提交 376737d8 编写于 作者: Y Yu Yang

Follow comments

上级 d7f0eb6b
......@@ -12,25 +12,55 @@
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/uniform_random_op.h"
#include <random>
#include <type_traits>
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
namespace paddle {
namespace operators {
class RandomOp : public OperatorWithKernel {
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
class CPUUniformRandomKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* tensor = context.Output<framework::Tensor>(0);
T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed =
static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
std::minstd_rand engine;
if (seed == 0) {
seed = std::random_device()();
}
engine.seed(seed);
std::uniform_real_distribution<T> dist(
static_cast<T>(context.op_.GetAttr<float>("min")),
static_cast<T>(context.op_.GetAttr<float>("max")));
for (ssize_t i = 0; i < framework::product(tensor->dims()); ++i) {
data[i] = dist(engine);
}
}
};
class UniformRandomOp : public framework::OperatorWithKernel {
protected:
void InferShape(const InferShapeContext &ctx) const override {
void InferShape(const framework::InferShapeContext& ctx) const override {
PADDLE_ENFORCE(GetAttr<float>("min") < GetAttr<float>("max"),
"uniform_random's min must less then max");
auto tensor = ctx.Output<Tensor>(0);
auto tensor = ctx.Output<framework::Tensor>(0);
auto dims = GetAttr<std::vector<int>>("dims");
tensor->Resize(framework::make_ddim(dims));
}
};
class RandomOpMaker : public OpProtoAndCheckerMaker {
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
public:
RandomOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
UniformRandomOpMaker(framework::OpProto* proto,
framework::OpAttrChecker* op_checker)
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
AddOutput("Out", "The output tensor of uniform random op");
AddComment(R"DOC(Uniform random operator.
......@@ -48,5 +78,7 @@ Used to initialize tensor with uniform random generator.
} // namespace operators
} // namespace paddle
REGISTER_OP(uniform_random, ops::RandomOp, ops::RandomOpMaker);
REGISTER_OP_CPU_KERNEL(uniform_random, ops::CPUUniformRandomKernel<float>);
REGISTER_OP(uniform_random, paddle::operators::UniformRandomOp,
paddle::operators::UniformRandomOpMaker);
REGISTER_OP_CPU_KERNEL(uniform_random,
paddle::operators::CPUUniformRandomKernel<float>);
......@@ -16,7 +16,8 @@
#include <thrust/iterator/counting_iterator.h>
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/operators/type_alias.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
namespace paddle {
namespace operators {
......@@ -38,11 +39,14 @@ struct UniformGenerator {
}
};
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
class GPUUniformRandomKernel : public OpKernel {
class GPUUniformRandomKernel : public framework::OpKernel {
public:
void Compute(const ExecutionContext& context) const override {
auto* tensor = context.Output<Tensor>(0);
void Compute(const framework::ExecutionContext& context) const override {
auto* tensor = context.Output<framework::Tensor>(0);
T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed =
static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
......@@ -62,4 +66,5 @@ class GPUUniformRandomKernel : public OpKernel {
} // namespace operators
} // namespace paddle
REGISTER_OP_GPU_KERNEL(uniform_random, ops::GPUUniformRandomKernel<float>);
REGISTER_OP_GPU_KERNEL(uniform_random,
paddle::operators::GPUUniformRandomKernel<float>);
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <random>
#include <type_traits>
#include "paddle/operators/type_alias.h"
namespace paddle {
namespace operators {
template <typename T>
class CPUUniformRandomKernel : public OpKernel {
public:
void Compute(const ExecutionContext& context) const override {
auto* tensor = context.Output<Tensor>(0);
T* data = tensor->mutable_data<T>(context.GetPlace());
unsigned int seed =
static_cast<unsigned int>(context.op_.GetAttr<int>("seed"));
std::minstd_rand engine;
if (seed == 0) {
seed = std::random_device()();
}
engine.seed(seed);
std::uniform_real_distribution<T> dist(static_cast<T>(context.op_.GetAttr<float>("min")),
static_cast<T>(context.op_.GetAttr<float>("max")));
for (ssize_t i = 0; i < framework::product(tensor->dims()); ++i) {
data[i] = dist(engine);
}
}
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册