Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
27a99bfb
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
27a99bfb
编写于
8月 17, 2017
作者:
L
Luo Tao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add base class for huber_regression_cost and huber_classification_cost
上级
7f9af125
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
46 addition
and
44 deletion
+46
-44
doc/api/v2/config/layer.rst
doc/api/v2/config/layer.rst
+3
-3
paddle/gserver/layers/CostLayer.cpp
paddle/gserver/layers/CostLayer.cpp
+23
-32
paddle/gserver/layers/CostLayer.h
paddle/gserver/layers/CostLayer.h
+19
-8
python/paddle/v2/tests/test_layer.py
python/paddle/v2/tests/test_layer.py
+1
-1
未找到文件。
doc/api/v2/config/layer.rst
浏览文件 @
27a99bfb
...
...
@@ -409,9 +409,9 @@ multi_binary_label_cross_entropy_cost
.. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost
:noindex:
huber_cost
----------
.. autoclass:: paddle.v2.layer.huber_cost
huber_c
lassification_c
ost
----------
---------------
.. autoclass:: paddle.v2.layer.huber_c
lassification_c
ost
:noindex:
lambda_cost
...
...
paddle/gserver/layers/CostLayer.cpp
浏览文件 @
27a99bfb
...
...
@@ -572,12 +572,7 @@ void MultiBinaryLabelCrossEntropy::backwardImp(Matrix& output,
}
}
//
// Huber loss for robust 2-classes classification
//
REGISTER_LAYER
(
huber
,
HuberTwoClassification
);
bool
HuberTwoClassification
::
init
(
const
LayerMap
&
layerMap
,
bool
HuberCost
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
CostLayer
::
init
(
layerMap
,
parameterMap
);
if
(
useGpu_
)
{
...
...
@@ -589,9 +584,7 @@ bool HuberTwoClassification::init(const LayerMap& layerMap,
return
true
;
}
void
HuberTwoClassification
::
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
{
void
HuberCost
::
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
{
if
(
useGpu_
)
{
for
(
size_t
i
=
0
;
i
<
inputLayers_
.
size
();
i
++
)
{
tmpCpuInput_
[
i
].
resizeAndCopyFrom
(
...
...
@@ -599,12 +592,22 @@ void HuberTwoClassification::forwardImp(Matrix& output,
}
hl_stream_synchronize
(
HPPL_STREAM_DEFAULT
);
}
forwardImpIn
(
output
,
label
,
cost
);
}
void
HuberTwoClassification
::
forwardImpIn
(
Matrix
&
output
,
//
// Huber loss for robust 2-classes classification
//
REGISTER_LAYER
(
huber_classification
,
HuberTwoClassification
);
bool
HuberTwoClassification
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
return
HuberCost
::
init
(
layerMap
,
parameterMap
);
}
void
HuberTwoClassification
::
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
target
)
{
HuberCost
::
forwardImp
(
output
,
label
,
target
);
size_t
numSamples
=
target
.
getHeight
();
CHECK
(
label
.
ids
);
CHECK_EQ
((
*
label
.
ids
).
getSize
(),
numSamples
);
...
...
@@ -627,25 +630,13 @@ void HuberTwoClassification::forwardImpIn(Matrix& output,
target
.
copyFrom
(
cost
.
data
(),
numSamples
);
}
void
HuberTwoClassification
::
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
{
if
(
useGpu_
)
{
backwardImpIn
(
*
tmpCpuInput_
[
0
].
value
,
tmpCpuInput_
[
1
],
*
tmpCpuInput_
[
0
].
grad
);
outputGrad
.
copyFrom
(
*
tmpCpuInput_
[
0
].
grad
);
}
else
{
backwardImpIn
(
outputValue
,
label
,
outputGrad
);
}
}
void
HuberTwoClassification
::
backwardImpIn
(
Matrix
&
output
,
void
HuberTwoClassification
::
backwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
outputG
)
{
size_t
numSamples
=
output
.
getHeight
();
real
*
out
=
output
.
getData
();
real
*
grad
=
outputG
.
getData
();
int
*
lbl
=
(
*
label
.
ids
)
.
getData
();
real
*
out
=
useGpu_
?
tmpCpuInput_
[
0
].
value
->
getData
()
:
output
.
getData
();
int
*
lbl
=
useGpu_
?
tmpCpuInput_
[
1
].
ids
->
getData
()
:
(
*
label
.
ids
)
.
getData
();
real
*
grad
=
useGpu_
?
tmpCpuInput_
[
0
].
grad
->
getData
()
:
outputG
.
getData
();
for
(
size_t
i
=
0
;
i
<
numSamples
;
++
i
)
{
int
y
=
2
*
lbl
[
i
]
-
1
;
if
(
y
*
out
[
i
]
<
-
1
)
...
...
@@ -653,8 +644,8 @@ void HuberTwoClassification::backwardImpIn(Matrix& output,
else
if
(
y
*
out
[
i
]
<
1
)
grad
[
i
]
+=
-
2
*
(
1
-
y
*
out
[
i
])
*
y
;
}
if
(
useGpu_
)
outputG
.
copyFrom
(
grad
,
numSamples
);
}
/**
* This cost layer compute the sum of its input as loss.
* \f[
...
...
paddle/gserver/layers/CostLayer.h
浏览文件 @
27a99bfb
...
...
@@ -304,6 +304,23 @@ public:
Matrix
&
outputGrad
)
override
;
};
/*
* A base layer for HuberRegressionLoss and HuberTwoClassification.
*/
class
HuberCost
:
public
CostLayer
{
public:
std
::
vector
<
Argument
>
tmpCpuInput_
;
explicit
HuberCost
(
const
LayerConfig
&
config
)
:
CostLayer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
override
;
void
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
{}
};
/**
* Huber loss for robust 2-classes classification.
*
...
...
@@ -312,25 +329,19 @@ public:
* Loss = (1 - y * f)^2, if -1 < y * f < 1 \\
* Loss = 0, otherwise
*/
class
HuberTwoClassification
:
public
CostLayer
{
std
::
vector
<
Argument
>
tmpCpuInput_
;
class
HuberTwoClassification
:
public
HuberCost
{
public:
explicit
HuberTwoClassification
(
const
LayerConfig
&
config
)
:
CostLayer
(
config
)
{}
:
HuberCost
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forwardImp
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
)
override
;
void
forwardImpIn
(
Matrix
&
output
,
Argument
&
label
,
Matrix
&
cost
);
void
backwardImp
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
)
override
;
void
backwardImpIn
(
Matrix
&
outputValue
,
Argument
&
label
,
Matrix
&
outputGrad
);
};
typedef
std
::
shared_ptr
<
CostLayer
>
CostLayerPtr
;
...
...
python/paddle/v2/tests/test_layer.py
浏览文件 @
27a99bfb
...
...
@@ -141,7 +141,7 @@ class CostLayerTest(unittest.TestCase):
cost8
=
layer
.
rank_cost
(
left
=
score
,
right
=
score
,
label
=
score
)
cost9
=
layer
.
lambda_cost
(
input
=
inference
,
score
=
score
)
cost10
=
layer
.
sum_cost
(
input
=
inference
)
cost11
=
layer
.
huber_cost
(
input
=
score
,
label
=
label
)
cost11
=
layer
.
huber_c
lassification_c
ost
(
input
=
score
,
label
=
label
)
print
layer
.
parse_network
([
cost1
,
cost2
])
print
layer
.
parse_network
([
cost3
,
cost4
])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录