提交 2888d2d7 编写于 作者: Y Yancey1989

Merge branch 'develop' of github.com:PaddlePaddle/Paddle into parallel_bcast

......@@ -19,7 +19,7 @@ Our vision is to enable deep learning for everyone via PaddlePaddle.
Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest feature of PaddlePaddle.
### Latest PaddlePaddle Release: [Fluid 0.14.0](https://github.com/PaddlePaddle/Paddle/tree/v0.14.0)
### Latest PaddlePaddle Release: [Fluid 0.15.0](https://github.com/PaddlePaddle/Paddle/tree/v0.15.0)
### Install Latest Stable Release:
```
# Linux CPU
......@@ -76,26 +76,26 @@ pip install paddlepaddle-gpu==0.14.0.post85
## Installation
It is recommended to read [this doc](http://paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/beginners_guide/install/install_doc.html) on our website.
It is recommended to read [this doc](http://paddlepaddle.org/documentation/docs/zh/0.15.0/new_docs/beginners_guide/install/install_doc.html) on our website.
## Documentation
We provide [English](http://paddlepaddle.org/documentation/docs/en/0.14.0/getstarted/index_en.html) and
[Chinese](http://paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/beginners_guide/index.html) documentation.
We provide [English](http://paddlepaddle.org/documentation/docs/en/0.15.0/getstarted/index_en.html) and
[Chinese](http://paddlepaddle.org/documentation/docs/zh/0.15.0/new_docs/beginners_guide/index.html) documentation.
- [Deep Learning 101](https://github.com/PaddlePaddle/book)
You might want to start from this online interactive book that can run in a Jupyter Notebook.
- [Distributed Training](http://paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/user_guides/howto/training/cluster_howto.html)
- [Distributed Training](http://paddlepaddle.org/documentation/docs/zh/0.15.0/new_docs/user_guides/howto/training/cluster_howto.html)
You can run distributed training jobs on MPI clusters.
- [Python API](http://paddlepaddle.org/documentation/api/zh/0.14.0/fluid.html)
- [Python API](http://paddlepaddle.org/documentation/api/zh/0.15.0/fluid.html)
Our new API enables much shorter programs.
- [How to Contribute](http://paddlepaddle.org/documentation/docs/zh/0.14.0/new_docs/advanced_usage/development/contribute_to_paddle.html)
- [How to Contribute](http://paddlepaddle.org/documentation/docs/zh/0.15.0/new_docs/advanced_usage/development/contribute_to_paddle.html)
We appreciate your contributions!
......
......@@ -28,6 +28,9 @@ cc_library(graph_pattern_detector SRCS graph_pattern_detector.cc DEPS graph grap
pass_library(graph_to_program_pass base)
pass_library(graph_viz_pass base)
pass_library(fc_fuse_pass inference)
if(WITH_MKLDNN)
pass_library(conv_relu_mkldnn_fuse_pass inference)
endif()
pass_library(attention_lstm_fuse_pass inference)
pass_library(infer_clean_graph_pass inference)
pass_library(fc_lstm_fuse_pass inference)
......@@ -42,3 +45,6 @@ cc_test(graph_helper_test SRCS graph_helper_test.cc DEPS graph graph_helper op_r
cc_test(graph_to_program_pass_test SRCS graph_to_program_pass_test.cc DEPS graph_to_program_pass)
cc_test(test_graph_pattern_detector SRCS graph_pattern_detector_tester.cc DEPS graph_pattern_detector)
cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framework_proto)
if(WITH_MKLDNN)
cc_test(test_conv_relu_mkldnn_fuse_pass SRCS conv_relu_mkldnn_fuse_pass_tester.cc DEPS conv_relu_mkldnn_fuse_pass)
endif()
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h"
#include <string>
#include <vector>
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace framework {
namespace ir {
std::unique_ptr<ir::Graph> ConvReLUFusePass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
PADDLE_ENFORCE(graph.get());
FusePassBase::Init("conv_relu_mkldnn_fuse", graph.get());
std::unordered_set<Node*> nodes2delete;
GraphPatternDetector gpd;
auto* conv_input = gpd.mutable_pattern()
->NewNode("conv_relu_mkldnn_fuse/conv_input")
->AsInput()
->assert_is_op_input("conv2d", "Input");
patterns::ConvReLU conv_relu_pattern(gpd.mutable_pattern(),
"conv_relu_mkldnn_fuse");
conv_relu_pattern(conv_input);
int found_conv_relu_count = 0;
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
VLOG(4) << "handle ConvReLU fuse";
GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight,
conv_relu_pattern); // Filter
GET_IR_NODE_FROM_SUBGRAPH(conv_bias, conv_bias, conv_relu_pattern); // Bias
GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, conv_relu_pattern); // tmp
GET_IR_NODE_FROM_SUBGRAPH(conv, conv, conv_relu_pattern); // CONV op
GET_IR_NODE_FROM_SUBGRAPH(relu_out, relu_out, conv_relu_pattern); // Out
GET_IR_NODE_FROM_SUBGRAPH(relu, relu, conv_relu_pattern); // ReLU op
// Create an ConvReLU Node.
OpDesc desc;
std::string conv_relu_i_in = subgraph.at(conv_input)->Name();
std::string conv_relu_w_in = conv_weight->Name();
std::string conv_relu_b_in = conv_bias->Name();
std::string conv_relu_out = relu_out->Name();
desc.SetInput("Input", std::vector<std::string>({conv_relu_i_in}));
desc.SetInput("Filter", std::vector<std::string>({conv_relu_w_in}));
desc.SetInput("Bias", std::vector<std::string>({conv_relu_b_in}));
desc.SetOutput("Out", std::vector<std::string>({conv_relu_out}));
desc.SetType("conv2d");
for (auto& attr : conv->Op()->GetAttrMap()) {
desc.SetAttr(attr.first, attr.second);
}
desc.SetAttr("fuse_relu", true);
auto conv_relu_node = g->CreateOpNode(&desc); // OpDesc will be copied.
GraphSafeRemoveNodes(graph.get(), {conv, relu, conv_out});
PADDLE_ENFORCE(subgraph.count(conv_input));
IR_NODE_LINK_TO(subgraph.at(conv_input), conv_relu_node);
IR_NODE_LINK_TO(conv_weight, conv_relu_node);
IR_NODE_LINK_TO(conv_bias, conv_relu_node);
IR_NODE_LINK_TO(conv_relu_node, relu_out);
found_conv_relu_count++;
};
gpd(graph.get(), handler);
AddStatis(found_conv_relu_count);
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(conv_relu_mkldnn_fuse_pass,
paddle::framework::ir::ConvReLUFusePass);
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace ir {
/*
* Fuse the CONV and ReLU to a ConvReLUOp.
*/
class ConvReLUFusePass : public FusePassBase {
public:
virtual ~ConvReLUFusePass() {}
protected:
std::unique_ptr<ir::Graph> ApplyImpl(std::unique_ptr<ir::Graph> graph) const;
};
} // namespace ir
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h"
#include <gtest/gtest.h>
namespace paddle {
namespace framework {
namespace ir {
void SetOp(ProgramDesc* prog, const std::string& type,
const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs) {
auto* op = prog->MutableBlock(0)->AppendOp();
op->SetType(type);
if (type == "conv2d") {
op->SetAttr("use_mkldnn", true);
op->SetInput("Input", {inputs[0]});
op->SetInput("Filter", {inputs[1]});
op->SetInput("Bias", {inputs[2]});
} else if (type == "relu") {
op->SetInput("X", inputs);
}
op->SetOutput("Out", outputs);
}
// a->OP0->b
// b->OP1->c
// (c, weights, bias)->conv->f
// (f)->relu->g
ProgramDesc BuildProgramDesc() {
ProgramDesc prog;
for (auto& v :
std::vector<std::string>({"a", "b", "c", "weights", "bias", "f", "g"})) {
auto* var = prog.MutableBlock(0)->Var(v);
var->SetType(proto::VarType::SELECTED_ROWS);
if (v == "weights" || v == "bias") {
var->SetPersistable(true);
}
}
SetOp(&prog, "OP0", std::vector<std::string>({"a"}),
std::vector<std::string>({"b"}));
SetOp(&prog, "OP1", std::vector<std::string>({"b"}),
std::vector<std::string>({"c"}));
SetOp(&prog, "conv2d", std::vector<std::string>({"c", "weights", "bias"}),
std::vector<std::string>({"f"}));
SetOp(&prog, "relu", std::vector<std::string>({"f"}),
std::vector<std::string>({"g"}));
return prog;
}
TEST(ConvReLUFusePass, basic) {
auto prog = BuildProgramDesc();
std::unique_ptr<ir::Graph> graph(new ir::Graph(prog));
auto pass = PassRegistry::Instance().Get("conv_relu_mkldnn_fuse_pass");
int original_nodes_num = graph->Nodes().size();
graph = pass->Apply(std::move(graph));
int current_nodes_num = graph->Nodes().size();
// Remove 3 Nodes: CONV, RELU, conv_out
// Add 1 Node: ConvReLU
EXPECT_EQ(original_nodes_num - 2, current_nodes_num);
// Assert conv_relu op in newly generated graph
int conv_relu_count = 0;
for (auto* node : graph->Nodes()) {
if (node->IsOp() && node->Op()->Type() == "conv2d") {
if (node->Op()->HasAttr("use_mkldnn")) {
bool use_mkldnn = boost::get<bool>(node->Op()->GetAttr("use_mkldnn"));
if (use_mkldnn) {
if (node->Op()->HasAttr("fuse_relu")) {
bool fuse_relu = boost::get<bool>(node->Op()->GetAttr("fuse_relu"));
if (fuse_relu) {
++conv_relu_count;
}
}
}
}
}
}
EXPECT_EQ(conv_relu_count, 1);
}
} // namespace ir
} // namespace framework
} // namespace paddle
USE_PASS(conv_relu_mkldnn_fuse_pass);
......@@ -51,7 +51,7 @@ int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
if (with_fc_bias) {
// Add FC-bias with LSTM-bias and create a new weight
PADDLE_ENFORCE(scope);
const std::string& new_bias_var = name_scope + "_bias.new";
const std::string& new_bias_var = patterns::UniqueKey("NewBias");
auto* bias_var = scope->Var(new_bias_var);
PADDLE_ENFORCE(bias_var);
auto* bias_tensor = bias_var->GetMutable<framework::LoDTensor>();
......@@ -120,7 +120,6 @@ int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
Graph* g) {
GET_IR_NODE_FROM_SUBGRAPH(lstm, lstm, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, lstm_pattern);
GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, lstm_pattern);
......@@ -136,7 +135,7 @@ int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
fc_bias);
// Remove unneeded nodes.
std::unordered_set<const Node*> marked_nodes(
{mul, lstm, elementwise_add});
{mul, lstm, elementwise_add, fc_bias});
GraphSafeRemoveNodes(graph, marked_nodes);
} else {
GET_IR_NODE_FROM_SUBGRAPH(fc_out, mul_out, fc_pattern);
......
......@@ -522,6 +522,39 @@ bool VarLinksFromOp(Node* node, const std::string& op_type) {
return false;
}
PDNode* patterns::ConvReLU::operator()(
paddle::framework::ir::PDNode* conv_input) {
// Create Operators
conv_input->assert_is_op_input("conv2d", "Input");
auto* conv_op = pattern->NewNode(conv_repr())->assert_is_op("conv2d");
auto* relu_op = pattern->NewNode(relu_repr())->assert_is_op("relu");
// Create variables
// Filter
auto* conv_weight_var = pattern->NewNode(conv_weight_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("conv2d", "Filter");
// Bias
auto* conv_bias_var = pattern->NewNode(conv_bias_repr())
->AsInput()
->assert_is_persistable_var()
->assert_is_op_input("conv2d", "Bias");
// intermediate variable, will be removed in the IR after fuse.
auto* conv_out_var = pattern->NewNode(conv_out_repr())
->AsIntermediate()
->assert_is_only_output_of_op("conv2d")
->assert_is_op_input("relu");
// output
auto* relu_out_var = pattern->NewNode(relu_out_repr())
->AsOutput()
->assert_is_op_output("relu");
conv_op->LinksFrom({conv_input, conv_weight_var, conv_bias_var})
.LinksTo({conv_out_var});
relu_op->LinksFrom({conv_out_var}).LinksTo({relu_out_var});
return relu_out_var;
}
PDNode* patterns::FC::operator()(paddle::framework::ir::PDNode* x,
bool with_bias) {
// Create shared nodes.
......
......@@ -360,6 +360,28 @@ struct PatternBase {
size_t id_;
};
// CONV with ReLU
// op: conv + relu
// named nodes:
// conv_input, conv_weight,
// conv_bias, conv_out, conv,
// relu_out, relu
struct ConvReLU : public PatternBase {
ConvReLU(PDPattern* pattern, const std::string& name_scope)
: PatternBase(pattern, name_scope, "conv_relu") {}
PDNode* operator()(PDNode* conv_input);
// declare operator node's name
PATTERN_DECL_NODE(conv);
PATTERN_DECL_NODE(relu);
// declare variable node's name
PATTERN_DECL_NODE(conv_weight);
PATTERN_DECL_NODE(conv_bias);
PATTERN_DECL_NODE(conv_out);
PATTERN_DECL_NODE(relu_out);
};
// FC with bias
// op: mul + elementwise_add
// named nodes:
......
......@@ -464,35 +464,35 @@ class RuntimeInferShapeContext : public InferShapeContext {
: op_(op), scope_(scope) {}
bool HasInput(const std::string& name) const override {
if (!op_.HasInputs(name)) {
// has only one input
const auto& ins = op_.Inputs();
auto it = ins.find(name);
if (it == ins.end()) {
return false;
}
auto& ins = Inputs(name);
size_t length = ins.size();
if (length == 0) {
const auto& in = it->second;
if (in.size() == 0 || in[0] == kEmptyVarName) {
return false;
}
PADDLE_ENFORCE_EQ(length, 1UL,
PADDLE_ENFORCE_EQ(in.size(), 1UL,
"Input %s should not have more than one inputs", name);
auto ipt = ins[0];
auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
return var != nullptr;
return scope_.FindVar(in[0]) != nullptr;
}
bool HasOutput(const std::string& name) const override {
if (!op_.HasOutputs(name)) {
// has only one output
const auto& outs = op_.Outputs();
auto it = outs.find(name);
if (it == outs.end()) {
return false;
}
auto& outs = Outputs(name);
size_t length = outs.size();
if (length == 0) {
const auto& out = it->second;
if (out.size() == 0 || out[0] == kEmptyVarName) {
return false;
}
PADDLE_ENFORCE_EQ(length, 1UL,
"Output %s should not have more than one inputs", name);
auto ipt = outs[0];
auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
return var != nullptr;
PADDLE_ENFORCE_EQ(out.size(), 1UL,
"Output %s should not have more than one outputs", name);
return scope_.FindVar(out[0]) != nullptr;
}
bool HasInputs(const std::string& name) const override {
......
......@@ -352,7 +352,10 @@ void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
ParallelExecutor::~ParallelExecutor() {
if (member_->own_local_scope_) {
for (size_t i = 1; i < member_->local_scopes_.size(); ++i) {
member_->global_scope_->DeleteScope(member_->local_scopes_[i]);
Scope *local_scope = member_->local_scopes_[i];
if (member_->global_scope_->HasKid(local_scope)) {
member_->global_scope_->DeleteScope(local_scope);
}
}
}
}
......
......@@ -87,8 +87,17 @@ TEST(ProgramDesc, copy_ctor) {
ASSERT_EQ(op_origin->Inputs(), op_copy->Inputs());
ASSERT_EQ(op_origin->Outputs(), op_copy->Outputs());
ASSERT_EQ(op_copy->Proto()->SerializeAsString(),
op_origin->Proto()->SerializeAsString());
ASSERT_EQ(op_origin->Proto()->attrs().size(),
op_copy->Proto()->attrs().size());
for (auto it = op_origin->Proto()->attrs().begin();
it != op_origin->Proto()->attrs().end(); ++it) {
for (auto it_2 = op_copy->Proto()->attrs().begin();
it_2 != op_copy->Proto()->attrs().end(); ++it_2) {
if (it->name() == it_2->name()) {
ASSERT_TRUE(it_2->SerializeAsString() == it->SerializeAsString());
}
}
}
if (op->Type() == "op_with_subblock") {
ASSERT_EQ(1, op->GetBlockAttrId("sub_block"));
......
......@@ -72,6 +72,12 @@ void Scope::DropKids() {
kids_.clear();
}
bool Scope::HasKid(const Scope* scope) const {
std::unique_lock<std::mutex> lock(mutex_);
auto it = std::find(this->kids_.begin(), this->kids_.end(), scope);
return it != this->kids_.end();
}
std::vector<std::string> Scope::LocalVarNames() const {
std::unique_lock<std::mutex> lock(mutex_);
std::vector<std::string> known_vars;
......
......@@ -71,6 +71,9 @@ class Scope {
/// Drop all kids scopes belonged to this scope.
void DropKids();
/// Find if a scope exists in the kid scopes
bool HasKid(const Scope* scope) const;
// enumerate all the variables current contains.
std::vector<std::string> LocalVarNames() const;
......
......@@ -14,6 +14,7 @@
#include "paddle/fluid/inference/analysis/ir_pass_manager.h"
#include <string>
#include <vector>
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/scope.h"
......@@ -37,13 +38,16 @@ IRPassManager::IRPassManager(const ProgramDesc &program,
void IRPassManager::Apply(const std::vector<std::string> &passes) {
// Apply all the passes
std::string pre_pass;
int pass_num = 0;
for (const std::string &pass_name : passes) {
PrettyLogEndl(Style::H2(), "--- Running IR pass [%s]", pass_name);
auto pass = framework::ir::PassRegistry::Instance().Get(pass_name);
if (pass_name == "graph_viz_pass") {
std::string dot_file_path =
"ir_" + (pre_pass.empty() ? "origin" : pre_pass) + ".dot";
std::string dot_file_path = std::to_string(pass_num) + "_ir_" +
(pre_pass.empty() ? "origin" : pre_pass) +
".dot";
pass->Set("graph_viz_path", new std::string(std::move(dot_file_path)));
pass_num++;
}
graph_ = pass->Apply(std::move(graph_));
pre_pass = pass_name;
......
......@@ -144,8 +144,9 @@ void TestChineseNERPrediction(bool use_analysis) {
size_t num_samples;
for (int i = 0; i < FLAGS_repeat; i++) {
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
// Just one batch, the num_samples remains the same.
num_samples = data.num_samples;
for (size_t bid = 0; bid < num_samples; ++bid) {
for (size_t bid = 0; bid < num_samples / FLAGS_batch_size; ++bid) {
PrepareInputs(&input_slots, &data, FLAGS_batch_size);
timer.tic();
predictor->Run(input_slots, &outputs);
......
......@@ -24,28 +24,28 @@ namespace operators {
void AttentionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of AttentionLSTM should not be null.");
"Assert only one Input(X) of AttentionLSTM.");
PADDLE_ENFORCE(ctx->HasInput("C0"),
"Input(C0) of AttentionLSTM should not be null.");
"Assert only one Input(C0) of AttentionLSTM.");
PADDLE_ENFORCE(ctx->HasInput("LSTMWeight"),
"Input(LSTMWeight) of AttentionLSTM should not be null.");
"Assert only one Input(LSTMWeight) of AttentionLSTM.");
PADDLE_ENFORCE(ctx->HasInput("LSTMBias"),
"Input(LSTMBias) of AttentionLSTM should not be null.");
"Assert only one Input(LSTMBias) of AttentionLSTM.");
PADDLE_ENFORCE(ctx->HasInput("AttentionWeight"),
"Input(AttentionWeight) of AttentionLSTM should not be null.");
"Assert only one Input(AttentionWeight) of AttentionLSTM.");
PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
"Output(Hidden) of AttentionLSTM should not be null.");
"Assert only one Output(Hidden) of AttentionLSTM.");
PADDLE_ENFORCE(ctx->HasOutput("Cell"),
"Output(Cell) of AttentionLSTM should not be null.");
"Assert only one Output(Cell) of AttentionLSTM.");
PADDLE_ENFORCE(ctx->HasOutput("AttentionedX"),
"Output(AttentionedX) of AttentionLSTM should not be null.");
"Assert only one Output(AttentionedX) of AttentionLSTM.");
PADDLE_ENFORCE(ctx->HasOutput("AttentionFCOut"),
"Output(AttentionFCOut) of AttentionLSTM should not be null.");
"Assert only one Output(AttentionFCOut) of AttentionLSTM.");
PADDLE_ENFORCE(ctx->HasOutput("LSTMX"),
"Output(LSTMX) of AttentionLSTM should not be null.");
"Assert only one Output(LSTMX) of AttentionLSTM.");
PADDLE_ENFORCE(ctx->HasOutput("LSTMOUT"),
"Output(LSTMOUT) of AttentionLSTM should not be null.");
"Assert only one Output(LSTMOUT) of AttentionLSTM.");
auto x_dims = ctx->GetInputDim("X");
const int M = x_dims[1];
......
......@@ -25,14 +25,14 @@ namespace paddle {
namespace operators {
void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of GRU should not be null.");
PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of GRU.");
PADDLE_ENFORCE(ctx->HasInput("WeightX"),
"Input(WeightX) of GRU should not be null.");
"Assert only one Input(WeightX) of GRU.");
PADDLE_ENFORCE(ctx->HasInput("WeightH"),
"Input(WeightH) of GRU should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("XX"), "Output(XX) of GRU should not be null.");
"Assert only one Input(WeightH) of GRU.");
PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of GRU.");
PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
"Output(Hidden) of GRU should not be null.");
"Assert only one Output(Hidden) of GRU.");
auto x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
......@@ -80,11 +80,11 @@ void FusionGRUOp::InferShape(framework::InferShapeContext* ctx) const {
} else {
xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
"Output(ReorderedH0) of GRU should not be null.");
"Assert only one Output(ReorderedH0) of GRU.");
PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
"Output(BatchedInput) of GRU should not be null.");
"Assert only one Output(BatchedInput) of GRU.");
PADDLE_ENFORCE(ctx->HasOutput("BatchedOut"),
"Output(BatchedOut) of GRU should not be null.");
"Assert only one Output(BatchedOut) of GRU.");
ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
ctx->SetOutputDim("BatchedOut", out_dims);
}
......
......@@ -24,20 +24,17 @@ namespace paddle {
namespace operators {
void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasInput("X"), "Assert only one Input(X) of LSTM.");
PADDLE_ENFORCE(ctx->HasInput("WeightX"),
"Input(WeightX) of LSTM should not be null.");
"Assert only one Input(WeightX) of LSTM.");
PADDLE_ENFORCE(ctx->HasInput("WeightH"),
"Input(WeightH) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Bias"),
"Input(Bias) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("XX"),
"Output(XX) of LSTM should not be null.");
"Assert only one Input(WeightH) of LSTM.");
PADDLE_ENFORCE(ctx->HasInput("Bias"), "Assert only one Input(Bias) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("XX"), "Assert only one Output(XX) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("Hidden"),
"Output(Hidden) of LSTM should not be null.");
"Assert only one Output(Hidden) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("Cell"),
"Output(Cell) of LSTM should not be null.");
"Assert only one Output(Cell) of LSTM.");
auto x_dims = ctx->GetInputDim("X");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
......@@ -96,15 +93,15 @@ void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
} else {
xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
PADDLE_ENFORCE(ctx->HasOutput("BatchedInput"),
"Output(BatchedInput) of LSTM should not be null.");
"Assert only one Output(BatchedInput) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("BatchedHidden"),
"Output(BatchedHidden) of LSTM should not be null.");
"Assert only one Output(BatchedHidden) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("BatchedCell"),
"Output(BatchedCell) of LSTM should not be null.");
"Assert only one Output(BatchedCell) of LSTM.");
PADDLE_ENFORCE(ctx->HasOutput("ReorderedH0"),
"Output(ReorderedH0) of LSTM should not be null.");
"Assert only one Output(ReorderedH0) of LSTM");
PADDLE_ENFORCE(ctx->HasOutput("ReorderedC0"),
"Output(ReorderedC0) of LSTM should not be null.");
"Assert only one Output(ReorderedC0) of LSTM.");
ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
ctx->SetOutputDim("BatchedHidden", out_dims);
ctx->SetOutputDim("BatchedCell", out_dims);
......
......@@ -31,7 +31,8 @@ __global__ void CrossEntropyGrad(T* logit_grad, const int64_t* labels,
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < batch_size;
i += blockDim.x * gridDim.x) {
int idx = i * class_num + labels[i];
logit_grad[idx] -= static_cast<T>(1.);
logit_grad[idx] -=
ignore_index == labels[i] ? static_cast<T>(0.) : static_cast<T>(1.);
}
}
......
......@@ -178,7 +178,4 @@ if __name__ == '__main__':
for parallel in (False, True):
if use_cuda and not core.is_compiled_with_cuda():
continue
# TODO(minqiyang): remove this line after fixing the deletion
# order problem of Scope in ParallelExecutor in manylinux
if six.PY2:
main(use_cuda=use_cuda, parallel=parallel)
......@@ -152,7 +152,4 @@ if __name__ == '__main__':
for parallel in (False, True):
if use_cuda and not core.is_compiled_with_cuda():
continue
# TODO(minqiyang): remove this line after fixing the deletion
# order problem of Scope in ParallelExecutor in manylinux
if six.PY2:
main(use_cuda=use_cuda, parallel=parallel)
......@@ -155,7 +155,4 @@ if __name__ == '__main__':
for parallel in (False, True):
if use_cuda and not core.is_compiled_with_cuda():
continue
# TODO(minqiyang): remove this line after fixing the deletion
# order problem of Scope in ParallelExecutor in manylinux
if six.PY2:
main(use_cuda=use_cuda, parallel=parallel)
......@@ -137,7 +137,4 @@ if __name__ == '__main__':
for parallel in (False, True):
if use_cuda and not core.is_compiled_with_cuda():
continue
# TODO(minqiyang): remove this line after fixing the deletion
# order problem of Scope in ParallelExecutor in manylinux
if six.PY2:
main(use_cuda=use_cuda, parallel=parallel)
......@@ -20,6 +20,7 @@ import numpy as np
from parallel_executor_test_base import TestParallelExecutorBase
import unittest
import paddle
import paddle.fluid.core as core
import paddle.dataset.wmt16 as wmt16
import os
......@@ -170,6 +171,7 @@ class TestTransformer(TestParallelExecutorBase):
writer.complete_append_tensor()
def test_main(self):
if core.is_compiled_with_cuda():
self.check_network_convergence(transformer, use_cuda=True)
self.check_network_convergence(transformer, use_cuda=False, iter=5)
......
......@@ -96,7 +96,8 @@ class TestPyReaderUsingExecutor(unittest.TestCase):
self.queue_capacity = 50
def test(self):
for use_cuda in [False, True]:
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
for use_parallel_executor in [False, True]:
for use_double_buffer in [False, True]:
print('Test Parameters:'),
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册