Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3e3a983a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3e3a983a
编写于
3月 02, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add kldiv_loss op. test=develop
上级
6375fe45
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
370 addition
and
0 deletion
+370
-0
paddle/fluid/operators/kldiv_loss_op.cc
paddle/fluid/operators/kldiv_loss_op.cc
+150
-0
paddle/fluid/operators/kldiv_loss_op.cu
paddle/fluid/operators/kldiv_loss_op.cu
+21
-0
paddle/fluid/operators/kldiv_loss_op.h
paddle/fluid/operators/kldiv_loss_op.h
+117
-0
python/paddle/fluid/tests/unittests/test_kldiv_loss_op.py
python/paddle/fluid/tests/unittests/test_kldiv_loss_op.py
+82
-0
未找到文件。
paddle/fluid/operators/kldiv_loss_op.cc
0 → 100644
浏览文件 @
3e3a983a
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/kldiv_loss_op.h"
#include <string>
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
KLDivLossOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of KLDivLossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Target"
),
"Input(Target) of KLDivLossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Loss"
),
"Output(Loss) of KLDivLossOp should not be null."
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_target
=
ctx
->
GetInputDim
(
"Target"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
dim_target
.
size
(),
"Input(X) rank and Input(Target) rank should be same."
);
for
(
size_t
i
=
0
;
i
<
dim_x
.
size
();
i
++
)
{
PADDLE_ENFORCE_EQ
(
dim_x
[
i
],
dim_target
[
i
],
"Input(X) and Input(Target) should in same shape."
);
}
auto
reduction
=
ctx
->
Attrs
().
Get
<
std
::
string
>
(
"reduction"
);
PADDLE_ENFORCE
(
"mean"
==
reduction
||
"sum"
==
reduction
||
"batchmean"
==
reduction
||
"none"
==
reduction
,
"Attr(reduction) can only be 'none'|'batchmean'|'sum'|'mean'."
);
if
(
"none"
==
reduction
)
{
ctx
->
SetOutputDim
(
"Loss"
,
dim_x
);
}
else
{
ctx
->
SetOutputDim
(
"Loss"
,
framework
::
make_ddim
({
1
}));
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
GetPlace
());
}
};
class
KLDivLossOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input tensor of KL divergence loss operator, "
"This is a tensor with shape of [N, *], where N is the"
"batch size, * means any number of additional dimensions."
);
AddInput
(
"Target"
,
"The tensor of KL divergence loss operator, "
"This is a tensor with shape of Input(X)."
);
AddOutput
(
"Loss"
,
"The output KL divergence loss tensor. if Attr(reduction) is "
"'none', this tensor should be in same shape of of Input(X), else "
"this tensor should be in shape of [1]."
);
AddAttr
<
std
::
string
>
(
"reduction"
,
"The reduction type to apply to the output, available types "
"are 'none' | 'batchmean' | 'mean' | 'sum', 'none' for no "
"reduction, 'batchmean' for the sum of output divided by "
"batch size, 'mean' for the average valud of all output, "
"'sum' for the sum of the output."
)
.
SetDefault
(
"mean"
);
AddComment
(
R"DOC(
This operator calculates the Kullback-Leibler divergence loss
between Input(X) and Input(Target).
)DOC"
);
}
};
class
KLDivLossOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Target"
),
"Input(Target) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Loss"
)),
"Input(Loss@GRAD) should not be null"
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
if
(
ctx
->
HasOutput
(
framework
::
GradVarName
(
"X"
)))
{
ctx
->
SetOutputDim
(
framework
::
GradVarName
(
"X"
),
dim_x
);
}
}
protected:
framework
::
OpKernelType
GetExpectedKernelType
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
return
framework
::
OpKernelType
(
ctx
.
Input
<
Tensor
>
(
"X"
)
->
type
(),
ctx
.
GetPlace
());
}
};
class
KLDivLossOpGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
op
=
new
framework
::
OpDesc
();
op
->
SetType
(
"kldiv_loss_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"Target"
,
Input
(
"Target"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
OutputGrad
(
"Loss"
));
op
->
SetAttrMap
(
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
kldiv_loss
,
ops
::
KLDivLossOp
,
ops
::
KLDivLossOpMaker
,
ops
::
KLDivLossOpGradMaker
);
REGISTER_OPERATOR
(
kldiv_loss_grad
,
ops
::
KLDivLossOpGrad
);
REGISTER_OP_CPU_KERNEL
(
kldiv_loss
,
ops
::
KLDivLossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
KLDivLossKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
kldiv_loss_grad
,
ops
::
KLDivLossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
KLDivLossGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/kldiv_loss_op.cu
0 → 100644
浏览文件 @
3e3a983a
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/kldiv_loss_op.h"
namespace
ops
=
paddle
::
operators
;
namespace
plat
=
paddle
::
platform
;
REGISTER_OP_CUDA_KERNEL
(
sum
,
ops
::
KLDivLossKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
KLDivLossKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
sum_grad
,
ops
::
KLDivLossGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
KLDivLossGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/kldiv_loss_op.h
0 → 100644
浏览文件 @
3e3a983a
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenVector
=
framework
::
EigenVector
<
T
,
MajorType
,
IndexType
>
;
using
Array1
=
Eigen
::
DSizes
<
int64_t
,
1
>
;
template
<
typename
T
>
struct
KLDivLossForward
{
HOSTDEVICE
KLDivLossForward
()
{}
HOSTDEVICE
T
operator
()(
const
T
&
target
,
const
T
&
input
)
const
{
if
(
target
<
0
)
{
return
0
;
}
else
{
return
target
*
(
std
::
log
(
target
)
-
input
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
KLDivLossKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
target
=
ctx
.
Input
<
Tensor
>
(
"Target"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
reduction
=
ctx
.
Attr
<
std
::
string
>
(
"reduction"
);
const
int
n
=
input
->
dims
()[
0
];
loss
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
input_t
=
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
target_t
=
EigenVector
<
T
>::
Flatten
(
*
target
);
auto
loss_t
=
EigenVector
<
T
>::
Flatten
(
*
loss
);
// auto target_mask = (target_t > target_t.constant(0)).template cast<T>();
// auto output = (target_t * (target_t.log() - input_t)) * target_mask;
auto
output
=
target_t
.
binaryExpr
(
input_t
,
KLDivLossForward
<
T
>
());
if
(
"none"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
;
}
else
if
(
"batchmean"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
.
sum
()
/
static_cast
<
T
>
(
n
);
}
else
if
(
"mean"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
.
mean
();
}
else
if
(
"sum"
==
reduction
)
{
loss_t
.
device
(
place
)
=
output
.
sum
();
}
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
KLDivLossGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
&
place
=
*
ctx
.
template
device_context
<
DeviceContext
>().
eigen_device
();
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
target
=
ctx
.
Input
<
Tensor
>
(
"Target"
);
auto
reduction
=
ctx
.
Attr
<
std
::
string
>
(
"reduction"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
loss_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
int
n
=
input
->
dims
()[
0
];
const
int
numel
=
input
->
numel
();
const
int
expand
=
numel
/
loss_grad
->
numel
();
input_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
auto
input_t
=
EigenVector
<
T
>::
Flatten
(
*
input
);
auto
target_t
=
EigenVector
<
T
>::
Flatten
(
*
target
);
auto
input_grad_t
=
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
auto
loss_grad_t
=
EigenVector
<
T
>::
Flatten
(
*
loss_grad
);
auto
target_mask
=
(
target_t
>
target_t
.
constant
(
0
)).
template
cast
<
T
>();
auto
loss_grad_expand
=
loss_grad_t
.
broadcast
(
Array1
(
expand
));
input_grad_t
.
device
(
place
)
=
target_t
*
target_t
.
constant
(
-
1.0
)
*
loss_grad_expand
*
target_mask
;
// if (reduction == "none") {
// input_grad_t.device(place) =
// target_t * loss_grad_t * target_t.constant(-1.0);
// } else {
// auto loss_grad_expand = loss_grad_t.broadcast(Array1(numel));
// input_grad_t.device(place) =
// target_t * loss_grad_expand * target_t.constant(-1.0);
// }
if
(
"mean"
==
reduction
)
{
input_grad_t
.
device
(
place
)
=
input_grad_t
/
static_cast
<
T
>
(
numel
);
}
else
if
(
"batchmean"
==
reduction
)
{
input_grad_t
.
device
(
place
)
=
input_grad_t
/
static_cast
<
T
>
(
n
);
}
}
};
}
// namespace operators
}
// namespace paddle
python/paddle/fluid/tests/unittests/test_kldiv_loss_op.py
0 → 100644
浏览文件 @
3e3a983a
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
division
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
def
kldiv_loss
(
x
,
target
,
reduction
):
output
=
target
*
(
np
.
log
(
target
)
-
x
)
loss
=
np
.
where
(
target
>
0
,
output
,
np
.
zeros_like
(
x
))
if
reduction
==
"batchmean"
:
return
loss
.
sum
()
/
x
.
shape
[
0
]
if
reduction
==
"mean"
:
return
loss
.
mean
()
if
reduction
==
"sum"
:
return
loss
.
sum
()
return
loss
class
TestKLDivLossOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
'kldiv_loss'
x
=
np
.
random
.
uniform
(
-
10
,
10
,
self
.
x_shape
).
astype
(
'float32'
)
target
=
np
.
random
.
uniform
(
-
10
,
10
,
self
.
x_shape
).
astype
(
'float32'
)
self
.
attrs
=
{
"reduction"
:
self
.
reduction
}
self
.
inputs
=
{
'X'
:
x
,
'Target'
:
target
,
}
loss
=
kldiv_loss
(
x
,
target
,
self
.
reduction
)
self
.
outputs
=
{
'Loss'
:
loss
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
self
.
check_grad
(
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"Target"
]),
max_relative_error
=
0.1
)
def
initTestCase
(
self
):
self
.
x_shape
=
(
2
,
3
,
5
,
5
)
self
.
reduction
=
'batchmean'
# class TestKLDivLossOp2(TestKLDivLossOp):
# def initTestCase(self):
# self.x_shape = (3, 7, 7)
# self.reduction = 'batchmean'
#
#
# class TestKLDivLossOp3(TestKLDivLossOp):
# def initTestCase(self):
# self.x_shape = (2, 3, 5, 7, 9)
# self.reduction = 'mean'
#
#
# class TestKLDivLossOp4(TestKLDivLossOp):
# def initTestCase(self):
# self.x_shape = (5, 7)
# self.reduction = 'sum'
if
__name__
==
"__main__"
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录