提交 2ea5843c 编写于 作者: D dengkaipeng

add doc and test_layers. test=develop

上级 037855f4
......@@ -109,10 +109,32 @@ class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
.SetDefault(1e-12);
AddComment(R"DOC(
This operator samples input X to given output shape by using specified
This layer calculate the spectral normalize value of weight of
fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
tensor.
Spectral normalization stabilizes the training of critis in GANs
(Generative Adversarial Networks). This layers rescaling weight tensor
wiht spectral normalize value.
For spectral normalization calculations, we rescaling weight
tensor with \sigma, while \sigma{\mathbf{W}} is
\sigma(\mathbf{W}) = \max_{\mathbf{h}: \mathbf{h} \ne 0} \dfrac{\|\mathbf{W} \mathbf{h}\|_2}{\|\mathbf{h}\|_2}
We calculate \sigma{\mathbf{W}} through power iterations as
\mathbf{v} = \mathbf{W}^{T} \mathbf{u}
\mathbf{v} = \frac{\mathbf{v}}{\|\mathbf{v}\|_2}
\mathbf{u} = \mathbf{W}^{T} \mathbf{v}
\mathbf{u} = \frac{\mathbf{u}}{\|\mathbf{u}\|_2}
And \sigma should be
\sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
For details of spectral normalization, please refer to paper:
`Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
)DOC");
}
};
......
......@@ -3348,28 +3348,42 @@ def group_norm(input,
@templatedoc()
def spectral_norm(weight,
dim=0,
power_iters=1,
eps=1e-12,
u_attr=None,
v_attr=None,
name=None):
def spectral_norm(weight, dim=0, power_iters=1, eps=1e-12, name=None):
"""
**Spectral Normalization Layer**
This layer calculate the spectral normalize value of weight parameters of
fc, conv1d, conv2d, conv3d layers which should be 2-D, 3-D, 4-D, 5-D
Parameters. Calculations are showed as followings.
.. code-block:: text
Step 1:
Generate vector u in shape of [h], and v in shape of [w].
While h is the attr:`dim`th dimension of the input weights,
and w is the product result of remain dimensions.
Step 2:
While attr:`power_iters` is a positive interger, do following
iteration calculations with u and v for attr:`power_iters`
round.
\mathbf{v} = \mathbf{W}^{T} \mathbf{u}
\mathbf{v} = \frac{\mathbf{v}}{\|\mathbf{v}\|_2}
\mathbf{u} = \mathbf{W}^{T} \mathbf{v}
\mathbf{u} = \frac{\mathbf{u}}{\|\mathbf{u}\|_2}
Step 3:
Calculate \sigma{W} and scale weight values.
\sigma{\mathbf{W}} = \mathbf{u}^{T} \mathbf{W} \mathbf{v}
\mathbf{W} := \frac{\mathbf{W}}{\sigma{\mathbf{W}}}
Refer to `Spectral Normalization <https://arxiv.org/abs/1802.05957>`_ .
Args:
weight(${weight_type}): ${weight_comment}
dim(${dim_type}): ${dim_comment}
eps(${eps_type}): ${eps_comment}
u_attr(ParamAttr|None): The parameter attribute for vector u in
spectral calculatings, set None to use default attribute, which
generates random values in normal distribution N(0, 1). Default: None.
v_attr(ParamAttr|None): The parameter attribute for vector v in
spectral calculatings, set None to use default attribute, which
generates random values in normal distribution N(0, 1). Default: None.
name (str): The name of this layer. It is optional.
Returns:
......@@ -3382,43 +3396,43 @@ def spectral_norm(weight,
>>> x = fluid.layers.spectral_norm(weight=data, dim=1, power_iters=2)
"""
helper = LayerHelper('spectral_norm', **locals())
dtype = helper.input_dtype()
dtype = weight.dtype
# create intput and parameters
inputs = {'Weight': weight}
input_shape = input.shape
if data_layout != 'NCHW':
raise ValueError("unsupported data layout:" + data_layout)
param_shape = [input_shape[1]]
if param_attr:
scale = helper.create_parameter(
attr=helper.param_attr,
shape=param_shape,
input_shape = weight.shape
h = input_shape[dim]
w = np.prod(input_shape) // h
u = helper.create_parameter(
attr=ParamAttr(),
shape=[h],
dtype=dtype,
default_initializer=Constant(1.0))
inputs['Scale'] = scale
if bias_attr:
bias = helper.create_parameter(
attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
inputs['Bias'] = bias
default_initializer=Normal(0., 1.))
u.stop_gradient = True
inputs['U'] = u
v = helper.create_parameter(
attr=ParamAttr(),
shape=[w],
dtype=dtype,
default_initializer=Normal(0., 1.))
inputs['V'] = v
v.stop_gradient = True
# create output
mean_out = helper.create_variable(dtype=dtype, stop_gradient=True)
variance_out = helper.create_variable(dtype=dtype, stop_gradient=True)
group_norm_out = helper.create_variable(dtype=dtype)
out = helper.create_variable(dtype=dtype)
helper.append_op(
type="group_norm",
type="spectral_norm",
inputs=inputs,
outputs={
"Y": group_norm_out,
"Mean": mean_out,
"Variance": variance_out,
},
attrs={"epsilon": epsilon,
"groups": groups})
outputs={"Out": out, },
attrs={
"dim": dim,
"power_iters": power_iters,
"eps": eps,
})
return helper.append_activation(group_norm_out)
return out
def conv2d_transpose(input,
......
......@@ -1035,6 +1035,19 @@ class TestBook(unittest.TestCase):
print(str(program))
def test_spectral_norm(self):
program = Program()
with program_guard(program):
weight = layers.data(
name='weight',
shape=[2, 3, 32, 32],
dtype="float32",
append_batch_size=False)
out = layers.spectral_norm(weight, dim=1, power_iters=1)
self.assertIsNotNone(out)
print(str(program))
def test_shuffle_channel(self):
program = Program()
with program_guard(program):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册