diff --git a/configs/keypoint/README.md b/configs/keypoint/README.md index 685708a0255a26f466e4808ed7f298128c351f85..4ca9b07474caca53ca529fc19bd5b239acb742e4 100644 --- a/configs/keypoint/README.md +++ b/configs/keypoint/README.md @@ -23,16 +23,15 @@ - [Top-Down模型联合部署](#top-down模型联合部署) - [Bottom-Up模型独立部署](#bottom-up模型独立部署) - [与多目标跟踪联合部署](#与多目标跟踪模型fairmot联合部署) - - [完整部署教程及Demo](#4完整部署教程及Demo) - + - [完整部署教程及Demo](#完整部署教程及Demo) - [自定义数据训练](#自定义数据训练) - [BenchMark](#benchmark) ## 简介 -PaddleDetection 关键点检测能力紧跟业内最新最优算法方案,包含Top-Down、Bottom-Up两套方案,Top-Down先检测主体,再检测局部关键点,优点是精度较高,缺点是速度会随着检测对象的个数增加,Bottom-Up先检测关键点再组合到对应的部位上,优点是速度快,与检测对象个数无关,缺点是精度较低。 +PaddleDetection 中的关键点检测部分紧跟最先进的算法,包括 Top-Down 和 Bottom-Up 两种方法,可以满足用户的不同需求。Top-Down 先检测对象,再检测特定关键点。Top-Down 模型的准确率会更高,但速度会随着对象数量的增加而变慢。不同的是,Bottom-Up 首先检测点,然后对这些点进行分组或连接以形成多个人体姿势实例。Bottom-Up 的速度是固定的,不会随着物体数量的增加而变慢,但精度会更低。 -同时,PaddleDetection提供针对移动端设备优化的自研实时关键点检测模型[PP-TinyPose](./tiny_pose/README.md),以满足用户的不同需求。 +同时,PaddleDetection 提供针对移动端设备优化的自研实时关键点检测模型 [PP-TinyPose](./tiny_pose/README.md)。 ## 模型推荐 @@ -184,7 +183,7 @@ python deploy/python/mot_keypoint_unite_infer.py --mot_model_dir=output_inferenc **注意:** 跟踪模型导出教程请参考[文档](../mot/README.md)。 -### 4、完整部署教程及Demo +### 完整部署教程及Demo 我们提供了PaddleInference(服务器端)、PaddleLite(移动端)、第三方部署(MNN、OpenVino)支持。无需依赖训练代码,deploy文件夹下相应文件夹提供独立完整部署代码。 详见 [部署文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/deploy/README.md)介绍。 diff --git a/configs/keypoint/README_en.md b/configs/keypoint/README_en.md index a7aa7a6c599e3eb1f65bc182bedf59e1e52c7f0e..f6f049824eb5aa185b767f37648bed429196d913 100644 --- a/configs/keypoint/README_en.md +++ b/configs/keypoint/README_en.md @@ -19,22 +19,15 @@ - [Deployment for Top-Down models](#deployment-for-top-down-models) - [Deployment for Bottom-Up models](#deployment-for-bottom-up-models) - [Joint Inference with Multi-Object Tracking Model FairMOT](#joint-inference-with-multi-object-tracking-model-fairmot) - - [Complete Deploy Instruction and Demo](#4Complete-Deploy-Instruction-and-Demo) - -- [Train with custom data](#Train-with-custom-data) - + - [Complete Deploy Instruction and Demo](#complete-deploy-instruction-and-demo) +- [Train with custom data](#train-with-custom-data) - [BenchMark](#benchmark) ## Introduction -The keypoint detection part in PaddleDetection follows the state-of-the-art algorithm closely, including Top-Down and Bottom-Up methods, which can satisfy the different needs of users. - -Top-Down detects the object first and then detect the specific keypoint. The accuracy of Top-Down models will be higher, but the time required will increase by the number of objects. - - -Differently, Bottom-Up detects the point first and then group or connect those points to form several instances of human pose. The speed of Bottom-Up is fixed and will not increase by the number of objects, but the accuracy will be lower. +The keypoint detection part in PaddleDetection follows the state-of-the-art algorithm closely, including Top-Down and Bottom-Up methods, which can satisfy the different needs of users. Top-Down detects the object first and then detects the specific keypoint. Top-Down models will be more accurate, but slower as the number of objects increases. Differently, Bottom-Up detects the point first and then group or connect those points to form several instances of human pose. The speed of Bottom-Up is fixed, it won't slow down as the number of objects increases, but it will be less accurate. -At the same time, PaddleDetection provides [PP-TinyPose](./tiny_pose/README_en.md) specially for mobile devices. +At the same time, PaddleDetection provides a self-developed real-time keypoint detection model [PP-TinyPose](./tiny_pose/README_en.md) optimized for mobile devices.