From 3380737cb7a23f5670e5fe9a7b3d4de193b7a1e0 Mon Sep 17 00:00:00 2001 From: "yi.wu" Date: Fri, 15 Jun 2018 12:18:17 +0800 Subject: [PATCH] update by comment --- paddle/fluid/operators/chunk_eval_op.cc | 67 +++++++------ paddle/fluid/operators/cos_sim_op.cc | 4 +- .../operators/detection/iou_similarity_op.cc | 4 +- paddle/fluid/operators/roi_pool_op.cc | 2 +- paddle/fluid/operators/scale_op.cc | 7 +- python/paddle/fluid/layers/io.py | 2 + python/paddle/fluid/layers/nn.py | 94 ++++++++++++++++++- 7 files changed, 133 insertions(+), 47 deletions(-) diff --git a/paddle/fluid/operators/chunk_eval_op.cc b/paddle/fluid/operators/chunk_eval_op.cc index 62636bb2f..dc43c69be 100644 --- a/paddle/fluid/operators/chunk_eval_op.cc +++ b/paddle/fluid/operators/chunk_eval_op.cc @@ -91,32 +91,31 @@ class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker { "(int64_t). The number of chunks both in Inference and Label on the " "given mini-batch."); AddAttr("num_chunk_types", - "(int). The number of chunk type. See below for details."); - AddAttr( - "chunk_scheme", - "(string, default IOB). The labeling scheme indicating " - "how to encode the chunks. Must be IOB, IOE, IOBES or plain. See below " - "for details.") + "The number of chunk type. See the description for details."); + AddAttr("chunk_scheme", + "The labeling scheme indicating " + "how to encode the chunks. Must be IOB, IOE, IOBES or " + "plain. See the description" + "for details.") .SetDefault("IOB"); AddAttr>("excluded_chunk_types", - "(list) A list including chunk type ids " + "A list including chunk type ids " "indicating chunk types that are not counted. " - "See below for details.") + "See the description for details.") .SetDefault(std::vector{}); AddComment(R"DOC( For some basics of chunking, please refer to -‘Chunking with Support Vector Machines ’. +'Chunking with Support Vector Machines '. - -CheckEvalOp computes the precision, recall, and F1-score of chunk detection, +ChunkEvalOp computes the precision, recall, and F1-score of chunk detection, and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes. Here is a NER example of labeling for these tagging schemes: - - Li Ming works at Agricultural Bank of China in Beijing. - IO: I-PER I-PER O O I-ORG I-ORG I-ORG I-ORG O I-LOC - IOB: B-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O B-LOC - IOE: I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC - IOBES: B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC + + Li Ming works at Agricultural Bank of China in Beijing. + IO I-PER I-PER O O I-ORG I-ORG I-ORG I-ORG O I-LOC + IOB B-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O B-LOC + IOE I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC + IOBES B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC There are three chunk types(named entity types) including PER(person), ORG(organization) and LOC(LOCATION), and we can see that the labels have the form -. @@ -124,31 +123,31 @@ and LOC(LOCATION), and we can see that the labels have the form -("scale", - "(float, default 1.0)" - "The scaling factor of the scale operator.") + AddAttr("scale", "The scaling factor of the scale operator.") .SetDefault(1.0); } }; diff --git a/python/paddle/fluid/layers/io.py b/python/paddle/fluid/layers/io.py index 76ef82ddb..15be646f4 100644 --- a/python/paddle/fluid/layers/io.py +++ b/python/paddle/fluid/layers/io.py @@ -109,6 +109,8 @@ class BlockGuardServ(BlockGuard): class ListenAndServ(object): """ + ***ListenAndServ Layer*** + ListenAndServ is used to create a rpc server bind and listen on specific TCP port, this server will run the sub-block when received variables from clients. diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 70b7aba27..8e4780837 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -825,6 +825,12 @@ def crf_decoding(input, param_attr, label=None): Returns: Variable: ${viterbi_path_comment} + + Examples: + .. code-block:: python + + crf_decode = layers.crf_decoding( + input=hidden, param_attr=ParamAttr(name="crfw")) """ helper = LayerHelper('crf_decoding', **locals()) transition = helper.get_parameter(param_attr.name) @@ -1043,9 +1049,70 @@ def chunk_eval(input, num_chunk_types, excluded_chunk_types=None): """ + ***Chunk Evaluator*** + This function computes and outputs the precision, recall and F1-score of chunk detection. + For some basics of chunking, please refer to + 'Chunking with Support Vector Machines '. + + ChunkEvalOp computes the precision, recall, and F1-score of chunk detection, + and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes. + Here is a NER example of labeling for these tagging schemes: + + .. code-block:: python + + ====== ====== ====== ===== == ============ ===== ===== ===== == ========= + Li Ming works at Agricultural Bank of China in Beijing. + ====== ====== ====== ===== == ============ ===== ===== ===== == ========= + IO I-PER I-PER O O I-ORG I-ORG I-ORG I-ORG O I-LOC + IOB B-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O B-LOC + IOE I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC + IOBES B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC + ====== ====== ====== ===== == ============ ===== ===== ===== == ========= + + There are three chunk types(named entity types) including PER(person), ORG(organization) + and LOC(LOCATION), and we can see that the labels have the form -. + + Since the calculations actually use label ids rather than labels, extra attention + should be paid when mapping labels to ids to make CheckEvalOp work. The key point + is that the listed equations are satisfied by ids. + + .. code-block:: python + + tag_type = label % num_tag_type + chunk_type = label / num_tag_type + + where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type` + is the num of chunk types, and `tag_type` get its value from the following table. + + .. code-block:: python + + Scheme Begin Inside End Single + plain 0 - - - + IOB 0 1 - - + IOE - 0 1 - + IOBES 0 1 2 3 + + Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG, + PER and LOC. To satisfy the above equations, the label map can be like this: + + .. code-block:: python + + B-ORG 0 + I-ORG 1 + B-PER 2 + I-PER 3 + B-LOC 4 + I-LOC 5 + O 6 + + It's not hard to verify the equations noting that the num of chunk types + is 3 and the num of tag types in IOB scheme is 2. For example, the label + id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of + I-LOC is 2, which consistent with the results from the equations. + Args: input (Variable): prediction output of the network. label (Variable): label of the test data set. @@ -1057,6 +1124,19 @@ def chunk_eval(input, tuple: tuple containing: precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks + + Examples: + .. code-block:: python + + crf = fluid.layers.linear_chain_crf( + input=hidden, label=label, param_attr=ParamAttr(name="crfw")) + crf_decode = fluid.layers.crf_decoding( + input=hidden, param_attr=ParamAttr(name="crfw")) + fluid.layers.chunk_eval( + input=crf_decode, + label=label, + chunk_scheme="IOB", + num_chunk_types=(label_dict_len - 1) / 2) """ helper = LayerHelper("chunk_eval", **locals()) @@ -1803,7 +1883,7 @@ def conv2d_transpose(input, act=None, name=None): """ - **Convlution2D transpose layer** + ***Convlution2D Transpose Layer**** The convolution2D transpose layer calculates the output based on the input, filter, and dilations, strides, paddings. Input(Input) and output(Output) @@ -1832,13 +1912,13 @@ def conv2d_transpose(input, - Input: - Input shape: $(N, C_{in}, H_{in}, W_{in})$ + Input shape: :math:`(N, C_{in}, H_{in}, W_{in})` - Filter shape: $(C_{in}, C_{out}, H_f, W_f)$ + Filter shape: :math:`(C_{in}, C_{out}, H_f, W_f)` - Output: - Output shape: $(N, C_{out}, H_{out}, W_{out})$ + Output shape: :math:`(N, C_{out}, H_{out}, W_{out})` Where @@ -3513,6 +3593,12 @@ def autoincreased_step_counter(counter_name=None, begin=1, step=1): Returns: Variable: The global run counter. + + Examples: + .. code-block:: python + + global_step = fluid.layers.autoincreased_step_counter( + counter_name='@LR_DECAY_COUNTER@', begin=begin, step=1) """ helper = LayerHelper('global_step_counter') if counter_name is None: -- GitLab