提交 3c8b6511 编写于 作者: T tensor-tang

add vsigmoid avx implementations and unit test

上级 55e44761
...@@ -132,6 +132,111 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> { ...@@ -132,6 +132,111 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
std::shared_ptr<const VExpKernel<T>> vexp_; std::shared_ptr<const VExpKernel<T>> vexp_;
}; };
#define INTRI_SIGMOID(tmp, min, max) \
tmp = _mm256_max_ps(tmp, min); \
tmp = _mm256_min_ps(tmp, max); \
tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \
tmp = detail::Exp(tmp); \
tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp)
#define INTRI8_FLOAT(isa) \
template <> \
void VSigmoidKernelImpl<float, isa, kEQ8>::Compute( \
const int n, const float* x, float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp = _mm256_loadu_ps(x); \
INTRI_SIGMOID(tmp, min, max); \
_mm256_storeu_ps(y, tmp); \
}
#define INTRI16_FLOAT(isa) \
template <> \
void VSigmoidKernelImpl<float, isa, kEQ16>::Compute( \
const int n, const float* x, float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \
INTRI_SIGMOID(tmp0, min, max); \
INTRI_SIGMOID(tmp1, min, max); \
_mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \
}
#define INTRI_GT8LT16_FLOAT(isa) \
template <> \
void VSigmoidKernelImpl<float, isa, kGT8LT16>::Compute( \
const int n, const float* x, float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp = _mm256_loadu_ps(x); \
INTRI_SIGMOID(tmp, min, max); \
_mm256_storeu_ps(y, tmp); \
const float min_ = SIGMOID_THRESHOLD_MIN; \
const float max_ = SIGMOID_THRESHOLD_MAX; \
for (int i = AVX_FLOAT_BLOCK; i < n; ++i) { \
y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
y[i] = 0.f - y[i]; \
} \
vexp_->Compute(n - AVX_FLOAT_BLOCK, y + AVX_FLOAT_BLOCK, \
y + AVX_FLOAT_BLOCK); \
for (int i = AVX_FLOAT_BLOCK; i < n; ++i) { \
y[i] = 1.f / (1.f + y[i]); \
} \
}
#define INTRI_GT16_FLOAT(isa) \
template <> \
void VSigmoidKernelImpl<float, isa, kGT16>::Compute( \
const int n, const float* x, float* y) const { \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
const int rest = n % AVX_FLOAT_BLOCK; \
const int end = n - rest; \
for (int i = 0; i < end; i += AVX_FLOAT_BLOCK) { \
__m256 tmp = _mm256_loadu_ps(x + i); \
INTRI_SIGMOID(tmp, min, max); \
_mm256_storeu_ps(y + i, tmp); \
} \
const float min_ = SIGMOID_THRESHOLD_MIN; \
const float max_ = SIGMOID_THRESHOLD_MAX; \
for (int i = end; i < n; ++i) { \
y[i] = (x[i] < min_) ? min_ : ((x[i] > max_) ? max_ : x[i]); \
y[i] = 0.f - y[i]; \
} \
vexp_->Compute(rest, y + end, y + end); \
for (int i = end; i < n; ++i) { \
y[i] = 1.f / (1.f + y[i]); \
} \
}
#ifdef __AVX__
INTRI8_FLOAT(jit::avx);
INTRI16_FLOAT(jit::avx);
INTRI_GT8LT16_FLOAT(jit::avx);
INTRI_GT16_FLOAT(jit::avx);
#endif
#ifdef __AVX2__
INTRI8_FLOAT(jit::avx2);
INTRI16_FLOAT(jit::avx2);
INTRI_GT8LT16_FLOAT(jit::avx2);
INTRI_GT16_FLOAT(jit::avx2);
#endif
#ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f);
INTRI16_FLOAT(jit::avx512f);
INTRI_GT8LT16_FLOAT(jit::avx512f);
INTRI_GT16_FLOAT(jit::avx512f);
#endif
// TODO(TJ): eq16 test and complete avx512
#undef INTRI8_FLOAT
#undef INTRI16_FLOAT
#undef INTRI_GT8LT16_FLOAT
#undef INTRI_GT16_FLOAT
#define JITKERNEL_NEW_ACT_IMPL(ker, dtype, isa, k) \ #define JITKERNEL_NEW_ACT_IMPL(ker, dtype, isa, k) \
p = std::dynamic_pointer_cast<ker<dtype>>( \ p = std::dynamic_pointer_cast<ker<dtype>>( \
std::make_shared<ker##Impl<dtype, isa, k>>(d)) std::make_shared<ker##Impl<dtype, isa, k>>(d))
...@@ -140,6 +245,7 @@ REGISTER_JITKERNEL_ARGS(vsigmoid, VSigmoidKernel, JITKERNEL_DECLARE, ...@@ -140,6 +245,7 @@ REGISTER_JITKERNEL_ARGS(vsigmoid, VSigmoidKernel, JITKERNEL_DECLARE,
JITKERNEL_KEY, JITKERNEL_NEW_ACT_IMPL); JITKERNEL_KEY, JITKERNEL_NEW_ACT_IMPL);
#undef JITKERNEL_NEW_ACT_IMPL #undef JITKERNEL_NEW_ACT_IMPL
} // namespace jitkernel } // namespace jitkernel
} // namespace math } // namespace math
} // namespace operators } // namespace operators
......
...@@ -104,6 +104,73 @@ TEST(JitKernel, vexp) { ...@@ -104,6 +104,73 @@ TEST(JitKernel, vexp) {
} }
} }
inline float _sigmoid(float x) {
const float min = SIGMOID_THRESHOLD_MIN;
const float max = SIGMOID_THRESHOLD_MAX;
float tmp = (x < min) ? min : ((x > max) ? max : x);
return 1.f / (1.f + std::exp(-tmp));
}
void vsigmoid_ref(const int n, const float* x, float* y) {
for (int i = 0; i < n; ++i) {
y[i] = _sigmoid(x[i]);
}
}
void vsigmoid_better(
const std::shared_ptr<
const paddle::operators::math::jitkernel::VExpKernel<float>>& vexp,
const int n, const float* x, float* y) {
const float min = SIGMOID_THRESHOLD_MIN;
const float max = SIGMOID_THRESHOLD_MAX;
for (int i = 0; i < n; ++i) {
y[i] = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
y[i] = 0.f - y[i];
}
vexp->Compute(n, y, y);
for (int i = 0; i < n; ++i) {
y[i] = 1.f / (1.f + y[i]);
}
}
TEST(JitKernel, vsigmoid) {
namespace jit = paddle::operators::math::jitkernel;
for (int d : {7, 8, 15, 16, 30, 128}) {
std::vector<float> x(d);
std::vector<float> zref(d), ztgt(d);
RandomVec<float>(d, x.data(), -2.f, 2.f);
const auto& ker =
jit::KernelPool::Instance().template Get<jit::VSigmoidKernel<float>>(d);
const auto& vexp =
jit::KernelPool::Instance().template Get<jit::VExpKernel<float>>(d);
const float* x_data = x.data();
float* ztgt_data = ztgt.data();
float* zref_data = zref.data();
auto tmkls = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vsigmoid_better(vexp, d, x_data, zref_data);
}
auto tmkle = GetCurrentUS();
auto trefs = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
vsigmoid_ref(d, x_data, zref_data);
}
auto trefe = GetCurrentUS();
auto ttgts = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ker->Compute(d, x_data, ztgt_data);
}
auto ttgte = GetCurrentUS();
VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
<< " us, better(jit exp) takes: " << (tmkle - tmkls) / repeat
<< " us, tgt takes: " << (ttgte - ttgts) / repeat;
for (int i = 0; i < d; ++i) {
EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
}
}
}
void vscal_ref(const int n, const float a, const float* x, float* y) { void vscal_ref(const int n, const float a, const float* x, float* y) {
for (int i = 0; i < n; ++i) { for (int i = 0; i < n; ++i) {
y[i] = a * x[i]; y[i] = a * x[i];
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册