提交 2e40660e 编写于 作者: W wanghaoshuang

Fix some issues.

上级 19db989e
...@@ -1155,7 +1155,7 @@ class Parameter(Variable): ...@@ -1155,7 +1155,7 @@ class Parameter(Variable):
self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None) self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
self.average = kwargs.get('average', True) self.do_model_average = kwargs.get('do_model_average', None)
def __str__(self): def __str__(self):
return self.to_string(True) return self.to_string(True)
...@@ -1177,7 +1177,7 @@ class Parameter(Variable): ...@@ -1177,7 +1177,7 @@ class Parameter(Variable):
if with_details: if with_details:
res_str = Variable.to_string(self, throw_on_error, True) res_str = Variable.to_string(self, throw_on_error, True)
additional_attr = ("trainable", "optimize_attr", "regularizer", additional_attr = ("trainable", "optimize_attr", "regularizer",
"gradient_clip_attr", "average") "gradient_clip_attr", "do_model_average")
for attr_name in additional_attr: for attr_name in additional_attr:
res_str += "%s: %s\n" % (attr_name, res_str += "%s: %s\n" % (attr_name,
str(getattr(self, attr_name))) str(getattr(self, attr_name)))
......
...@@ -1489,8 +1489,7 @@ def batch_norm(input, ...@@ -1489,8 +1489,7 @@ def batch_norm(input,
name=None, name=None,
moving_mean_name=None, moving_mean_name=None,
moving_variance_name=None, moving_variance_name=None,
average_mean=True, do_model_average_for_mean_and_var=False):
average_variance=True):
""" """
This function helps create an operator to implement This function helps create an operator to implement
the BatchNorm layer using the configurations from the input parameters. the BatchNorm layer using the configurations from the input parameters.
...@@ -1519,12 +1518,15 @@ def batch_norm(input, ...@@ -1519,12 +1518,15 @@ def batch_norm(input,
bias = helper.create_parameter( bias = helper.create_parameter(
attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True) attr=helper.bias_attr, shape=param_shape, dtype=dtype, is_bias=True)
if do_model_average_for_mean_and_var:
do_model_average_for_mean_and_var = None
mean = helper.create_parameter( mean = helper.create_parameter(
attr=ParamAttr( attr=ParamAttr(
name=moving_mean_name, name=moving_mean_name,
initializer=Constant(0.0), initializer=Constant(0.0),
trainable=False, trainable=False,
average=average_variance), do_model_average=do_model_average_for_mean_and_var),
shape=param_shape, shape=param_shape,
dtype=input.dtype) dtype=input.dtype)
mean.stop_gradient = True mean.stop_gradient = True
...@@ -1534,7 +1536,7 @@ def batch_norm(input, ...@@ -1534,7 +1536,7 @@ def batch_norm(input,
name=moving_variance_name, name=moving_variance_name,
initializer=Constant(1.0), initializer=Constant(1.0),
trainable=False, trainable=False,
average=average_mean), do_model_average=do_model_average_for_mean_and_var),
shape=param_shape, shape=param_shape,
dtype=input.dtype) dtype=input.dtype)
variance.stop_gradient = True variance.stop_gradient = True
......
...@@ -840,7 +840,7 @@ class ModelAverage(Optimizer): ...@@ -840,7 +840,7 @@ class ModelAverage(Optimizer):
""" """
def __init__(self, def __init__(self,
average_window_rate=0.15, average_window_rate,
params_grads=None, params_grads=None,
min_average_window=10000, min_average_window=10000,
max_average_window=10000, max_average_window=10000,
...@@ -856,7 +856,7 @@ class ModelAverage(Optimizer): ...@@ -856,7 +856,7 @@ class ModelAverage(Optimizer):
params[param.name] = (param, grad) params[param.name] = (param, grad)
for param in framework.default_main_program().global_block( for param in framework.default_main_program().global_block(
).all_parameters(): ).all_parameters():
if param.name not in params and param.average: if param.name not in params and param.do_model_average != False:
grad = param.block.create_var( grad = param.block.create_var(
name=unique_name.generate(".".join([param.name, 'tmp'])), name=unique_name.generate(".".join([param.name, 'tmp'])),
dtype=param.dtype, dtype=param.dtype,
......
...@@ -29,14 +29,14 @@ class ParamAttr(object): ...@@ -29,14 +29,14 @@ class ParamAttr(object):
regularizer=None, regularizer=None,
trainable=True, trainable=True,
gradient_clip=None, gradient_clip=None,
average=True): do_model_average=None):
self.name = name self.name = name
self.initializer = initializer self.initializer = initializer
self.learning_rate = learning_rate self.learning_rate = learning_rate
self.regularizer = regularizer self.regularizer = regularizer
self.trainable = trainable self.trainable = trainable
self.gradient_clip = gradient_clip self.gradient_clip = gradient_clip
self.average = average self.model_average = do_model_average
def set_default_initializer(self, initializer): def set_default_initializer(self, initializer):
if initializer is None: if initializer is None:
...@@ -83,7 +83,7 @@ class ParamAttr(object): ...@@ -83,7 +83,7 @@ class ParamAttr(object):
'regularizer': self.regularizer, 'regularizer': self.regularizer,
'trainable': self.trainable, 'trainable': self.trainable,
'gradient_clip_attr': self.gradient_clip, 'gradient_clip_attr': self.gradient_clip,
'average': self.average 'model_average': self.model_average
} }
if with_initializer: if with_initializer:
kwargs['initializer'] = self.initializer kwargs['initializer'] = self.initializer
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册