Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
3c8b6511
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3c8b6511
编写于
9月 29, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add vsigmoid avx implementations and unit test
上级
55e44761
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
173 addition
and
0 deletion
+173
-0
paddle/fluid/operators/math/jit_kernel_exp.cc
paddle/fluid/operators/math/jit_kernel_exp.cc
+106
-0
paddle/fluid/operators/math/jit_kernel_test.cc
paddle/fluid/operators/math/jit_kernel_test.cc
+67
-0
未找到文件。
paddle/fluid/operators/math/jit_kernel_exp.cc
浏览文件 @
3c8b6511
...
...
@@ -132,6 +132,111 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
std
::
shared_ptr
<
const
VExpKernel
<
T
>>
vexp_
;
};
#define INTRI_SIGMOID(tmp, min, max) \
tmp = _mm256_max_ps(tmp, min); \
tmp = _mm256_min_ps(tmp, max); \
tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \
tmp = detail::Exp(tmp); \
tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp)
#define INTRI8_FLOAT(isa) \
template <> \
void VSigmoidKernelImpl<float, isa, kEQ8>::Compute( \
const int n, const float* x, float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp = _mm256_loadu_ps(x); \
INTRI_SIGMOID(tmp, min, max); \
_mm256_storeu_ps(y, tmp); \
}
#define INTRI16_FLOAT(isa) \
template <> \
void VSigmoidKernelImpl<float, isa, kEQ16>::Compute( \
const int n, const float* x, float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \
INTRI_SIGMOID(tmp0, min, max); \
INTRI_SIGMOID(tmp1, min, max); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \
}
#define INTRI_GT8LT16_FLOAT(isa) \
template <> \
void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute( \
const int n, const float* x, float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp = _mm256_loadu_ps(x); \
INTRI_SIGMOID(tmp, min, max); \
_mm256_storeu_ps(y, tmp); \
const float min_ = SIGMOID_THRESHOLD_MIN; \
const float max_ = SIGMOID_THRESHOLD_MAX; \
for (int i = AVX_FLOAT_BLOCK; i < n; ++i) { \
y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
y[i] = 0.f - y[i]; \
} \
vexp_->Compute(n - AVX_FLOAT_BLOCK, y + AVX_FLOAT_BLOCK, \
y + AVX_FLOAT_BLOCK); \
for (int i = AVX_FLOAT_BLOCK; i < n; ++i) { \
y[i] = 1.f / (1.f + y[i]); \
} \
}
#define INTRI_GT16_FLOAT(isa) \
template <> \
void VSigmoidKernelImpl<float, isa, kGT16>::Compute( \
const int n, const float* x, float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
const int rest = n % AVX_FLOAT_BLOCK; \
const int end = n - rest; \
for (int i = 0; i < end; i += AVX_FLOAT_BLOCK) { \
__m256 tmp = _mm256_loadu_ps(x + i); \
INTRI_SIGMOID(tmp, min, max); \
_mm256_storeu_ps(y + i, tmp); \
} \
const float min_ = SIGMOID_THRESHOLD_MIN; \
const float max_ = SIGMOID_THRESHOLD_MAX; \
for (int i = end; i < n; ++i) { \
y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
y[i] = 0.f - y[i]; \
} \
vexp_->Compute(rest, y + end, y + end); \
for (int i = end; i < n; ++i) { \
y[i] = 1.f / (1.f + y[i]); \
} \
}
#ifdef __AVX__
INTRI8_FLOAT
(
jit
::
avx
);
INTRI16_FLOAT
(
jit
::
avx
);
INTRI_GT8LT16_FLOAT
(
jit
::
avx
);
INTRI_GT16_FLOAT
(
jit
::
avx
);
#endif
#ifdef __AVX2__
INTRI8_FLOAT
(
jit
::
avx2
);
INTRI16_FLOAT
(
jit
::
avx2
);
INTRI_GT8LT16_FLOAT
(
jit
::
avx2
);
INTRI_GT16_FLOAT
(
jit
::
avx2
);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT
(
jit
::
avx512f
);
INTRI16_FLOAT
(
jit
::
avx512f
);
INTRI_GT8LT16_FLOAT
(
jit
::
avx512f
);
INTRI_GT16_FLOAT
(
jit
::
avx512f
);
#endif
// TODO(TJ): eq16 test and complete avx512
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
#define JITKERNEL_NEW_ACT_IMPL(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(d))
...
...
@@ -140,6 +245,7 @@ REGISTER_JITKERNEL_ARGS(vsigmoid, VSigmoidKernel, JITKERNEL_DECLARE,
JITKERNEL_KEY
,
JITKERNEL_NEW_ACT_IMPL
);
#undef JITKERNEL_NEW_ACT_IMPL
}
// namespace jitkernel
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/operators/math/jit_kernel_test.cc
浏览文件 @
3c8b6511
...
...
@@ -104,6 +104,73 @@ TEST(JitKernel, vexp) {
}
}
inline
float
_sigmoid
(
float
x
)
{
const
float
min
=
SIGMOID_THRESHOLD_MIN
;
const
float
max
=
SIGMOID_THRESHOLD_MAX
;
float
tmp
=
(
x
<
min
)
?
min
:
((
x
>
max
)
?
max
:
x
);
return
1.
f
/
(
1.
f
+
std
::
exp
(
-
tmp
));
}
void
vsigmoid_ref
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
_sigmoid
(
x
[
i
]);
}
}
void
vsigmoid_better
(
const
std
::
shared_ptr
<
const
paddle
::
operators
::
math
::
jitkernel
::
VExpKernel
<
float
>>&
vexp
,
const
int
n
,
const
float
*
x
,
float
*
y
)
{
const
float
min
=
SIGMOID_THRESHOLD_MIN
;
const
float
max
=
SIGMOID_THRESHOLD_MAX
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
(
x
[
i
]
<
min
)
?
min
:
((
x
[
i
]
>
max
)
?
max
:
x
[
i
]);
y
[
i
]
=
0.
f
-
y
[
i
];
}
vexp
->
Compute
(
n
,
y
,
y
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
1.
f
/
(
1.
f
+
y
[
i
]);
}
}
TEST
(
JitKernel
,
vsigmoid
)
{
namespace
jit
=
paddle
::
operators
::
math
::
jitkernel
;
for
(
int
d
:
{
7
,
8
,
15
,
16
,
30
,
128
})
{
std
::
vector
<
float
>
x
(
d
);
std
::
vector
<
float
>
zref
(
d
),
ztgt
(
d
);
RandomVec
<
float
>
(
d
,
x
.
data
(),
-
2.
f
,
2.
f
);
const
auto
&
ker
=
jit
::
KernelPool
::
Instance
().
template
Get
<
jit
::
VSigmoidKernel
<
float
>
>
(
d
);
const
auto
&
vexp
=
jit
::
KernelPool
::
Instance
().
template
Get
<
jit
::
VExpKernel
<
float
>
>
(
d
);
const
float
*
x_data
=
x
.
data
();
float
*
ztgt_data
=
ztgt
.
data
();
float
*
zref_data
=
zref
.
data
();
auto
tmkls
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
vsigmoid_better
(
vexp
,
d
,
x_data
,
zref_data
);
}
auto
tmkle
=
GetCurrentUS
();
auto
trefs
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
vsigmoid_ref
(
d
,
x_data
,
zref_data
);
}
auto
trefe
=
GetCurrentUS
();
auto
ttgts
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ker
->
Compute
(
d
,
x_data
,
ztgt_data
);
}
auto
ttgte
=
GetCurrentUS
();
VLOG
(
3
)
<<
"Vec size "
<<
d
<<
": refer takes: "
<<
(
trefe
-
trefs
)
/
repeat
<<
" us, better(jit exp) takes: "
<<
(
tmkle
-
tmkls
)
/
repeat
<<
" us, tgt takes: "
<<
(
ttgte
-
ttgts
)
/
repeat
;
for
(
int
i
=
0
;
i
<
d
;
++
i
)
{
EXPECT_NEAR
(
ztgt_data
[
i
],
zref_data
[
i
],
1e-3
);
}
}
}
void
vscal_ref
(
const
int
n
,
const
float
a
,
const
float
*
x
,
float
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
a
*
x
[
i
];
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录