提交 2ec8dab4 编写于 作者: Q qijun

follow comments

上级 37aa4b98
---
Language: Cpp
BasedOnStyle: Google
Standard: Cpp11
...
if (WITH_GPU)
if (WITH_MKLML)
nv_library(math_function SRCS math_function.cc math_function.cu DEPS mklml device_context)
else()
nv_library(math_function SRCS math_function.cc math_function.cu DEPS cblas device_context)
endif()
if(WITH_MKLML)
set(BLAS_LIB mklml)
else()
if (WITH_MKLML)
cc_library(math_function SRCS math_function.cc DEPS mklml device_context)
else()
cc_library(math_function SRCS math_function.cc DEPS cblas device_context)
endif()
set(BLAS_LIB cblas)
endif()
if(WITH_GPU)
nv_library(math_function SRCS math_function.cc math_function.cu DEPS ${BLAS_LIB} device_context)
else()
cc_library(math_function SRCS math_function.cc math_function.cu DEPS ${BLAS_LIB} device_context)
endif()
nv_test(math_function_test SRCS math_function_test.cc DEPS math_function tensor)
......@@ -12,6 +12,44 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_USE_MKLML
#include <mkl_cblas.h>
#include <mkl_lapacke.h>
#include <mkl_vml_functions.h>
#endif
#ifdef PADDLE_USE_MKL
#include <mkl.h>
#include <mkl_lapacke.h>
#endif
#ifdef PADDLE_USE_ATLAS
extern "C" {
#include <cblas.h>
#include <clapack.h>
}
#endif
#ifdef PADDLE_USE_OPENBLAS
#include <cblas.h>
#include <lapacke.h>
#endif
#ifndef LAPACK_FOUND
extern "C" {
#include <cblas.h>
int LAPACKE_sgetrf(int matrix_layout, int m, int n, float* a, int lda,
int* ipiv);
int LAPACKE_dgetrf(int matrix_layout, int m, int n, double* a, int lda,
int* ipiv);
int LAPACKE_sgetri(int matrix_layout, int n, float* a, int lda,
const int* ipiv);
int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda,
const int* ipiv);
}
#endif
#include <cmath>
#include "paddle/operators/math/math_function.h"
namespace paddle {
......@@ -48,62 +86,65 @@ void gemm<platform::CPUPlace, double>(const CBLAS_TRANSPOSE transA,
}
template <>
void matmul<platform::CPUPlace, float>(const framework::Tensor& in1, bool in1_T,
const framework::Tensor& in2, bool in2_T,
float alpha, framework::Tensor* out,
void matmul<platform::CPUPlace, float>(const framework::Tensor& matrix_a,
bool trans_a,
const framework::Tensor& matrix_b,
bool trans_b, float alpha,
framework::Tensor* matrix_out,
float beta,
platform::DeviceContext* context) {
auto in1_dim = in1.dims();
auto in2_dim = in2.dims();
auto out_dim = out->dims();
PADDLE_ENFORCE(
in1_dim.size() == 2 && in2_dim.size() == 2 && out_dim.size() == 2,
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
"The input and output of matmul be matrix");
PADDLE_ENFORCE(platform::is_cpu_place(in1.place()) &&
platform::is_cpu_place(in2.place()) &&
platform::is_cpu_place(out->place()),
PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
platform::is_cpu_place(matrix_b.place()) &&
platform::is_cpu_place(matrix_out->place()),
"Matrix must all be in CPUPlace");
int M = out_dim[0];
int N = out_dim[1];
int K = (in1_T == false) ? in1_dim[1] : in1_dim[0];
int M = dim_out[0];
int N = dim_out[1];
int K = (trans_a == false) ? dim_a[1] : dim_a[0];
CBLAS_TRANSPOSE in1_Trans = (in1_T == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE in2_Trans = (in2_T == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::CPUPlace, float>(in1_Trans, in2_Trans, M, N, K, alpha,
in1.data<float>(), in2.data<float>(), beta,
out->data<float>(), context);
gemm<platform::CPUPlace, float>(
transA, transB, M, N, K, alpha, matrix_a.data<float>(),
matrix_b.data<float>(), beta, matrix_out->data<float>(), context);
}
template <>
void matmul<platform::CPUPlace, double>(const framework::Tensor& in1,
bool in1_T,
const framework::Tensor& in2,
bool in2_T, float alpha,
framework::Tensor* out, float beta,
void matmul<platform::CPUPlace, double>(const framework::Tensor& matrix_a,
bool trans_a,
const framework::Tensor& matrix_b,
bool trans_b, double alpha,
framework::Tensor* matrix_out,
double beta,
platform::DeviceContext* context) {
auto in1_dim = in1.dims();
auto in2_dim = in2.dims();
auto out_dim = out->dims();
PADDLE_ENFORCE(
in1_dim.size() == 2 && in2_dim.size() == 2 && out_dim.size() == 2,
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
"The input and output of matmul be matrix");
PADDLE_ENFORCE(platform::is_cpu_place(in1.place()) &&
platform::is_cpu_place(in2.place()) &&
platform::is_cpu_place(out->place()),
PADDLE_ENFORCE(platform::is_cpu_place(matrix_a.place()) &&
platform::is_cpu_place(matrix_b.place()) &&
platform::is_cpu_place(matrix_out->place()),
"Matrix must all be in CPUPlace");
int M = out_dim[0];
int N = out_dim[1];
int K = (in1_T == false) ? in1_dim[1] : in1_dim[0];
CBLAS_TRANSPOSE in1_Trans = (in1_T == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE in2_Trans = (in2_T == false) ? CblasNoTrans : CblasTrans;
int M = dim_out[0];
int N = dim_out[1];
int K = (trans_a == false) ? dim_a[1] : dim_a[0];
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::CPUPlace, double>(in1_Trans, in2_Trans, M, N, K, alpha,
in1.data<double>(), in2.data<double>(), beta,
out->data<double>(), context);
gemm<platform::CPUPlace, double>(
transA, transB, M, N, K, alpha, matrix_a.data<double>(),
matrix_b.data<double>(), beta, matrix_out->data<double>(), context);
}
} // namespace math
......
......@@ -12,7 +12,46 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_USE_MKLML
#include <mkl_cblas.h>
#include <mkl_lapacke.h>
#include <mkl_vml_functions.h>
#endif
#ifdef PADDLE_USE_MKL
#include <mkl.h>
#include <mkl_lapacke.h>
#endif
#ifdef PADDLE_USE_ATLAS
extern "C" {
#include <cblas.h>
#include <clapack.h>
}
#endif
#ifdef PADDLE_USE_OPENBLAS
#include <cblas.h>
#include <lapacke.h>
#endif
#ifndef LAPACK_FOUND
extern "C" {
#include <cblas.h>
int LAPACKE_sgetrf(int matrix_layout, int m, int n, float* a, int lda,
int* ipiv);
int LAPACKE_dgetrf(int matrix_layout, int m, int n, double* a, int lda,
int* ipiv);
int LAPACKE_sgetri(int matrix_layout, int n, float* a, int lda,
const int* ipiv);
int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda,
const int* ipiv);
}
#endif
#include <cmath>
#include "paddle/operators/math/math_function.h"
namespace paddle {
namespace operators {
namespace math {
......@@ -60,63 +99,67 @@ void gemm<platform::GPUPlace, double>(const CBLAS_TRANSPOSE transA,
}
template <>
void matmul<platform::GPUPlace, float>(const framework::Tensor& in1, bool in1_T,
const framework::Tensor& in2, bool in2_T,
float alpha, framework::Tensor* out,
void matmul<platform::GPUPlace, float>(const framework::Tensor& matrix_a,
bool trans_a,
const framework::Tensor& matrix_b,
bool trans_b, float alpha,
framework::Tensor* matrix_out,
float beta,
platform::DeviceContext* context) {
auto in1_dim = in1.dims();
auto in2_dim = in2.dims();
auto out_dim = out->dims();
PADDLE_ENFORCE(
in1_dim.size() == 2 && in2_dim.size() == 2 && out_dim.size() == 2,
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
"The input and output of matmul be matrix");
PADDLE_ENFORCE(platform::is_gpu_place(in1.place()) &&
platform::is_gpu_place(in2.place()) &&
platform::is_gpu_place(out->place()),
PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
platform::is_gpu_place(matrix_b.place()) &&
platform::is_gpu_place(matrix_out->place()),
"Matrix must all be in GPUPlace");
int M = out_dim[0];
int N = out_dim[1];
int K = (in1_T == false) ? in1_dim[1] : in1_dim[0];
int M = dim_out[0];
int N = dim_out[1];
int K = (trans_a == false) ? dim_a[1] : dim_a[0];
CBLAS_TRANSPOSE in1_Trans = (in1_T == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE in2_Trans = (in2_T == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::GPUPlace, float>(in1_Trans, in2_Trans, M, N, K, alpha,
in1.data<float>(), in2.data<float>(), beta,
out->data<float>(), context);
gemm<platform::GPUPlace, float>(
transA, transB, M, N, K, alpha, matrix_a.data<float>(),
matrix_b.data<float>(), beta, matrix_out->data<float>(), context);
}
template <>
void matmul<platform::GPUPlace, double>(const framework::Tensor& in1,
bool in1_T,
const framework::Tensor& in2,
bool in2_T, float alpha,
framework::Tensor* out, float beta,
void matmul<platform::GPUPlace, double>(const framework::Tensor& matrix_a,
bool trans_a,
const framework::Tensor& matrix_b,
bool trans_b, double alpha,
framework::Tensor* matrix_out,
double beta,
platform::DeviceContext* context) {
auto in1_dim = in1.dims();
auto in2_dim = in2.dims();
auto out_dim = out->dims();
PADDLE_ENFORCE(
in1_dim.size() == 2 && in2_dim.size() == 2 && out_dim.size() == 2,
auto dim_a = matrix_a.dims();
auto dim_b = matrix_b.dims();
auto dim_out = matrix_out->dims();
PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
"The input and output of matmul be matrix");
PADDLE_ENFORCE(platform::is_gpu_place(in1.place()) &&
platform::is_gpu_place(in2.place()) &&
platform::is_gpu_place(out->place()),
PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
platform::is_gpu_place(matrix_b.place()) &&
platform::is_gpu_place(matrix_out->place()),
"Matrix must all be in GPUPlace");
int M = out_dim[0];
int N = out_dim[1];
int K = (in1_T == false) ? in1_dim[1] : in1_dim[0];
CBLAS_TRANSPOSE in1_Trans = (in1_T == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE in2_Trans = (in2_T == false) ? CblasNoTrans : CblasTrans;
int M = dim_out[0];
int N = dim_out[1];
int K = (trans_a == false) ? dim_a[1] : dim_a[0];
gemm<platform::GPUPlace, double>(in1_Trans, in2_Trans, M, N, K, alpha,
in1.data<double>(), in2.data<double>(), beta,
out->data<double>(), context);
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
gemm<platform::GPUPlace, double>(
transA, transB, M, N, K, alpha, matrix_a.data<double>(),
matrix_b.data<double>(), beta, matrix_out->data<double>(), context);
}
} // namespace math
} // namespace operators
} // namespace paddle
......@@ -14,44 +14,6 @@ limitations under the License. */
#pragma once
#ifdef PADDLE_USE_MKLML
#include <mkl_cblas.h>
#include <mkl_lapacke.h>
#include <mkl_vml_functions.h>
#endif
#ifdef PADDLE_USE_MKL
#include <mkl.h>
#include <mkl_lapacke.h>
#endif
#ifdef PADDLE_USE_ATLAS
extern "C" {
#include <cblas.h>
#include <clapack.h>
}
#endif
#ifdef PADDLE_USE_OPENBLAS
#include <cblas.h>
#include <lapacke.h>
#endif
#ifndef LAPACK_FOUND
extern "C" {
#include <cblas.h>
int LAPACKE_sgetrf(int matrix_layout, int m, int n, float* a, int lda,
int* ipiv);
int LAPACKE_dgetrf(int matrix_layout, int m, int n, double* a, int lda,
int* ipiv);
int LAPACKE_sgetri(int matrix_layout, int n, float* a, int lda,
const int* ipiv);
int LAPACKE_dgetri(int matrix_layout, int n, double* a, int lda,
const int* ipiv);
}
#endif
#include <cmath>
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/enforce.h"
......@@ -60,17 +22,20 @@ namespace paddle {
namespace operators {
namespace math {
// support continuous memory now
template <typename Place, typename T>
// Support continuous memory now
// If transA = N, and transB = N
// Then matrixA: M * K, matrixB: K * N matrixC : M * N
// For more detailed info, please refer to
// http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html
void gemm(const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB,
const int M, const int N, const int K, const T alpha, const T* A,
const T* B, const T beta, T* C, platform::DeviceContext* context);
// matrix multiply with continuous memory
template <typename Place, typename T>
void matmul(const framework::Tensor& in1, bool in1_T,
const framework::Tensor& in2, bool in2_T, float alpha,
framework::Tensor* out, float beta,
void matmul(const framework::Tensor& matrix_a, bool trans_a,
const framework::Tensor& matrix_b, bool trans_b, float alpha,
framework::Tensor* matrix_out, float beta,
platform::DeviceContext* context);
} // namespace math
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册