diff --git a/README_en.md b/README_en.md
index 3697901101602bf5961ef0d8baa62697ecc142cc..b92b506311bffe1f5fc373552182f0beceecee04 100644
--- a/README_en.md
+++ b/README_en.md
@@ -306,7 +306,7 @@ Contributions are highly welcomed and we would really appreciate your feedback!!
- Thanks [FL77N](https://github.com/FL77N/) for contributing the code of `Sparse-RCNN` model.
- Thanks [Chen-Song](https://github.com/Chen-Song) for contributing the code of `Swin Faster-RCNN` model.
- Thanks [yangyudong](https://github.com/yangyudong2020), [hchhtc123](https://github.com/hchhtc123) for contributing PP-Tracking GUI interface.
-- 感谢[Shigure19](https://github.com/Shigure19) for contributing PP-TinyPose fitness APP.
+- Thanks [Shigure19](https://github.com/Shigure19) for contributing PP-TinyPose fitness APP.
## Citation
diff --git a/deploy/pptracking/README.md b/deploy/pptracking/README.md
deleted file mode 100644
index c6dca6fc4f016ae2df0a7fe51ee06cfbc4e4ec79..0000000000000000000000000000000000000000
--- a/deploy/pptracking/README.md
+++ /dev/null
@@ -1,93 +0,0 @@
-# 实时多目标跟踪系统PP-Tracking
-
-PP-Tracking是基于PaddlePaddle深度学习框架的业界首个开源的实时多目标跟踪系统,具有模型丰富、应用广泛和部署高效三大优势。
-PP-Tracking支持单镜头跟踪(MOT)和跨镜头跟踪(MTMCT)两种模式,针对实际业务的难点和痛点,提供了行人跟踪、车辆跟踪、多类别跟踪、小目标跟踪、流量统计以及跨镜头跟踪等各种多目标跟踪功能和应用,部署方式支持API调用和GUI可视化界面,部署语言支持Python和C++,部署平台环境支持Linux、NVIDIA Jetson等。
-
-
-
-
-
-
-
-
- 视频来源:VisDrone和BDD100K公开数据集
-
-
-
-## 一、快速开始
-
-### AI Studio公开项目案例
-PP-Tracking 提供了AI Studio公开项目案例,教程请参考[PP-Tracking之手把手玩转多目标跟踪](https://aistudio.baidu.com/aistudio/projectdetail/3022582)。
-
-### Python端预测部署
-PP-Tracking 支持Python预测部署,教程请参考[PP-Tracking Python部署文档](python/README.md)。
-
-### C++端预测部署
-PP-Tracking 支持C++预测部署,教程请参考[PP-Tracking C++部署文档](cpp/README.md)。
-
-### GUI可视化界面预测部署
-PP-Tracking 提供了简洁的GUI可视化界面,教程请参考[PP-Tracking可视化界面试用版使用文档](https://github.com/yangyudong2020/PP-Tracking_GUi)。
-
-(感谢@[yangyudong2020](https://github.com/yangyudong2020)、@[hchhtc123](https://github.com/hchhtc123)对飞桨开源的贡献)
-
-
-## 二、算法介绍
-
-PP-Tracking 支持单镜头跟踪(MOT)和跨镜头跟踪(MTMCT)两种模式。
-- 单镜头跟踪同时支持**FairMOT**和**DeepSORT**两种多目标跟踪算法,跨镜头跟踪只支持**DeepSORT**算法。
-- 单镜头跟踪的功能包括行人跟踪、车辆跟踪、多类别跟踪、小目标跟踪以及流量统计,模型主要是基于FairMOT进行优化,实现了实时跟踪的效果,同时基于不同应用场景提供了针对性的预训练模型。
-- DeepSORT算法方案(包括跨镜头跟踪用到的DeepSORT),选用的检测器是PaddleDetection自研的高性能检测模型[PP-YOLOv2](../../ppyolo/)和轻量级特色检测模型[PP-PicoDet](../../picodet/),选用的ReID模型是PaddleClas自研的超轻量骨干网络模型[PP-LCNet](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models/PP-LCNet.md)
-
-PP-Tracking中提供的多场景预训练模型以及导出后的预测部署模型如下:
-
-| 场景 | 数据集 | 精度(MOTA) | 预测速度(FPS) | 配置文件 | 模型权重 | 预测部署模型 |
-| :---------: |:--------------- | :-------: | :------: | :------:|:-----: | :--------: |
-| 行人跟踪 | MOT17 | 65.3 | 23.9 | [配置文件](../../configs/mot/fairmot/fairmot_hrnetv2_w18_dlafpn_30e_576x320.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320.tar) |
-| 行人小目标跟踪 | VisDrone-pedestrian | 40.5 | 8.35 | [配置文件](../../configs/mot/pedestrian/fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian.tar) |
-| 车辆跟踪 | BDD100k-vehicle | 32.6 | 24.3 | [配置文件](../../configs/mot/vehicle/fairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100kmot_vehicle.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100kmot_vehicle.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100kmot_vehicle.tar) |
-| 车辆小目标跟踪 | VisDrone-vehicle | 39.8 | 22.8 | [配置文件](../../configs/mot/vehicle/fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_vehicle.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_vehicle.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_vehicle.tar)
-| 多类别跟踪 | BDD100k | - | 12.5 | [配置文件](../../configs/mot/mcfairmot/mcfairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100k_mcmot.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100k_mcmot.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100k_mcmot.tar) |
-| 多类别小目标跟踪 | VisDrone | 20.4 | 6.74 | [配置文件](../../configs/mot/mcfairmot/mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone.tar) |
-
-**注意:**
-1. 模型预测速度的设备为**NVIDIA Jetson Xavier NX**,速度为**TensorRT FP16**速度,测试环境为CUDA 10.2、JETPACK 4.5.1、TensorRT 7.1。
-2. 模型权重是指使用PaddleDetection训练完直接保存的权重,更多跟踪模型权重请参考[多目标跟踪模型库](../../configs/mot/README.md#模型库)去下载,也可按照相应模型配置文件去训练。
-3. 预测部署模型是指导出后的前向参数的模型,因为PP-Tracking项目的部署过程中只需要前向参数,可根据[多目标跟踪模型库](../../configs/mot/README.md#模型库)去下载并导出,也可按照相应模型配置文件去训练并导出。导出后的模型文件夹应包括`infer_cfg.yml`、`model.pdiparams`、`model.pdiparams.info`和`model.pdmodel`四个文件,一般会将它们以tar格式打包。
-
-
-## 引用
-```
-@ARTICLE{9573394,
- author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
- journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
- title={Detection and Tracking Meet Drones Challenge},
- year={2021},
- volume={},
- number={},
- pages={1-1},
- doi={10.1109/TPAMI.2021.3119563}
-}
-@InProceedings{bdd100k,
- author = {Yu, Fisher and Chen, Haofeng and Wang, Xin and Xian, Wenqi and Chen,
- Yingying and Liu, Fangchen and Madhavan, Vashisht and Darrell, Trevor},
- title = {BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning},
- booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
- month = {June},
- year = {2020}
-}
-@article{zhang2020fair,
- title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
- author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
- journal={arXiv preprint arXiv:2004.01888},
- year={2020}
-}
-@inproceedings{Wojke2018deep,
- title={Deep Cosine Metric Learning for Person Re-identification},
- author={Wojke, Nicolai and Bewley, Alex},
- booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)},
- year={2018},
- pages={748--756},
- organization={IEEE},
- doi={10.1109/WACV.2018.00087}
-}
-```
diff --git a/deploy/pptracking/README.md b/deploy/pptracking/README.md
new file mode 120000
index 0000000000000000000000000000000000000000..13c4f964bb9063f28d6e08dfb8c6b828a81d2536
--- /dev/null
+++ b/deploy/pptracking/README.md
@@ -0,0 +1 @@
+README_en.md
\ No newline at end of file
diff --git a/deploy/pptracking/README_cn.md b/deploy/pptracking/README_cn.md
new file mode 100644
index 0000000000000000000000000000000000000000..4330e114205598e41282c9c937c4433e54487a81
--- /dev/null
+++ b/deploy/pptracking/README_cn.md
@@ -0,0 +1,93 @@
+[English](README_en.md) | 简体中文
+
+# 实时多目标跟踪系统PP-Tracking
+
+PP-Tracking是基于PaddlePaddle深度学习框架的业界首个开源的实时多目标跟踪系统,具有模型丰富、应用广泛和部署高效三大优势。
+PP-Tracking支持单镜头跟踪(MOT)和跨镜头跟踪(MTMCT)两种模式,针对实际业务的难点和痛点,提供了行人跟踪、车辆跟踪、多类别跟踪、小目标跟踪、流量统计以及跨镜头跟踪等各种多目标跟踪功能和应用,部署方式支持API调用和GUI可视化界面,部署语言支持Python和C++,部署平台环境支持Linux、NVIDIA Jetson等。
+
+
+
+
+
+
+
+
+ 视频来源:VisDrone和BDD100K公开数据集
+
+
+
+## 一、快速开始
+
+### AI Studio公开项目案例
+PP-Tracking 提供了AI Studio公开项目案例,教程请参考[PP-Tracking之手把手玩转多目标跟踪](https://aistudio.baidu.com/aistudio/projectdetail/3022582)。
+
+### Python端预测部署
+PP-Tracking 支持Python预测部署,教程请参考[PP-Tracking Python部署文档](python/README.md)。
+
+### C++端预测部署
+PP-Tracking 支持C++预测部署,教程请参考[PP-Tracking C++部署文档](cpp/README.md)。
+
+### GUI可视化界面预测部署
+PP-Tracking 提供了简洁的GUI可视化界面,教程请参考[PP-Tracking可视化界面试用版使用文档](https://github.com/yangyudong2020/PP-Tracking_GUi)。
+
+
+## 二、算法介绍
+
+PP-Tracking 支持单镜头跟踪(MOT)和跨镜头跟踪(MTMCT)两种模式。
+- 单镜头跟踪同时支持**FairMOT**和**DeepSORT**两种多目标跟踪算法,跨镜头跟踪只支持**DeepSORT**算法。
+- 单镜头跟踪的功能包括行人跟踪、车辆跟踪、多类别跟踪、小目标跟踪以及流量统计,模型主要是基于FairMOT进行优化,实现了实时跟踪的效果,同时基于不同应用场景提供了针对性的预训练模型。
+- DeepSORT算法方案(包括跨镜头跟踪用到的DeepSORT),选用的检测器是PaddleDetection自研的高性能检测模型[PP-YOLOv2](../../ppyolo/)和轻量级特色检测模型[PP-PicoDet](../../picodet/),选用的ReID模型是PaddleClas自研的超轻量骨干网络模型[PP-LCNet](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.3/docs/zh_CN/models/PP-LCNet.md)
+
+PP-Tracking中提供的多场景预训练模型以及导出后的预测部署模型如下:
+
+| 场景 | 数据集 | 精度(MOTA) | 预测速度(FPS) | 配置文件 | 模型权重 | 预测部署模型 |
+| :---------: |:--------------- | :-------: | :------: | :------:|:-----: | :--------: |
+| 行人跟踪 | MOT17 | 65.3 | 23.9 | [配置文件](../../configs/mot/fairmot/fairmot_hrnetv2_w18_dlafpn_30e_576x320.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320.tar) |
+| 行人小目标跟踪 | VisDrone-pedestrian | 40.5 | 8.35 | [配置文件](../../configs/mot/pedestrian/fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone_pedestrian.tar) |
+| 车辆跟踪 | BDD100k-vehicle | 32.6 | 24.3 | [配置文件](../../configs/mot/vehicle/fairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100kmot_vehicle.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100kmot_vehicle.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100kmot_vehicle.tar) |
+| 车辆小目标跟踪 | VisDrone-vehicle | 39.8 | 22.8 | [配置文件](../../configs/mot/vehicle/fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_vehicle.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_vehicle.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/fairmot_hrnetv2_w18_dlafpn_30e_576x320_visdrone_vehicle.tar)
+| 多类别跟踪 | BDD100k | - | 12.5 | [配置文件](../../configs/mot/mcfairmot/mcfairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100k_mcmot.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100k_mcmot.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_576x320_bdd100k_mcmot.tar) |
+| 多类别小目标跟踪 | VisDrone | 20.4 | 6.74 | [配置文件](../../configs/mot/mcfairmot/mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone.yml) | [下载链接](https://paddledet.bj.bcebos.com/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone.pdparams) | [下载链接](https://bj.bcebos.com/v1/paddledet/models/mot/mcfairmot_hrnetv2_w18_dlafpn_30e_1088x608_visdrone.tar) |
+
+**注意:**
+1. 模型预测速度的设备为**NVIDIA Jetson Xavier NX**,速度为**TensorRT FP16**速度,测试环境为CUDA 10.2、JETPACK 4.5.1、TensorRT 7.1。
+2. 模型权重是指使用PaddleDetection训练完直接保存的权重,更多跟踪模型权重请参考[多目标跟踪模型库](../../configs/mot/README.md#模型库)去下载,也可按照相应模型配置文件去训练。
+3. 预测部署模型是指导出后的前向参数的模型,因为PP-Tracking项目的部署过程中只需要前向参数,可根据[多目标跟踪模型库](../../configs/mot/README.md#模型库)去下载并导出,也可按照相应模型配置文件去训练并导出。导出后的模型文件夹应包括`infer_cfg.yml`、`model.pdiparams`、`model.pdiparams.info`和`model.pdmodel`四个文件,一般会将它们以tar格式打包。
+
+
+## 引用
+```
+@ARTICLE{9573394,
+ author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
+ journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
+ title={Detection and Tracking Meet Drones Challenge},
+ year={2021},
+ volume={},
+ number={},
+ pages={1-1},
+ doi={10.1109/TPAMI.2021.3119563}
+}
+@InProceedings{bdd100k,
+ author = {Yu, Fisher and Chen, Haofeng and Wang, Xin and Xian, Wenqi and Chen,
+ Yingying and Liu, Fangchen and Madhavan, Vashisht and Darrell, Trevor},
+ title = {BDD100K: A Diverse Driving Dataset for Heterogeneous Multitask Learning},
+ booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
+ month = {June},
+ year = {2020}
+}
+@article{zhang2020fair,
+ title={FairMOT: On the Fairness of Detection and Re-Identification in Multiple Object Tracking},
+ author={Zhang, Yifu and Wang, Chunyu and Wang, Xinggang and Zeng, Wenjun and Liu, Wenyu},
+ journal={arXiv preprint arXiv:2004.01888},
+ year={2020}
+}
+@inproceedings{Wojke2018deep,
+ title={Deep Cosine Metric Learning for Person Re-identification},
+ author={Wojke, Nicolai and Bewley, Alex},
+ booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)},
+ year={2018},
+ pages={748--756},
+ organization={IEEE},
+ doi={10.1109/WACV.2018.00087}
+}
+```
diff --git a/deploy/pptracking/README_en.md b/deploy/pptracking/README_en.md
index 4d890a3c8c6619285c515cc5a942bb05327048fe..789035dd8f48e8a742cdab8a4148c66e8f1d4422 100644
--- a/deploy/pptracking/README_en.md
+++ b/deploy/pptracking/README_en.md
@@ -1,3 +1,5 @@
+English | [简体中文](README_cn.md)
+
# Real time Multi-Object Tracking system PP-Tracking
PP-Tracking is the first open source real-time Multi-Object Tracking system, and it is based on PaddlePaddle deep learning framework. It has rich models, wide application and high efficiency deployment.
@@ -59,8 +61,8 @@ PP-Tracking provids multi-scenario pre-training models and the exported models f
```
@ARTICLE{9573394,
author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin},
- journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
- title={Detection and Tracking Meet Drones Challenge},
+ journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
+ title={Detection and Tracking Meet Drones Challenge},
year={2021},
volume={},
number={},