提交 2eb46c2b 编写于 作者: T tensor-tang

add cpu vec test

上级 0d46f518
......@@ -65,3 +65,4 @@ if(WITH_GPU)
nv_test(selected_rows_functor_gpu_test SRCS selected_rows_functor_test.cu DEPS selected_rows_functor math_function)
endif()
cc_test(concat_test SRCS concat_test.cc DEPS concat)
cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
......@@ -15,6 +15,13 @@ limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/platform/cpu_info.h"
#ifdef __AVX__
#include <immintrin.h>
#endif
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif
namespace paddle {
namespace operators {
......@@ -22,7 +29,6 @@ namespace math {
#define SIGMOID_THRESHOLD_MIN -40.0
#define SIGMOID_THRESHOLD_MAX 13.0
#define EXP_MAX_INPUT 40.0
template <typename T>
inline T sigmoid(T x) {
......@@ -46,7 +52,7 @@ inline void vec_sigmoid(const int n, const T* x, T* y) {
const T max = SIGMOID_THRESHOLD_MAX;
for (int i = 0; i < n; ++i) {
T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]);
y[i] = 1.0 / (1.0 + std::exp(-tmp));
y[i] = sigmoid<T>(tmp);
}
}
......@@ -96,7 +102,7 @@ class VecActivations {
} else if (type == "identity" || type == "") {
return vec_identity<T, isa>;
}
PADDLE_THROW("Not support type %s.", type);
LOG(FATAL) << "Not support type: " << type;
}
};
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <sys/time.h>
#include <cmath>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/operators/math/cpu_vec.h"
inline double GetCurrentUS() {
struct timeval time;
gettimeofday(&time, NULL);
return 1e+6 * time.tv_sec + time.tv_usec;
}
constexpr int repeat = 1000;
template <typename T>
inline T _sigmoid(T x) {
const T min = SIGMOID_THRESHOLD_MIN;
const T max = SIGMOID_THRESHOLD_MAX;
T tmp = (x < min) ? min : ((x > max) ? max : x);
return 1. / (1. + std::exp(-tmp));
}
template <typename T>
inline T _tanh(T x) {
return 2. * _sigmoid<T>(2. * x) - 1.;
}
template <typename T>
void ref_sigmoid(const int n, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
y[i] = _sigmoid(x[i]);
}
}
template <typename T>
void ref_tanh(const int n, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
y[i] = _tanh(x[i]);
}
}
template <typename T>
void ref_relu(const int n, const T* x, T* y) {
for (int i = 0; i < n; ++i) {
y[i] = x[i] > 0 ? x[i] : 0;
}
}
template <typename T>
void RandomVec(const int n, T* a) {
static unsigned int seed = 100;
std::mt19937 rng(seed++);
std::uniform_real_distribution<double> uniform_dist(0, 1);
const T lower = static_cast<T>(-20.f);
const T upper = static_cast<T>(-20.f);
for (int i = 0; i < n; ++i) {
a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
}
}
template <typename T>
void TestAndBench(const int n, std::function<void(const int, const T*, T*)> tgt,
std::function<void(const int, const T*, T*)> ref) {
std::vector<T> x(n);
std::vector<T> ytgt(n), yref(n);
RandomVec<T>(n, x.data());
const T* x_data = x.data();
T* ytgt_data = ytgt.data();
T* yref_data = yref.data();
auto st = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
tgt(n, x_data, ytgt_data);
}
auto mt = GetCurrentUS();
for (int i = 0; i < repeat; ++i) {
ref(n, x_data, yref_data);
}
auto et = GetCurrentUS();
VLOG(3) << "Vec size " << n << ": refer takes: " << (et - mt) / repeat
<< " us, tgt takes: " << (mt - st) / repeat;
for (int i = 0; i < n; ++i) {
EXPECT_NEAR(ytgt_data[i], yref_data[i], 1e-3);
}
}
TEST(CpuVecTest, sigmoid) {
namespace jit = paddle::platform::jit;
using namespace paddle::operators::math; // NOLINT
for (auto sz : {1, 2, 15, 16, 32, 128, 200, 512}) {
TestAndBench<float>(sz, vec_sigmoid<float>, ref_sigmoid<float>);
TestAndBench<float>(sz, vec_sigmoid<float, jit::avx>, ref_sigmoid<float>);
TestAndBench<float>(sz, vec_sigmoid<float, jit::avx2>, ref_sigmoid<float>);
TestAndBench<float>(sz, vec_sigmoid<float, jit::avx512_common>,
ref_sigmoid<float>);
}
TestAndBench<double>(30, vec_sigmoid<double>, ref_sigmoid<double>);
}
TEST(CpuVecTest, tanh) {
namespace jit = paddle::platform::jit;
using namespace paddle::operators::math; // NOLINT
for (auto sz : {1, 2, 15, 16, 32, 128, 200, 512}) {
TestAndBench<float>(sz, vec_tanh<float>, ref_tanh<float>);
TestAndBench<float>(sz, vec_tanh<float, jit::avx>, ref_tanh<float>);
TestAndBench<float>(sz, vec_tanh<float, jit::avx2>, ref_tanh<float>);
TestAndBench<float>(sz, vec_tanh<float, jit::avx512_common>,
ref_tanh<float>);
}
TestAndBench<double>(30, vec_tanh<double>, ref_tanh<double>);
}
TEST(CpuVecTest, relu) {
namespace jit = paddle::platform::jit;
using namespace paddle::operators::math; // NOLINT
for (auto sz : {1, 2, 15, 16, 32, 128, 200, 512}) {
TestAndBench<float>(sz, vec_relu<float>, ref_relu<float>);
TestAndBench<float>(sz, vec_relu<float, jit::avx>, ref_relu<float>);
TestAndBench<float>(sz, vec_relu<float, jit::avx2>, ref_relu<float>);
TestAndBench<float>(sz, vec_relu<float, jit::avx512_common>,
ref_relu<float>);
}
TestAndBench<double>(30, vec_relu<double>, ref_relu<double>);
}
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册