提交 27a99bfb 编写于 作者: L Luo Tao

Add base class for huber_regression_cost and huber_classification_cost

上级 7f9af125
......@@ -409,9 +409,9 @@ multi_binary_label_cross_entropy_cost
.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
:noindex:
huber_cost
----------
.. autoclass:: paddle.v2.layer.huber_cost
huber_classification_cost
-------------------------
.. autoclass:: paddle.v2.layer.huber_classification_cost
:noindex:
lambda_cost
......
......@@ -572,12 +572,7 @@ void MultiBinaryLabelCrossEntropy::backwardImp(Matrix& output,
}
}
//
// Huber loss for robust 2-classes classification
//
REGISTER_LAYER(huber, HuberTwoClassification);
bool HuberTwoClassification::init(const LayerMap& layerMap,
bool HuberCost::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
CostLayer::init(layerMap, parameterMap);
if (useGpu_) {
......@@ -589,9 +584,7 @@ bool HuberTwoClassification::init(const LayerMap& layerMap,
return true;
}
void HuberTwoClassification::forwardImp(Matrix& output,
Argument& label,
Matrix& cost) {
void HuberCost::forwardImp(Matrix& output, Argument& label, Matrix& cost) {
if (useGpu_) {
for (size_t i = 0; i < inputLayers_.size(); i++) {
tmpCpuInput_[i].resizeAndCopyFrom(
......@@ -599,12 +592,22 @@ void HuberTwoClassification::forwardImp(Matrix& output,
}
hl_stream_synchronize(HPPL_STREAM_DEFAULT);
}
forwardImpIn(output, label, cost);
}
void HuberTwoClassification::forwardImpIn(Matrix& output,
//
// Huber loss for robust 2-classes classification
//
REGISTER_LAYER(huber_classification, HuberTwoClassification);
bool HuberTwoClassification::init(const LayerMap& layerMap,
const ParameterMap& parameterMap) {
return HuberCost::init(layerMap, parameterMap);
}
void HuberTwoClassification::forwardImp(Matrix& output,
Argument& label,
Matrix& target) {
HuberCost::forwardImp(output, label, target);
size_t numSamples = target.getHeight();
CHECK(label.ids);
CHECK_EQ((*label.ids).getSize(), numSamples);
......@@ -627,25 +630,13 @@ void HuberTwoClassification::forwardImpIn(Matrix& output,
target.copyFrom(cost.data(), numSamples);
}
void HuberTwoClassification::backwardImp(Matrix& outputValue,
Argument& label,
Matrix& outputGrad) {
if (useGpu_) {
backwardImpIn(
*tmpCpuInput_[0].value, tmpCpuInput_[1], *tmpCpuInput_[0].grad);
outputGrad.copyFrom(*tmpCpuInput_[0].grad);
} else {
backwardImpIn(outputValue, label, outputGrad);
}
}
void HuberTwoClassification::backwardImpIn(Matrix& output,
void HuberTwoClassification::backwardImp(Matrix& output,
Argument& label,
Matrix& outputG) {
size_t numSamples = output.getHeight();
real* out = output.getData();
real* grad = outputG.getData();
int* lbl = (*label.ids).getData();
real* out = useGpu_ ? tmpCpuInput_[0].value->getData() : output.getData();
int* lbl = useGpu_ ? tmpCpuInput_[1].ids->getData() : (*label.ids).getData();
real* grad = useGpu_ ? tmpCpuInput_[0].grad->getData() : outputG.getData();
for (size_t i = 0; i < numSamples; ++i) {
int y = 2 * lbl[i] - 1;
if (y * out[i] < -1)
......@@ -653,8 +644,8 @@ void HuberTwoClassification::backwardImpIn(Matrix& output,
else if (y * out[i] < 1)
grad[i] += -2 * (1 - y * out[i]) * y;
}
if (useGpu_) outputG.copyFrom(grad, numSamples);
}
/**
* This cost layer compute the sum of its input as loss.
* \f[
......
......@@ -304,6 +304,23 @@ public:
Matrix& outputGrad) override;
};
/*
* A base layer for HuberRegressionLoss and HuberTwoClassification.
*/
class HuberCost : public CostLayer {
public:
std::vector<Argument> tmpCpuInput_;
explicit HuberCost(const LayerConfig& config) : CostLayer(config) {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forwardImp(Matrix& output, Argument& label, Matrix& cost) override;
void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad) {}
};
/**
* Huber loss for robust 2-classes classification.
*
......@@ -312,25 +329,19 @@ public:
* Loss = (1 - y * f)^2, if -1 < y * f < 1 \\
* Loss = 0, otherwise
*/
class HuberTwoClassification : public CostLayer {
std::vector<Argument> tmpCpuInput_;
class HuberTwoClassification : public HuberCost {
public:
explicit HuberTwoClassification(const LayerConfig& config)
: CostLayer(config) {}
: HuberCost(config) {}
bool init(const LayerMap& layerMap,
const ParameterMap& parameterMap) override;
void forwardImp(Matrix& output, Argument& label, Matrix& cost) override;
void forwardImpIn(Matrix& output, Argument& label, Matrix& cost);
void backwardImp(Matrix& outputValue,
Argument& label,
Matrix& outputGrad) override;
void backwardImpIn(Matrix& outputValue, Argument& label, Matrix& outputGrad);
};
typedef std::shared_ptr<CostLayer> CostLayerPtr;
......
......@@ -141,7 +141,7 @@ class CostLayerTest(unittest.TestCase):
cost8 = layer.rank_cost(left=score, right=score, label=score)
cost9 = layer.lambda_cost(input=inference, score=score)
cost10 = layer.sum_cost(input=inference)
cost11 = layer.huber_cost(input=score, label=label)
cost11 = layer.huber_classification_cost(input=score, label=label)
print layer.parse_network([cost1, cost2])
print layer.parse_network([cost3, cost4])
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册