Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2cde56c5
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2cde56c5
编写于
9月 20, 2017
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Use Transform instead of eigen
上级
743dfd82
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
58 addition
and
115 deletion
+58
-115
paddle/operators/clip_op.cc
paddle/operators/clip_op.cc
+1
-2
paddle/operators/clip_op.cu
paddle/operators/clip_op.cu
+2
-56
paddle/operators/clip_op.h
paddle/operators/clip_op.h
+55
-57
未找到文件。
paddle/operators/clip_op.cc
浏览文件 @
2cde56c5
...
@@ -80,6 +80,5 @@ class ClipOpGrad : public framework::OperatorWithKernel {
...
@@ -80,6 +80,5 @@ class ClipOpGrad : public framework::OperatorWithKernel {
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
clip
,
ops
::
ClipOp
,
ops
::
ClipOpMaker
<
float
>
,
clip_grad
,
REGISTER_OP
(
clip
,
ops
::
ClipOp
,
ops
::
ClipOpMaker
<
float
>
,
clip_grad
,
ops
::
ClipOpGrad
);
ops
::
ClipOpGrad
);
REGISTER_OP_CPU_KERNEL
(
clip
,
REGISTER_OP_CPU_KERNEL
(
clip
,
ops
::
ClipKernel
<
float
>
);
ops
::
ClipKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
REGISTER_OP_CPU_KERNEL
(
clip_grad
,
ops
::
ClipGradKernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
clip_grad
,
ops
::
ClipGradKernel
<
float
>
);
paddle/operators/clip_op.cu
浏览文件 @
2cde56c5
...
@@ -14,60 +14,6 @@
...
@@ -14,60 +14,6 @@
#include "paddle/operators/clip_op.h"
#include "paddle/operators/clip_op.h"
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
i += blockDim.x * gridDim.x)
namespace
paddle
{
namespace
operators
{
using
framework
::
LoDTensor
;
template
<
typename
T
>
__global__
void
ClipGradientKernel
(
const
int
N
,
const
T
min
,
const
T
max
,
const
T
*
Y
,
const
T
*
dY
,
T
*
dX
)
{
CUDA_1D_KERNEL_LOOP
(
i
,
N
)
{
if
(
Y
[
i
]
>
min
&&
Y
[
i
]
<
max
)
{
dX
[
i
]
=
dY
[
i
];
}
else
{
dX
[
i
]
=
0
;
}
}
}
template
<
typename
T
>
class
ClipGradientOpCUDAKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
max
=
context
.
Attr
<
float
>
(
"max"
);
auto
min
=
context
.
Attr
<
float
>
(
"min"
);
auto
*
d_out
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
d_x
!=
nullptr
)
{
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
dims
=
d_x
->
dims
();
int64_t
count
=
d_out
->
numel
();
auto
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
d_out_data
=
d_out
->
data
<
T
>
();
auto
x_data
=
x
->
data
<
T
>
();
int
N
=
d_x
->
dims
()[
0
];
int
D
=
d_x
->
dims
()[
1
];
int
block
=
512
;
int
grid
=
(
N
*
D
+
block
-
1
)
/
block
;
ClipGradientKernel
<
T
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
count
,
min
,
max
,
x_data
,
d_out_data
,
d_x_data
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
clip
,
REGISTER_OP_GPU_KERNEL
(
clip
,
ops
::
ClipKernel
<
float
>
);
ops
::
ClipKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
REGISTER_OP_GPU_KERNEL
(
clip_grad
,
ops
::
ClipGradKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
clip_grad
,
ops
::
ClipGradientOpCUDAKernel
<
float
>
);
paddle/operators/clip_op.h
浏览文件 @
2cde56c5
...
@@ -16,57 +16,61 @@
...
@@ -16,57 +16,61 @@
#include "paddle/framework/eigen.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/op_registry.h"
#include "paddle/platform/transform.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
using
framework
::
LoDTensor
;
using
framework
::
Tensor
;
using
platform
::
Transform
;
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
template
<
typename
T
>
typename
IndexType
=
Eigen
::
DenseIndex
>
class
ClipFunctor
{
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
public:
explicit
ClipFunctor
(
const
T
min
,
const
T
max
)
:
min_
(
min
),
max_
(
max
)
{}
HOSTDEVICE
T
operator
()(
const
T
&
x
)
const
{
if
(
x
<
min_
)
return
min_
;
else
if
(
x
>
max_
)
return
max_
;
else
return
x
;
}
private:
T
min_
;
T
max_
;
};
template
<
typename
T
>
class
ClipGradFunctor
{
public:
explicit
ClipGradFunctor
(
const
T
min
,
const
T
max
)
:
min_
(
min
),
max_
(
max
)
{}
HOSTDEVICE
T
operator
()(
const
T
&
x
,
const
T
&
y
)
const
{
if
(
y
>
min_
&&
y
<
max_
)
return
x
;
else
return
0
;
}
template
<
typename
Place
,
typename
T
,
size_t
D
>
private:
void
ClipFunction
(
const
framework
::
ExecutionContext
&
context
)
{
T
min_
;
auto
max
=
context
.
op
().
Attr
<
float
>
(
"max"
);
T
max_
;
auto
min
=
context
.
op
().
Attr
<
float
>
(
"min"
);
};
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
x
);
auto
out_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
out
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
out_tensor
.
device
(
place
)
=
x_tensor
.
cwiseMin
(
max
).
cwiseMax
(
min
);
}
template
<
typename
Place
,
typename
T
>
template
<
typename
T
>
class
ClipKernel
:
public
framework
::
OpKernel
{
class
ClipKernel
:
public
framework
::
OpKernel
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
int
rank
=
context
.
Input
<
LoDTensor
>
(
"X"
)
->
dims
().
size
();
auto
max
=
context
.
Attr
<
T
>
(
"max"
);
switch
(
rank
)
{
auto
min
=
context
.
Attr
<
T
>
(
"min"
);
case
1
:
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
ClipFunction
<
Place
,
T
,
1
>
(
context
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
break
;
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
case
2
:
const
T
*
x_data
=
x
->
data
<
T
>
();
ClipFunction
<
Place
,
T
,
2
>
(
context
);
int
numel
=
x
->
numel
();
break
;
Transform
(
context
.
device_context
(),
x_data
,
x_data
+
numel
,
out_data
,
case
3
:
ClipFunctor
<
T
>
(
min
,
max
));
ClipFunction
<
Place
,
T
,
3
>
(
context
);
break
;
case
4
:
ClipFunction
<
Place
,
T
,
4
>
(
context
);
break
;
case
5
:
ClipFunction
<
Place
,
T
,
5
>
(
context
);
break
;
case
6
:
ClipFunction
<
Place
,
T
,
6
>
(
context
);
break
;
default:
PADDLE_THROW
(
"PadOp only support tensors with no more than 6 dimensions."
);
}
}
}
};
};
...
@@ -74,24 +78,18 @@ template <typename T>
...
@@ -74,24 +78,18 @@ template <typename T>
class
ClipGradKernel
:
public
framework
::
OpKernel
{
class
ClipGradKernel
:
public
framework
::
OpKernel
{
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
max
=
context
.
op
().
Attr
<
float
>
(
"max"
);
auto
max
=
context
.
Attr
<
T
>
(
"max"
);
auto
min
=
context
.
op
().
Attr
<
float
>
(
"min"
);
auto
min
=
context
.
Attr
<
T
>
(
"min"
);
auto
*
d_out
=
context
.
Input
<
LoD
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
context
.
Output
<
LoD
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
d_x
!=
nullptr
)
{
if
(
d_x
!=
nullptr
)
{
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
dims
=
d_x
->
dims
();
int64_t
numel
=
d_out
->
numel
();
int64_t
count
=
d_out
->
numel
();
auto
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
d_x_data
=
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
d_out_data
=
d_out
->
data
<
T
>
();
const
T
*
d_out_data
=
d_out
->
data
<
T
>
();
auto
x_data
=
x
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
Transform
(
context
.
device_context
(),
d_out_data
,
d_out_data
+
numel
,
if
(
x_data
[
i
]
>
min
&&
x_data
[
i
]
<
max
)
{
x_data
,
d_x_data
,
ClipGradFunctor
<
T
>
(
min
,
max
));
d_x_data
[
i
]
=
d_out_data
[
i
];
}
else
{
d_x_data
[
i
]
=
0
;
}
}
}
}
}
}
};
};
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录