From 27ab0aafe0b76b942e0f0614801a6a45fe077609 Mon Sep 17 00:00:00 2001
From: wangxinxin08 <69842442+wangxinxin08@users.noreply.github.com>
Date: Thu, 21 Apr 2022 14:36:55 +0800
Subject: [PATCH] modify ppyoloe docs, test=document_fix (#5783)
---
configs/ppyoloe/README.md | 8 ++++----
configs/ppyoloe/README_cn.md | 4 ++--
2 files changed, 6 insertions(+), 6 deletions(-)
diff --git a/configs/ppyoloe/README.md b/configs/ppyoloe/README.md
index 21e5b04ad..f6a78004d 100644
--- a/configs/ppyoloe/README.md
+++ b/configs/ppyoloe/README.md
@@ -34,7 +34,7 @@ PP-YOLOE is composed of following methods:
**Notes:**
- PP-YOLOE is trained on COCO train2017 dataset and evaluated on val2017 & test-dev2017 dataset,Box APtest is evaluation results of `mAP(IoU=0.5:0.95)`.
-- PP-YOLOE used 8 GPUs for mixed precision training, if GPU number and mini-batch size is changed, learning rate and iteration times should be adjusted according [FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ).
+- PP-YOLOE used 8 GPUs for mixed precision training, if **GPU number** or **mini-batch size** is changed, **learning rate** should be adjusted according to the formula **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)**.
- PP-YOLOE inference speed is tesed on single Tesla V100 with batch size as 1, **CUDA 10.2**, **CUDNN 7.6.5**, **TensorRT 6.0.1.8** in TensorRT mode.
- Refer to [Speed testing](#Speed-testing) to reproduce the speed testing results of PP-YOLOE.
- If you set `--run_benchmark=True`,you should install these dependencies at first, `pip install pynvml psutil GPUtil`.
@@ -49,7 +49,7 @@ Training PP-YOLOE with mixed precision on 8 GPUs with following command
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --amp
```
-** Notes: ** use `--amp` to train with default config to avoid out of memeory.
+**Notes:** use `--amp` to train with default config to avoid out of memeory.
### Evaluation
@@ -158,7 +158,7 @@ CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inferenc
```
-**Notes: **
+**Notes:**
- TensorRT will perform optimization for the current hardware platform according to the definition of the network, generate an inference engine and serialize it into a file. This inference engine is only applicable to the current hardware hardware platform. If your hardware and software platform has not changed, you can set `use_static=True` in [enable_tensorrt_engine](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.4/deploy/python/infer.py#L660). In this way, the serialized file generated will be saved in the `output_inference` folder, and the saved serialized file will be loaded the next time when TensorRT is executed.
- PaddleDetection release/2.4 and later versions will support NMS calling TensorRT, which requires PaddlePaddle release/2.3 and later versions.
@@ -170,7 +170,7 @@ Model | AP | AP50
[YOLOv5](https://github.com/ultralytics/yolov5) | 26.0 | 42.7
**PP-YOLOE** | **30.5** | **46.4**
-**Note**
+**Notes**
- Here, we use [VisDrone](https://github.com/VisDrone/VisDrone-Dataset) dataset, and to detect 9 objects including `person, bicycles, car, van, truck, tricyle, awning-tricyle, bus, motor`.
- Above models trained using official default config, and load pretrained parameters on COCO dataset.
- *Due to the limited time, more verification results will be supplemented in the future. You are also welcome to contribute to PP-YOLOE*
diff --git a/configs/ppyoloe/README_cn.md b/configs/ppyoloe/README_cn.md
index 6267a73d4..9bb9b4c16 100644
--- a/configs/ppyoloe/README_cn.md
+++ b/configs/ppyoloe/README_cn.md
@@ -34,7 +34,7 @@ PP-YOLOE由以下方法组成
**注意:**
- PP-YOLOE模型使用COCO数据集中train2017作为训练集,使用val2017和test-dev2017作为测试集,Box APtest为`mAP(IoU=0.5:0.95)`评估结果。
-- PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果训练GPU数和batch size不使用上述配置,须参考[FAQ](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/FAQ)调整学习率和迭代次数。
+- PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)** 调整学习率。
- PP-YOLOE模型推理速度测试采用单卡V100,batch size=1进行测试,使用**CUDA 10.2**, **CUDNN 7.6.5**,TensorRT推理速度测试使用**TensorRT 6.0.1.8**。
- 参考[速度测试](#速度测试)以复现PP-YOLOE推理速度测试结果。
- 如果你设置了`--run_benchnark=True`, 你首先需要安装以下依赖`pip install pynvml psutil GPUtil`。
@@ -49,7 +49,7 @@ PP-YOLOE由以下方法组成
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml --amp
```
-** 注意: ** 使用默认配置训练需要设置`--amp`以避免显存溢出.
+**注意:** 使用默认配置训练需要设置`--amp`以避免显存溢出.
### 评估
--
GitLab