-1) + (1 -
\\
rho)(
\\
nabla Q_{i}(w))^2
g(w, t) & =
\\
rho g(w, t-1) + (1 -
\\
rho)
\\
nabla Q_{i}(w)
v(w, t) & =
\\
beta v(w, t-1) +
\\
frac{
\\
eta} {
\\
sqrt{r(w,t) - (g(w, t))^2 +
\\
epsilon}}
\\
nabla Q_{i}(w)
w & = w - v(w, t)
...
...
@@ -915,6 +928,10 @@ class RMSPropOptimizer(Optimizer):
avoid division by zero, set 1e-6 by default.
momentum(float): :math:`
\\
beta` in equation is the momentum term,
set 0.0 by default.
centered(bool): If True, gradients are normalized by the estimated variance of
the gradient; if False, by the uncentered second moment. Setting this to
True may help with training, but is slightly more expensive in terms of
computation and memory. Defaults to False.
Raises:
ValueError: If learning_rate, rho, epsilon, momentum are None.
...
...
@@ -928,12 +945,14 @@ class RMSPropOptimizer(Optimizer):
_momentum_acc_str
=
"momentum"
_mean_square_acc_str
=
"mean_square"
_mean_grad_acc_str
=
"mean_grad"
def
__init__
(
self
,
learning_rate
,
rho
=
0.95
,
epsilon
=
1.0e-6
,
momentum
=
0.0
,
centered
=
False
,
**
kwargs
):
super
(
RMSPropOptimizer
,
self
).
__init__
(
learning_rate
=
learning_rate
,
**
kwargs
)
...
...
@@ -950,6 +969,7 @@ class RMSPropOptimizer(Optimizer):
self
.
_rho
=
rho
self
.
_epsilon
=
epsilon
self
.
_momentum
=
momentum
self
.
_centered
=
centered
def
_create_accumulators
(
self
,
block
,
parameters
):
if
not
isinstance
(
block
,
framework
.
Block
):
...
...
@@ -958,6 +978,7 @@ class RMSPropOptimizer(Optimizer):
for
p
in
parameters
:
self
.
_add_accumulator
(
self
.
_momentum_acc_str
,
p
)
self
.
_add_accumulator
(
self
.
_mean_square_acc_str
,
p
)
self
.
_add_accumulator
(
self
.
_mean_grad_acc_str
,
p
)
def
_append_optimize_op
(
self
,
block
,
param_and_grad
):
if
not
isinstance
(
block
,
framework
.
Block
):
...
...
@@ -967,6 +988,8 @@ class RMSPropOptimizer(Optimizer):
param_and_grad
[
0
])
mean_square_acc
=
self
.
_get_accumulator
(
self
.
_mean_square_acc_str
,
param_and_grad
[
0
])
mean_grad_acc
=
self
.
_get_accumulator
(
self
.
_mean_grad_acc_str
,
param_and_grad
[
0
])
rmsprop_op
=
block
.
append_op
(
type
=
self
.
type
,
inputs
=
{
...
...
@@ -974,17 +997,20 @@ class RMSPropOptimizer(Optimizer):
"Grad"
:
param_and_grad
[
1
],
"Moment"
:
momentum_acc
,
"MeanSquare"
:
mean_square_acc
,
"MeanGrad"
:
mean_grad_acc
,
"LearningRate"
:
self
.
_create_param_lr
(
param_and_grad
),
},
outputs
=
{
"ParamOut"
:
param_and_grad
[
0
],
"MomentOut"
:
momentum_acc
,
"MeanSquareOut"
:
mean_square_acc
"MeanSquareOut"
:
mean_square_acc
,
"MeanGradOut"
:
mean_grad_acc
},
attrs
=
{
"epsilon"
:
self
.
_epsilon
,
"decay"
:
self
.
_rho
,
"momentum"
:
self
.
_momentum
"momentum"
:
self
.
_momentum
,
"centered"
:
self
.
_centered
})
return
rmsprop_op
...
...
python/paddle/fluid/tests/unittests/op_test.py
浏览文件 @
3eb55f06
...
...
@@ -291,7 +291,7 @@ class OpTest(unittest.TestCase):
return_numpy
=
False
)
return
outs
,
fetch_list
def
check_output_with_place
(
self
,
place
,
atol
):
def
check_output_with_place
(
self
,
place
,
atol
,
equal_nan
=
False
):
outs
,
fetch_list
=
self
.
_calc_output
(
place
)
for
out_name
,
out_dup
in
Operator
.
get_op_outputs
(
self
.
op_type
):
if
out_name
not
in
self
.
outputs
:
...
...
@@ -321,7 +321,7 @@ class OpTest(unittest.TestCase):
if
isinstance
(
expect
,
tuple
)
else
expect
self
.
assertTrue
(
np
.
allclose
(
actual_t
,
expect_t
,
atol
=
atol
),
actual_t
,
expect_t
,
atol
=
atol
,
equal_nan
=
equal_nan
),
"Output ("
+
sub_out_name
+
") has diff at "
+
str
(
place
))
if
isinstance
(
expect
,
tuple
):
...
...
@@ -337,7 +337,7 @@ class OpTest(unittest.TestCase):
expect_t
=
expect
[
0
]
if
isinstance
(
expect
,
tuple
)
else
expect
self
.
assertTrue
(
np
.
allclose
(
actual_t
,
expect_t
,
atol
=
atol
),
actual_t
,
expect_t
,
atol
=
atol
,
equal_nan
=
equal_nan
),
"Output ("
+
out_name
+
") has diff at "
+
str
(
place
)
+
"
\n
Expect "
+
str
(
expect_t
)
+
"
\n
"
+
"But Got"
+
str
(
actual_t
))
...
...
@@ -360,10 +360,10 @@ class OpTest(unittest.TestCase):
places
.
append
(
core
.
CUDAPlace
(
0
))
return
places
def
check_output
(
self
,
atol
=
1e-5
):
def
check_output
(
self
,
atol
=
1e-5
,
equal_nan
=
False
):
places
=
self
.
_get_places
()
for
place
in
places
:
self
.
check_output_with_place
(
place
,
atol
)
self
.
check_output_with_place
(
place
,
atol
,
equal_nan
)
def
check_output_customized
(
self
,
checker
):
places
=
self
.
_get_places
()
...
...
python/paddle/fluid/tests/unittests/test_auc_op.py
浏览文件 @
3eb55f06
...
...
@@ -26,18 +26,15 @@ class TestAucOp(OpTest):
pred
=
np
.
random
.
random
((
128
,
2
)).
astype
(
"float32"
)
labels
=
np
.
random
.
randint
(
0
,
2
,
(
128
,
1
))
num_thresholds
=
200
tp
=
np
.
zeros
((
num_thresholds
,
)).
astype
(
"int64"
)
tn
=
np
.
zeros
((
num_thresholds
,
)).
astype
(
"int64"
)
fp
=
np
.
zeros
((
num_thresholds
,
)).
astype
(
"int64"
)
fn
=
np
.
zeros
((
num_thresholds
,
)).
astype
(
"int64"
)
stat_pos
=
np
.
zeros
((
num_thresholds
+
1
,
)).
astype
(
"int64"
)
stat_neg
=
np
.
zeros
((
num_thresholds
+
1
,
)).
astype
(
"int64"
)
self
.
inputs
=
{
'Predict'
:
pred
,
'Label'
:
labels
,
'TP'
:
tp
,
'TN'
:
tn
,
'FP'
:
fp
,
'FN'
:
fn
"StatPos"
:
stat_pos
,
"StatNeg"
:
stat_neg
}
self
.
attrs
=
{
'curve'
:
'ROC'
,
'num_thresholds'
:
num_thresholds
}
...
...
@@ -47,11 +44,10 @@ class TestAucOp(OpTest):
python_auc
.
update
(
pred
,
labels
)
self
.
outputs
=
{
'AUC'
:
python_auc
.
eval
(),
'TPOut'
:
python_auc
.
tp_list
,
'FNOut'
:
python_auc
.
fn_list
,
'TNOut'
:
python_auc
.
tn_list
,
'FPOut'
:
python_auc
.
fp_list
'AUC'
:
np
.
array
(
python_auc
.
eval
()),
'BatchAUC'
:
np
.
array
(
python_auc
.
eval
()),
'StatPosOut'
:
np
.
array
(
python_auc
.
_stat_pos
),
'StatNegOut'
:
np
.
array
(
python_auc
.
_stat_neg
)
}
def
test_check_output
(
self
):
...
...
python/paddle/fluid/tests/unittests/test_rmsprop_op.py
浏览文件 @
3eb55f06
...
...
@@ -15,90 +15,164 @@
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestRmspropOp1
(
OpTest
):
''' Test RMSProp with explicit inputs
'''
def
setUp
(
self
):
self
.
op_type
=
"rmsprop"
param
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
mean_square
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
learning_rate
=
np
.
array
([
0.01
]).
astype
(
"float32"
)
grad
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
moment
=
np
.
zeros
((
123
,
321
)).
astype
(
"float32"
)
epsilon
=
1e-6
decay
=
0.9
momentum
=
0.0
self
.
inputs
=
{
'Param'
:
param
,
'MeanSquare'
:
mean_square
,
'LearningRate'
:
learning_rate
,
'Grad'
:
grad
,
'Moment'
:
moment
,
}
self
.
attrs
=
{
'epsilon'
:
epsilon
,
'decay'
:
decay
,
'momentum'
:
momentum
}
ms_out
=
decay
*
mean_square
+
(
1
-
decay
)
*
grad
*
grad
moment_out
=
momentum
*
moment
+
\
learning_rate
*
grad
/
np
.
sqrt
(
ms_out
+
epsilon
)
param_out
=
param
-
moment_out
self
.
outputs
=
{
'ParamOut'
:
param_out
,
'MomentOut'
:
moment_out
,
'MeanSquareOut'
:
ms_out
}
def
test_check_output
(
self
):
self
.
check_output
()
class
TestRmspropOp2
(
OpTest
):
'''Test RMSProp with default values for attributes
'''
def
setUp
(
self
):
self
.
op_type
=
"rmsprop"
param
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
mean_square
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
learning_rate
=
np
.
array
([
0.01
]).
astype
(
"float32"
)
grad
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
moment
=
np
.
zeros
((
123
,
321
)).
astype
(
"float32"
)
epsilon
=
1.0e-10
decay
=
0.9
momentum
=
0.0
self
.
inputs
=
{
'Param'
:
param
,
'MeanSquare'
:
mean_square
,
'LearningRate'
:
learning_rate
,
'Grad'
:
grad
,
'Moment'
:
moment
,
}
ms_out
=
decay
*
mean_square
+
(
1
-
decay
)
*
grad
*
grad
moment_out
=
momentum
*
moment
+
\
learning_rate
*
grad
/
np
.
sqrt
(
ms_out
+
epsilon
)
param_out
=
param
-
moment_out
self
.
outputs
=
{
'ParamOut'
:
param_out
,
'MomentOut'
:
moment_out
,
'MeanSquareOut'
:
ms_out
}
def
test_check_output
(
self
):
self
.
check_output
()
import
paddle.fluid.core
as
core
from
paddle.fluid.op
import
Operator
class
TestBase
(
unittest
.
TestCase
):
def
setup
(
self
,
centered
,
epsilon
=
1e-6
):
np
.
random
.
seed
(
5
)
# fix seed
self
.
param_name
=
"param"
self
.
param
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
self
.
mean_square_name
=
"mean_square"
self
.
mean_square
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
self
.
mean_grad_name
=
"mean_grad"
self
.
mean_grad
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
self
.
lr_name
=
"lr"
self
.
learning_rate
=
np
.
array
([
0.01
]).
astype
(
"float32"
)
self
.
grad_name
=
"grad"
self
.
grad
=
np
.
random
.
random
((
123
,
321
)).
astype
(
"float32"
)
self
.
moment_name
=
"moment"
self
.
moment
=
np
.
zeros
((
123
,
321
)).
astype
(
"float32"
)
self
.
epsilon
=
epsilon
self
.
decay
=
0.9
self
.
momentum
=
0.0
self
.
centered
=
centered
self
.
ms_out
=
self
.
decay
*
self
.
mean_square
+
(
1
-
self
.
decay
)
*
self
.
grad
*
self
.
grad
if
centered
:
self
.
mg_out
=
self
.
decay
*
self
.
mean_grad
+
(
1
-
self
.
decay
)
*
self
.
grad
self
.
moment_out
=
self
.
momentum
*
self
.
moment
+
\
self
.
learning_rate
*
self
.
grad
/
np
.
sqrt
(
self
.
ms_out
-
np
.
square
(
self
.
mg_out
)
+
self
.
epsilon
)
else
:
self
.
moment_out
=
self
.
momentum
*
self
.
moment
+
\
self
.
learning_rate
*
self
.
grad
/
np
.
sqrt
(
self
.
ms_out
+
self
.
epsilon
)
self
.
param_out
=
self
.
param
-
self
.
moment_out
def
check
(
self
,
actual_t
,
expect_t
,
place
,
out_name
,
atol
=
1e-5
,
equal_nan
=
False
):
self
.
assertTrue
(
np
.
allclose
(
actual_t
,
expect_t
,
atol
=
atol
,
equal_nan
=
equal_nan
),
"Output ("
+
out_name
+
") has diff at "
+
str
(
place
)
+
"
\n
Expect "
+
str
(
expect_t
)
+
"
\n
"
+
"But Got"
+
str
(
actual_t
))
class
TestRmspropOp
(
TestBase
):
def
check_with_place
(
self
,
place
,
centered
,
epsilon
):
self
.
setup
(
centered
,
epsilon
)
scope
=
core
.
Scope
()
# create and initialize Param Variable
param
=
scope
.
var
(
self
.
param_name
).
get_tensor
()
param
.
set
(
self
.
param
,
place
)
mean_square
=
scope
.
var
(
self
.
mean_square_name
).
get_tensor
()
mean_square
.
set
(
self
.
mean_square
,
place
)
lr
=
scope
.
var
(
self
.
lr_name
).
get_tensor
()
lr
.
set
(
self
.
learning_rate
,
place
)
grad
=
scope
.
var
(
self
.
grad_name
).
get_tensor
()
grad
.
set
(
self
.
grad
,
place
)
moment
=
scope
.
var
(
self
.
moment_name
).
get_tensor
()
moment
.
set
(
self
.
moment
,
place
)
# create and run sgd operator
if
self
.
centered
:
mean_grad
=
scope
.
var
(
self
.
mean_grad_name
).
get_tensor
()
mean_grad
.
set
(
self
.
mean_grad
,
place
)
rmsprop_op
=
Operator
(
"rmsprop"
,
Param
=
self
.
param_name
,
Grad
=
self
.
grad_name
,
MeanSquare
=
self
.
mean_square_name
,
MeanGrad
=
self
.
mean_grad_name
,
Moment
=
self
.
moment_name
,
LearningRate
=
self
.
lr_name
,
ParamOut
=
self
.
param_name
,
MeanSquareOut
=
self
.
mean_square_name
,
MomentOut
=
self
.
moment_name
,
MeanGradOut
=
self
.
mean_grad_name
,
epsilon
=
self
.
epsilon
,
decay
=
self
.
decay
,
momentum
=
self
.
momentum
,
centered
=
True
)
else
:
rmsprop_op
=
Operator
(
"rmsprop"
,
Param
=
self
.
param_name
,
Grad
=
self
.
grad_name
,
MeanSquare
=
self
.
mean_square_name
,
Moment
=
self
.
moment_name
,
LearningRate
=
self
.
lr_name
,
ParamOut
=
self
.
param_name
,
MeanSquareOut
=
self
.
mean_square_name
,
MomentOut
=
self
.
moment_name
,
epsilon
=
self
.
epsilon
,
decay
=
self
.
decay
,
momentum
=
self
.
momentum
,
centered
=
False
)
rmsprop_op
.
run
(
scope
,
place
)
atol
=
1e-5
equal_nan
=
False
if
self
.
centered
:
atol
=
1e-3
equal_nan
=
True
self
.
check
(
np
.
array
(
mean_square
),
self
.
ms_out
,
place
,
self
.
mean_square_name
)
self
.
check
(
np
.
array
(
moment
),
self
.
moment_out
,
place
,
self
.
moment_name
,
atol
=
atol
,
equal_nan
=
equal_nan
)
self
.
check
(
np
.
array
(
param
),
self
.
param_out
,
place
,
self
.
param_name
,
atol
=
atol
,
equal_nan
=
equal_nan
)
if
self
.
centered
:
self
.
check
(
np
.
array
(
mean_grad
),
self
.
mg_out
,
place
,
self
.
mean_grad_name
)
def
test_rmsprop
(
self
):
places
=
[
core
.
CPUPlace
()]
if
core
.
is_compiled_with_cuda
():
places
.
append
(
core
.
CUDAPlace
(
0
))
for
place
in
places
:
self
.
check_with_place
(
place
,
False
,
1e-6
)
self
.
check_with_place
(
place
,
False
,
1e-10
)
self
.
check_with_place
(
place
,
True
,
1e-6
)
self
.
check_with_place
(
place
,
True
,
1e-10
)
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录