Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
36363292
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
36363292
编写于
8月 24, 2018
作者:
T
tensor-tang
提交者:
GitHub
8月 24, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #12904 from tensor-tang/refine/jit
optimize cpu vec activations
上级
2b64a19f
7bdaf096
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
530 addition
and
48 deletion
+530
-48
paddle/fluid/operators/attention_lstm_op.cc
paddle/fluid/operators/attention_lstm_op.cc
+23
-25
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-0
paddle/fluid/operators/math/cpu_vec.h
paddle/fluid/operators/math/cpu_vec.h
+285
-21
paddle/fluid/operators/math/cpu_vec_test.cc
paddle/fluid/operators/math/cpu_vec_test.cc
+202
-0
paddle/fluid/platform/CMakeLists.txt
paddle/fluid/platform/CMakeLists.txt
+1
-1
paddle/fluid/platform/cpu_info.h
paddle/fluid/platform/cpu_info.h
+1
-1
paddle/fluid/platform/init.cc
paddle/fluid/platform/init.cc
+17
-0
未找到文件。
paddle/fluid/operators/attention_lstm_op.cc
浏览文件 @
36363292
...
@@ -232,40 +232,28 @@ use lstm_x_t as input and compute as standard LSTM.
...
@@ -232,40 +232,28 @@ use lstm_x_t as input and compute as standard LSTM.
template
<
typename
T
>
template
<
typename
T
>
inline
void
bias_relu
(
const
int
n
,
const
T
*
x
,
const
T
*
bias
,
T
*
y
)
{
inline
void
bias_relu
(
const
int
n
,
const
T
*
x
,
const
T
*
bias
,
T
*
y
)
{
if
(
bias
)
{
if
(
bias
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
math
::
vec_add_bias
<
T
,
platform
::
jit
::
avx
>
(
n
,
*
bias
,
x
,
y
);
y
[
i
]
=
x
[
i
]
+
bias
[
0
];
math
::
vec_relu
<
T
,
platform
::
jit
::
avx
>
(
n
,
y
,
y
);
}
math
::
vec_relu
<
T
>
(
n
,
y
,
y
);
}
else
{
}
else
{
math
::
vec_relu
<
T
>
(
n
,
x
,
y
);
math
::
vec_relu
<
T
,
platform
::
jit
::
avx
>
(
n
,
x
,
y
);
}
}
}
}
template
<
typename
DeviceContext
,
typename
T
>
template
<
typename
T
>
inline
void
vec_softmax
(
const
math
::
BlasT
<
DeviceContext
,
T
>&
blas
,
const
int
n
,
inline
void
vec_softmax
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
const
T
*
x
,
T
*
y
)
{
T
scalar
=
x
[
0
];
T
scalar
=
x
[
0
];
// max
// max
for
(
int
i
=
1
;
i
<
n
;
++
i
)
{
for
(
int
i
=
1
;
i
<
n
;
++
i
)
{
scalar
=
scalar
<
x
[
i
]
?
x
[
i
]
:
scalar
;
scalar
=
scalar
<
x
[
i
]
?
x
[
i
]
:
scalar
;
}
}
math
::
vec_add_bias
<
T
,
platform
::
jit
::
avx
>
(
n
,
-
scalar
,
x
,
y
);
// sub
// sub
math
::
vec_exp
<
T
>
(
n
,
y
,
y
);
// exp
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
-
scalar
;
}
// exp
blas
.
VEXP
(
n
,
y
,
y
);
// sum
// sum
scalar
=
T
(
0
);
scalar
=
T
(
0
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
scalar
+=
y
[
i
];
scalar
+=
y
[
i
];
}
}
math
::
vec_scal
<
T
>
(
n
,
static_cast
<
T
>
(
1
)
/
scalar
,
y
);
// scale
// scale
blas
.
SCAL
(
n
,
static_cast
<
T
>
(
1
)
/
scalar
,
y
);
}
}
template
<
typename
T
>
template
<
typename
T
>
...
@@ -311,11 +299,21 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
...
@@ -311,11 +299,21 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
PADDLE_ENFORCE_EQ
(
c0
->
dims
()[
0
],
N
,
"C0 dims should be %d x %d."
,
N
,
D
);
PADDLE_ENFORCE_EQ
(
c0
->
dims
()[
0
],
N
,
"C0 dims should be %d x %d."
,
N
,
D
);
fc_out
->
Resize
({
max_seq_len
,
1
});
fc_out
->
Resize
({
max_seq_len
,
1
});
math
::
VecActivations
<
T
>
act_functor
;
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_cell
,
act_cand
;
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
act_gate
,
act_cell
,
act_cand
;
act_gate
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
));
auto
&
act_gate_str
=
ctx
.
Attr
<
std
::
string
>
(
"gate_activation"
);
act_cell
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
));
auto
&
act_cell_str
=
ctx
.
Attr
<
std
::
string
>
(
"cell_activation"
);
act_cand
=
act_functor
(
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
));
auto
&
act_cand_str
=
ctx
.
Attr
<
std
::
string
>
(
"candidate_activation"
);
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx
))
{
math
::
VecActivations
<
T
,
platform
::
jit
::
avx
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
else
{
math
::
VecActivations
<
T
,
platform
::
jit
::
isa_any
>
act_functor
;
act_gate
=
act_functor
(
act_gate_str
);
act_cell
=
act_functor
(
act_cell_str
);
act_cand
=
act_functor
(
act_cand_str
);
}
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
NULL
;
const
T
*
h0_data
=
h0
?
h0
->
data
<
T
>
()
:
NULL
;
...
@@ -363,7 +361,7 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
...
@@ -363,7 +361,7 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
fc_out_data
);
fc_out_data
);
}
}
// 1d. softmax
// 1d. softmax
vec_softmax
<
DeviceContext
,
T
>
(
blas
,
seq_len
,
fc_out_data
,
fc_out_data
);
vec_softmax
<
T
>
(
seq_len
,
fc_out_data
,
fc_out_data
);
// mul x(seq_len*M) and sum pool
// mul x(seq_len*M) and sum pool
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
1
,
M
,
seq_len
,
fc_out_data
,
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
1
,
M
,
seq_len
,
fc_out_data
,
cur_x_data
,
lstm_x_data
);
cur_x_data
,
lstm_x_data
);
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
36363292
...
@@ -65,3 +65,4 @@ if(WITH_GPU)
...
@@ -65,3 +65,4 @@ if(WITH_GPU)
nv_test
(
selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor math_function
)
nv_test
(
selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor math_function
)
endif
()
endif
()
cc_test
(
concat_test SRCS concat_test.cc DEPS concat
)
cc_test
(
concat_test SRCS concat_test.cc DEPS concat
)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
paddle/fluid/operators/math/cpu_vec.h
浏览文件 @
36363292
...
@@ -13,8 +13,16 @@ See the License for the specific language governing permissions and
...
@@ -13,8 +13,16 @@ See the License for the specific language governing permissions and
limitations under the License. */
limitations under the License. */
#pragma once
#pragma once
#include <cmath>
#include <string>
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/cpu_info.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -22,16 +30,161 @@ namespace math {
...
@@ -22,16 +30,161 @@ namespace math {
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
#define AVX_FLOAT_BLOCK 8
#define AVX_DOUBLE_BLOCK 4
#define AVX2_FLOAT_BLOCK 8
#define AVX2_DOUBLE_BLOCK 4
#define AVX512_FLOAT_BLOCK 16
#define AVX512_DOUBLE_BLOCK 8
template
<
typename
T
>
template
<
typename
T
>
inline
T
sigmoid
(
T
x
)
{
inline
void
vec_exp
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
return
1.
/
(
1.
+
exp
(
-
x
));
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
std
::
exp
(
x
[
i
]);
}
}
}
template
<
typename
T
>
template
<
typename
T
>
inline
T
tanh
(
T
x
)
{
inline
void
vec_scal
(
const
int
n
,
const
T
a
,
T
*
x
)
{
return
2.
*
sigmoid
(
2.
*
x
)
-
1.
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
x
[
i
]
=
a
*
x
[
i
];
}
}
#ifdef PADDLE_WITH_MKLML
template
<
>
inline
void
vec_exp
<
float
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
platform
::
dynload
::
vsExp
(
n
,
x
,
y
);
}
template
<
>
inline
void
vec_exp
<
double
>
(
const
int
n
,
const
double
*
x
,
double
*
y
)
{
platform
::
dynload
::
vdExp
(
n
,
x
,
y
);
}
template
<
>
inline
void
vec_scal
<
float
>
(
const
int
n
,
const
float
a
,
float
*
x
)
{
platform
::
dynload
::
cblas_sscal
(
n
,
a
,
x
,
1
);
}
template
<
>
inline
void
vec_scal
<
double
>
(
const
int
n
,
const
double
a
,
double
*
x
)
{
platform
::
dynload
::
cblas_dscal
(
n
,
a
,
x
,
1
);
}
#endif
// MKL scal only support inplace, choose this if src and dst are not equal
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_scal
(
const
int
n
,
const
T
a
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
a
*
x
[
i
];
}
}
template
<
>
inline
void
vec_scal
<
float
,
platform
::
jit
::
avx
>
(
const
int
n
,
const
float
a
,
const
float
*
x
,
float
*
y
)
{
#ifdef __AVX__
constexpr
int
block
=
AVX_FLOAT_BLOCK
;
if
(
n
<
block
)
{
vec_scal
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
a
,
x
,
y
);
return
;
}
const
int
rest
=
n
%
block
;
const
int
end
=
n
-
rest
;
int
i
=
0
;
__m256
scalar
=
_mm256_set1_ps
(
a
);
__m256
tmp
;
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_mul_ps(tmp, scalar); \
_mm256_storeu_ps(y + i, tmp)
for
(
i
=
0
;
i
<
end
;
i
+=
block
)
{
MOVE_ONE_STEP
;
}
#undef MOVE_ONE_STEP
if
(
rest
==
0
)
{
return
;
}
// can not continue move step if src and dst are inplace
for
(
i
=
n
-
rest
;
i
<
n
;
++
i
)
{
y
[
i
]
=
a
*
x
[
i
];
}
#else
vec_scal
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
a
,
x
,
y
);
#endif
}
template
<
>
inline
void
vec_scal
<
float
,
platform
::
jit
::
avx2
>
(
const
int
n
,
const
float
a
,
const
float
*
x
,
float
*
y
)
{
vec_scal
<
float
,
platform
::
jit
::
avx
>
(
n
,
a
,
x
,
y
);
}
template
<
>
inline
void
vec_scal
<
float
,
platform
::
jit
::
avx512_common
>
(
const
int
n
,
const
float
a
,
const
float
*
x
,
float
*
y
)
{
// TODO(TJ): enable me
vec_scal
<
float
,
platform
::
jit
::
avx2
>
(
n
,
a
,
x
,
y
);
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_add_bias
(
const
int
n
,
const
T
a
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
+
a
;
}
}
template
<
>
inline
void
vec_add_bias
<
float
,
platform
::
jit
::
avx
>
(
const
int
n
,
const
float
a
,
const
float
*
x
,
float
*
y
)
{
#ifdef __AVX__
constexpr
int
block
=
AVX_FLOAT_BLOCK
;
if
(
n
<
block
)
{
vec_add_bias
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
a
,
x
,
y
);
return
;
}
const
int
rest
=
n
%
block
;
const
int
end
=
n
-
rest
;
int
i
=
0
;
__m256
bias
=
_mm256_set1_ps
(
a
);
__m256
tmp
;
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_add_ps(tmp, bias); \
_mm256_storeu_ps(y + i, tmp)
for
(
i
=
0
;
i
<
end
;
i
+=
block
)
{
MOVE_ONE_STEP
;
}
#undef MOVE_ONE_STEP
if
(
rest
==
0
)
{
return
;
}
// can not continue move step if src and dst are inplace
for
(
i
=
n
-
rest
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
+
a
;
}
#else
vec_add_bias
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
a
,
x
,
y
);
#endif
}
template
<
>
inline
void
vec_add_bias
<
float
,
platform
::
jit
::
avx2
>
(
const
int
n
,
const
float
a
,
const
float
*
x
,
float
*
y
)
{
vec_add_bias
<
float
,
platform
::
jit
::
avx
>
(
n
,
a
,
x
,
y
);
}
template
<
>
inline
void
vec_add_bias
<
float
,
platform
::
jit
::
avx512_common
>
(
const
int
n
,
const
float
a
,
const
float
*
x
,
float
*
y
)
{
// TODO(TJ): enable me
vec_add_bias
<
float
,
platform
::
jit
::
avx2
>
(
n
,
a
,
x
,
y
);
}
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
...
@@ -45,18 +198,97 @@ inline void vec_sigmoid(const int n, const T* x, T* y) {
...
@@ -45,18 +198,97 @@ inline void vec_sigmoid(const int n, const T* x, T* y) {
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
const
T
max
=
SIGMOID_THRESHOLD_MAX
;
const
T
max
=
SIGMOID_THRESHOLD_MAX
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
T
tmp
=
(
x
[
i
]
<
min
)
?
min
:
((
x
[
i
]
>
max
)
?
max
:
x
[
i
]);
y
[
i
]
=
(
x
[
i
]
<
min
)
?
min
:
((
x
[
i
]
>
max
)
?
max
:
x
[
i
]);
y
[
i
]
=
1.0
/
(
1.0
+
std
::
exp
(
-
tmp
));
y
[
i
]
=
static_cast
<
T
>
(
0
)
-
y
[
i
];
}
vec_exp
<
T
>
(
n
,
y
,
y
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
y
[
i
]);
}
}
template
<
>
inline
void
vec_sigmoid
<
float
,
platform
::
jit
::
avx
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
#ifdef __AVX__
constexpr
int
block
=
AVX_FLOAT_BLOCK
;
if
(
n
<
block
)
{
vec_sigmoid
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
x
,
y
);
return
;
}
}
const
int
rest
=
n
%
block
;
const
int
end
=
n
-
rest
;
int
i
=
0
;
__m256
max
=
_mm256_set1_ps
(
SIGMOID_THRESHOLD_MAX
);
__m256
min
=
_mm256_set1_ps
(
SIGMOID_THRESHOLD_MIN
);
__m256
zeros
=
_mm256_setzero_ps
();
__m256
tmp
;
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_max_ps(tmp, min); \
tmp = _mm256_min_ps(tmp, max); \
tmp = _mm256_sub_ps(zeros, tmp); \
_mm256_storeu_ps(y + i, tmp)
for
(
i
=
0
;
i
<
end
;
i
+=
block
)
{
MOVE_ONE_STEP
;
}
#undef MOVE_ONE_STEP
if
(
rest
!=
0
)
{
// can not continue move step since the src and dst address could be equal
const
float
xmin
=
SIGMOID_THRESHOLD_MIN
;
const
float
xmax
=
SIGMOID_THRESHOLD_MAX
;
for
(
i
=
n
-
rest
;
i
<
n
;
++
i
)
{
y
[
i
]
=
0.
f
-
((
x
[
i
]
<
xmin
)
?
xmin
:
((
x
[
i
]
>
xmax
)
?
xmax
:
x
[
i
]));
}
}
vec_exp
<
float
>
(
n
,
y
,
y
);
__m256
ones
=
_mm256_set1_ps
(
1.0
f
);
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(y + i); \
tmp = _mm256_add_ps(ones, tmp); \
tmp = _mm256_div_ps(ones, tmp); \
_mm256_storeu_ps(y + i, tmp)
for
(
i
=
0
;
i
<
end
;
i
+=
block
)
{
MOVE_ONE_STEP
;
}
#undef MOVE_ONE_STEP
if
(
rest
==
0
)
{
return
;
}
// can not continue move step
for
(
i
=
n
-
rest
;
i
<
n
;
++
i
)
{
y
[
i
]
=
1.
f
/
(
1.
f
+
y
[
i
]);
}
#else
vec_sigmoid
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
x
,
y
);
#endif
}
template
<
>
inline
void
vec_sigmoid
<
float
,
platform
::
jit
::
avx2
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
vec_sigmoid
<
float
,
platform
::
jit
::
avx
>
(
n
,
x
,
y
);
}
template
<
>
inline
void
vec_sigmoid
<
float
,
platform
::
jit
::
avx512_common
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
// TODO(TJ): enable me
vec_sigmoid
<
float
,
platform
::
jit
::
avx2
>
(
n
,
x
,
y
);
}
}
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_tanh
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
inline
void
vec_tanh
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
vec_scal
<
T
,
isa
>
(
n
,
static_cast
<
T
>
(
2
),
x
,
y
);
y
[
i
]
=
tanh
<
T
>
(
x
[
i
]);
vec_sigmoid
<
T
,
isa
>
(
n
,
y
,
y
);
}
vec_scal
<
T
>
(
n
,
static_cast
<
T
>
(
2
),
y
);
vec_add_bias
<
T
,
isa
>
(
n
,
static_cast
<
T
>
(
-
1
),
y
,
y
);
}
}
// TODO(TJ): make relu clip
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
inline
void
vec_relu
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
inline
void
vec_relu
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
...
@@ -65,23 +297,55 @@ inline void vec_relu(const int n, const T* x, T* y) {
...
@@ -65,23 +297,55 @@ inline void vec_relu(const int n, const T* x, T* y) {
}
}
template
<
>
template
<
>
inline
void
vec_relu
<
float
,
platform
::
jit
::
avx
2
>
(
const
int
n
,
const
float
*
x
,
inline
void
vec_relu
<
float
,
platform
::
jit
::
avx
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
float
*
y
)
{
// TODO(TJ): complete me
#ifdef __AVX__
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
constexpr
int
block
=
AVX_FLOAT_BLOCK
;
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
if
(
n
<
block
*
4
)
{
vec_relu
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
x
,
y
);
return
;
}
const
int
rest
=
n
%
block
;
const
int
end
=
n
-
rest
;
int
i
=
0
;
__m256
zeros
=
_mm256_setzero_ps
();
__m256
tmp
;
#define MOVE_ONE_STEP \
tmp = _mm256_loadu_ps(x + i); \
tmp = _mm256_max_ps(tmp, zeros); \
_mm256_storeu_ps(y + i, tmp)
for
(
i
=
0
;
i
<
end
;
i
+=
block
)
{
MOVE_ONE_STEP
;
}
}
if
(
rest
==
0
)
{
return
;
}
i
=
n
-
block
;
MOVE_ONE_STEP
;
#undef MOVE_ONE_STEP
#else
vec_relu
<
float
,
platform
::
jit
::
isa_any
>
(
n
,
x
,
y
);
#endif
}
}
template
<
>
template
<
>
inline
void
vec_relu
<
float
,
platform
::
jit
::
avx
>
(
const
int
n
,
const
float
*
x
,
inline
void
vec_relu
<
float
,
platform
::
jit
::
avx
2
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
float
*
y
)
{
// TODO(TJ): complete me
vec_relu
<
float
,
platform
::
jit
::
avx
>
(
n
,
x
,
y
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
}
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
template
<
>
inline
void
vec_relu
<
float
,
platform
::
jit
::
avx512_common
>
(
const
int
n
,
const
float
*
x
,
float
*
y
)
{
// TODO(TJ): enable me
vec_relu
<
float
,
platform
::
jit
::
avx2
>
(
n
,
x
,
y
);
}
}
// TODO(TJ): optimize double of sigmoid, tanh and relu if necessary
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
template
<
typename
T
,
platform
::
jit
::
cpu_isa_t
isa
=
platform
::
jit
::
isa_any
>
class
VecActivations
{
class
VecActivations
{
public:
public:
...
@@ -96,7 +360,7 @@ class VecActivations {
...
@@ -96,7 +360,7 @@ class VecActivations {
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
vec_identity
<
T
,
isa
>
;
return
vec_identity
<
T
,
isa
>
;
}
}
PADDLE_THROW
(
"Not support type %s."
,
type
)
;
LOG
(
FATAL
)
<<
"Not support type: "
<<
type
;
}
}
};
};
...
...
paddle/fluid/operators/math/cpu_vec_test.cc
0 → 100644
浏览文件 @
36363292
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <sys/time.h>
#include <cmath>
#include <cstring>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
inline
double
GetCurrentUS
()
{
struct
timeval
time
;
gettimeofday
(
&
time
,
NULL
);
return
1e+6
*
time
.
tv_sec
+
time
.
tv_usec
;
}
constexpr
int
repeat
=
1000
;
template
<
typename
T
>
inline
T
_sigmoid
(
T
x
)
{
const
T
min
=
SIGMOID_THRESHOLD_MIN
;
const
T
max
=
SIGMOID_THRESHOLD_MAX
;
T
tmp
=
(
x
<
min
)
?
min
:
((
x
>
max
)
?
max
:
x
);
return
static_cast
<
T
>
(
1
)
/
(
static_cast
<
T
>
(
1
)
+
std
::
exp
(
-
tmp
));
}
template
<
typename
T
>
inline
T
_tanh
(
T
x
)
{
return
static_cast
<
T
>
(
2
)
*
_sigmoid
<
T
>
(
static_cast
<
T
>
(
2
)
*
x
)
-
static_cast
<
T
>
(
1
);
}
template
<
typename
T
>
void
ref_sigmoid
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
_sigmoid
(
x
[
i
]);
}
}
template
<
typename
T
>
void
ref_tanh
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
_tanh
(
x
[
i
]);
}
}
template
<
typename
T
>
void
ref_relu
(
const
int
n
,
const
T
*
x
,
T
*
y
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
y
[
i
]
=
x
[
i
]
>
0
?
x
[
i
]
:
0
;
}
}
template
<
typename
T
>
void
RandomVec
(
const
int
n
,
T
*
a
)
{
static
unsigned
int
seed
=
100
;
std
::
mt19937
rng
(
seed
++
);
std
::
uniform_real_distribution
<
double
>
uniform_dist
(
0
,
1
);
const
T
lower
=
static_cast
<
T
>
(
-
20.
f
);
const
T
upper
=
static_cast
<
T
>
(
20.
f
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
a
[
i
]
=
static_cast
<
T
>
(
uniform_dist
(
rng
)
*
(
upper
-
lower
)
+
lower
);
}
}
template
<
typename
T
>
void
TestAndBench
(
const
int
n
,
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
tgt
,
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
ref
)
{
std
::
vector
<
T
>
x
(
n
);
std
::
vector
<
T
>
ytgt
(
n
),
yref
(
n
);
RandomVec
<
T
>
(
n
,
x
.
data
());
const
T
*
x_data
=
x
.
data
();
T
*
ytgt_data
=
ytgt
.
data
();
T
*
yref_data
=
yref
.
data
();
auto
st
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
tgt
(
n
,
x_data
,
ytgt_data
);
}
auto
mt
=
GetCurrentUS
();
for
(
int
i
=
0
;
i
<
repeat
;
++
i
)
{
ref
(
n
,
x_data
,
yref_data
);
}
auto
et
=
GetCurrentUS
();
VLOG
(
3
)
<<
"Vec size "
<<
n
<<
": refer takes: "
<<
(
et
-
mt
)
/
repeat
<<
" us, tgt takes: "
<<
(
mt
-
st
)
/
repeat
;
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
EXPECT_NEAR
(
ytgt_data
[
i
],
yref_data
[
i
],
1e-3
);
}
}
TEST
(
CpuVecTest
,
sigmoid
)
{
namespace
jit
=
paddle
::
platform
::
jit
;
using
namespace
paddle
::
operators
::
math
;
// NOLINT
for
(
auto
sz
:
{
1
,
2
,
15
,
16
,
30
,
32
,
128
,
200
,
512
})
{
TestAndBench
<
float
>
(
sz
,
vec_sigmoid
<
float
>
,
ref_sigmoid
<
float
>
);
TestAndBench
<
float
>
(
sz
,
vec_sigmoid
<
float
,
jit
::
avx
>
,
ref_sigmoid
<
float
>
);
TestAndBench
<
float
>
(
sz
,
vec_sigmoid
<
float
,
jit
::
avx2
>
,
ref_sigmoid
<
float
>
);
TestAndBench
<
float
>
(
sz
,
vec_sigmoid
<
float
,
jit
::
avx512_common
>
,
ref_sigmoid
<
float
>
);
}
TestAndBench
<
double
>
(
30
,
vec_sigmoid
<
double
>
,
ref_sigmoid
<
double
>
);
}
TEST
(
CpuVecTest
,
tanh
)
{
namespace
jit
=
paddle
::
platform
::
jit
;
using
namespace
paddle
::
operators
::
math
;
// NOLINT
for
(
auto
sz
:
{
1
,
2
,
15
,
16
,
30
,
32
,
128
,
200
,
512
})
{
TestAndBench
<
float
>
(
sz
,
vec_tanh
<
float
>
,
ref_tanh
<
float
>
);
TestAndBench
<
float
>
(
sz
,
vec_tanh
<
float
,
jit
::
avx
>
,
ref_tanh
<
float
>
);
TestAndBench
<
float
>
(
sz
,
vec_tanh
<
float
,
jit
::
avx2
>
,
ref_tanh
<
float
>
);
TestAndBench
<
float
>
(
sz
,
vec_tanh
<
float
,
jit
::
avx512_common
>
,
ref_tanh
<
float
>
);
}
TestAndBench
<
double
>
(
30
,
vec_tanh
<
double
>
,
ref_tanh
<
double
>
);
}
TEST
(
CpuVecTest
,
relu
)
{
namespace
jit
=
paddle
::
platform
::
jit
;
using
namespace
paddle
::
operators
::
math
;
// NOLINT
for
(
auto
sz
:
{
1
,
2
,
15
,
16
,
30
,
32
,
128
,
200
,
512
})
{
TestAndBench
<
float
>
(
sz
,
vec_relu
<
float
>
,
ref_relu
<
float
>
);
TestAndBench
<
float
>
(
sz
,
vec_relu
<
float
,
jit
::
avx
>
,
ref_relu
<
float
>
);
TestAndBench
<
float
>
(
sz
,
vec_relu
<
float
,
jit
::
avx2
>
,
ref_relu
<
float
>
);
TestAndBench
<
float
>
(
sz
,
vec_relu
<
float
,
jit
::
avx512_common
>
,
ref_relu
<
float
>
);
}
TestAndBench
<
double
>
(
30
,
vec_relu
<
double
>
,
ref_relu
<
double
>
);
}
template
<
typename
T
>
void
TestInplace
(
const
int
n
,
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
tgt
,
std
::
function
<
void
(
const
int
,
const
T
*
,
T
*
)
>
ref
)
{
std
::
vector
<
T
>
x
(
n
);
std
::
vector
<
T
>
ytgt
(
n
),
yref
(
n
);
RandomVec
<
T
>
(
n
,
x
.
data
());
const
T
*
x_data
=
x
.
data
();
T
*
yref_data
=
yref
.
data
();
T
*
ytgt_data
=
ytgt
.
data
();
std
::
memcpy
(
yref_data
,
x_data
,
sizeof
(
T
)
*
n
);
std
::
memcpy
(
ytgt_data
,
x_data
,
sizeof
(
T
)
*
n
);
ref
(
n
,
yref_data
,
yref_data
);
tgt
(
n
,
ytgt_data
,
ytgt_data
);
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
EXPECT_NEAR
(
ytgt_data
[
i
],
yref_data
[
i
],
1e-3
);
}
}
TEST
(
CpuVecTest
,
inplace_sigmoid
)
{
namespace
jit
=
paddle
::
platform
::
jit
;
using
namespace
paddle
::
operators
::
math
;
// NOLINT
for
(
auto
sz
:
{
1
,
2
,
15
,
16
,
30
,
32
,
128
,
200
,
512
})
{
TestInplace
<
float
>
(
sz
,
vec_sigmoid
<
float
>
,
ref_sigmoid
<
float
>
);
TestInplace
<
float
>
(
sz
,
vec_sigmoid
<
float
,
jit
::
avx
>
,
ref_sigmoid
<
float
>
);
TestInplace
<
float
>
(
sz
,
vec_sigmoid
<
float
,
jit
::
avx2
>
,
ref_sigmoid
<
float
>
);
TestInplace
<
float
>
(
sz
,
vec_sigmoid
<
float
,
jit
::
avx512_common
>
,
ref_sigmoid
<
float
>
);
}
TestInplace
<
double
>
(
30
,
vec_sigmoid
<
double
>
,
ref_sigmoid
<
double
>
);
}
TEST
(
CpuVecTest
,
inplace_tanh
)
{
namespace
jit
=
paddle
::
platform
::
jit
;
using
namespace
paddle
::
operators
::
math
;
// NOLINT
for
(
auto
sz
:
{
1
,
2
,
15
,
16
,
30
,
32
,
128
,
200
,
512
})
{
TestInplace
<
float
>
(
sz
,
vec_tanh
<
float
>
,
ref_tanh
<
float
>
);
TestInplace
<
float
>
(
sz
,
vec_tanh
<
float
,
jit
::
avx
>
,
ref_tanh
<
float
>
);
TestInplace
<
float
>
(
sz
,
vec_tanh
<
float
,
jit
::
avx2
>
,
ref_tanh
<
float
>
);
TestInplace
<
float
>
(
sz
,
vec_tanh
<
float
,
jit
::
avx512_common
>
,
ref_tanh
<
float
>
);
}
TestInplace
<
double
>
(
30
,
vec_tanh
<
double
>
,
ref_tanh
<
double
>
);
}
TEST
(
CpuVecTest
,
inplace_relu
)
{
namespace
jit
=
paddle
::
platform
::
jit
;
using
namespace
paddle
::
operators
::
math
;
// NOLINT
for
(
auto
sz
:
{
1
,
2
,
15
,
16
,
30
,
32
,
128
,
200
,
512
})
{
TestInplace
<
float
>
(
sz
,
vec_relu
<
float
>
,
ref_relu
<
float
>
);
TestInplace
<
float
>
(
sz
,
vec_relu
<
float
,
jit
::
avx
>
,
ref_relu
<
float
>
);
TestInplace
<
float
>
(
sz
,
vec_relu
<
float
,
jit
::
avx2
>
,
ref_relu
<
float
>
);
TestInplace
<
float
>
(
sz
,
vec_relu
<
float
,
jit
::
avx512_common
>
,
ref_relu
<
float
>
);
}
TestInplace
<
double
>
(
30
,
vec_relu
<
double
>
,
ref_relu
<
double
>
);
}
paddle/fluid/platform/CMakeLists.txt
浏览文件 @
36363292
...
@@ -50,7 +50,7 @@ ENDIF()
...
@@ -50,7 +50,7 @@ ENDIF()
# memcpy depends on device_context, here add deps individually for
# memcpy depends on device_context, here add deps individually for
# avoiding cycle dependencies
# avoiding cycle dependencies
cc_library
(
device_context SRCS device_context.cc init.cc DEPS malloc
cc_library
(
device_context SRCS device_context.cc init.cc DEPS malloc
place eigen3 stringpiece cpu_helper framework_proto
${
GPU_CTX_DEPS
}
${
MKLDNN_CTX_DEPS
}
)
place eigen3 stringpiece cpu_helper
cpu_info
framework_proto
${
GPU_CTX_DEPS
}
${
MKLDNN_CTX_DEPS
}
)
nv_test
(
device_context_test SRCS device_context_test.cu DEPS device_context gpu_info
)
nv_test
(
device_context_test SRCS device_context_test.cu DEPS device_context gpu_info
)
cc_test
(
init_test SRCS init_test.cc DEPS device_context
)
cc_test
(
init_test SRCS init_test.cc DEPS device_context
)
...
...
paddle/fluid/platform/cpu_info.h
浏览文件 @
36363292
...
@@ -51,7 +51,7 @@ typedef enum {
...
@@ -51,7 +51,7 @@ typedef enum {
}
cpu_isa_t
;
// Instruction set architecture
}
cpu_isa_t
;
// Instruction set architecture
// May I use some instruction
// May I use some instruction
inline
bool
MayIUse
(
const
cpu_isa_t
cpu_isa
);
bool
MayIUse
(
const
cpu_isa_t
cpu_isa
);
}
// namespace jit
}
// namespace jit
...
...
paddle/fluid/platform/init.cc
浏览文件 @
36363292
...
@@ -18,6 +18,7 @@ limitations under the License. */
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/cpu_info.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/init.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/place.h"
...
@@ -120,6 +121,22 @@ void InitDevices(bool init_p2p, const std::vector<int> devices) {
...
@@ -120,6 +121,22 @@ void InitDevices(bool init_p2p, const std::vector<int> devices) {
#ifndef PADDLE_WITH_MKLDNN
#ifndef PADDLE_WITH_MKLDNN
platform
::
SetNumThreads
(
FLAGS_paddle_num_threads
);
platform
::
SetNumThreads
(
FLAGS_paddle_num_threads
);
#endif
#endif
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx512_common
))
{
#ifndef __AVX512F__
LOG
(
WARNING
)
<<
"AVX512F is available, Please re-compile on local machine"
;
#endif
}
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx2
))
{
#ifndef __AVX2__
LOG
(
WARNING
)
<<
"AVX2 is available, Please re-compile on local machine"
;
#endif
}
if
(
platform
::
jit
::
MayIUse
(
platform
::
jit
::
avx
))
{
#ifndef __AVX__
LOG
(
WARNING
)
<<
"AVX is available, Please re-compile on local machine"
;
#endif
}
}
}
void
InitGLOG
(
const
std
::
string
&
prog_name
)
{
void
InitGLOG
(
const
std
::
string
&
prog_name
)
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录