Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
24264bc0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
24264bc0
编写于
8月 27, 2018
作者:
S
sneaxiy
浏览文件
操作
浏览文件
下载
差异文件
Merge develop
上级
0153c21d
3e1050a2
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
529 addition
and
93 deletion
+529
-93
paddle/fluid/operators/math/padding.h
paddle/fluid/operators/math/padding.h
+124
-0
paddle/fluid/operators/pad_constant_like_op.cc
paddle/fluid/operators/pad_constant_like_op.cc
+196
-0
paddle/fluid/operators/pad_constant_like_op.cu
paddle/fluid/operators/pad_constant_like_op.cu
+27
-0
paddle/fluid/operators/pad_constant_like_op.h
paddle/fluid/operators/pad_constant_like_op.h
+93
-0
paddle/fluid/operators/pad_op.h
paddle/fluid/operators/pad_op.h
+20
-93
python/paddle/fluid/tests/unittests/test_pad_constant_like.py
...on/paddle/fluid/tests/unittests/test_pad_constant_like.py
+69
-0
未找到文件。
paddle/fluid/operators/math/padding.h
0 → 100644
浏览文件 @
24264bc0
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <utility>
#include <vector>
#include "paddle/fluid/framework/tensor.h"
namespace
paddle
{
namespace
operators
{
namespace
math
{
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
T
,
size_t
D
>
void
PadFunction
(
const
framework
::
ExecutionContext
&
context
,
const
std
::
vector
<
int
>&
pads
,
const
framework
::
Tensor
&
src
,
T
pad_value
,
framework
::
Tensor
*
out
)
{
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings
;
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
paddings
[
i
].
first
=
pads
[
i
*
2
];
paddings
[
i
].
second
=
pads
[
i
*
2
+
1
];
}
auto
src_tensor
=
EigenTensor
<
T
,
D
>::
From
(
src
);
auto
out_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
out
);
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
out_tensor
.
device
(
place
)
=
src_tensor
.
pad
(
paddings
,
pad_value
);
}
template
<
typename
DeviceContext
,
typename
T
,
size_t
D
>
void
PadGradFunction
(
const
framework
::
ExecutionContext
&
context
,
const
std
::
vector
<
int
>&
pads
,
const
framework
::
Tensor
&
src
,
framework
::
Tensor
*
d_out
)
{
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings
;
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
paddings
[
i
].
first
=
-
pads
[
i
*
2
];
paddings
[
i
].
second
=
-
pads
[
i
*
2
+
1
];
}
auto
d_out_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
d_out
);
auto
src_tensor
=
EigenTensor
<
T
,
D
>::
From
(
src
);
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
d_out_tensor
.
device
(
place
)
=
src_tensor
.
pad
(
paddings
,
0
);
}
template
<
typename
DeviceContext
,
typename
T
>
void
PaddingFunctor
(
int
rank
,
const
framework
::
ExecutionContext
&
context
,
const
std
::
vector
<
int
>&
pads
,
T
pad_value
,
const
framework
::
Tensor
&
src
,
framework
::
Tensor
*
out
)
{
switch
(
rank
)
{
case
1
:
PadFunction
<
DeviceContext
,
T
,
1
>
(
context
,
pads
,
src
,
pad_value
,
out
);
break
;
case
2
:
PadFunction
<
DeviceContext
,
T
,
2
>
(
context
,
pads
,
src
,
pad_value
,
out
);
break
;
case
3
:
PadFunction
<
DeviceContext
,
T
,
3
>
(
context
,
pads
,
src
,
pad_value
,
out
);
break
;
case
4
:
PadFunction
<
DeviceContext
,
T
,
4
>
(
context
,
pads
,
src
,
pad_value
,
out
);
break
;
case
5
:
PadFunction
<
DeviceContext
,
T
,
5
>
(
context
,
pads
,
src
,
pad_value
,
out
);
break
;
case
6
:
PadFunction
<
DeviceContext
,
T
,
6
>
(
context
,
pads
,
src
,
pad_value
,
out
);
break
;
default:
PADDLE_THROW
(
"PadOp only support tensors with no more than 6 dimensions."
);
}
}
template
<
typename
DeviceContext
,
typename
T
>
void
PaddingGradFunctor
(
int
rank
,
const
framework
::
ExecutionContext
&
context
,
const
std
::
vector
<
int
>&
pads
,
const
framework
::
Tensor
&
src
,
framework
::
Tensor
*
out
)
{
switch
(
rank
)
{
case
1
:
PadGradFunction
<
DeviceContext
,
T
,
1
>
(
context
,
pads
,
src
,
out
);
break
;
case
2
:
PadGradFunction
<
DeviceContext
,
T
,
2
>
(
context
,
pads
,
src
,
out
);
break
;
case
3
:
PadGradFunction
<
DeviceContext
,
T
,
3
>
(
context
,
pads
,
src
,
out
);
break
;
case
4
:
PadGradFunction
<
DeviceContext
,
T
,
4
>
(
context
,
pads
,
src
,
out
);
break
;
case
5
:
PadGradFunction
<
DeviceContext
,
T
,
5
>
(
context
,
pads
,
src
,
out
);
break
;
case
6
:
PadGradFunction
<
DeviceContext
,
T
,
6
>
(
context
,
pads
,
src
,
out
);
break
;
default:
PADDLE_THROW
(
"PadOp only support tensors with no more than 6 dimensions."
);
}
}
}
// namespace math
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/pad_constant_like_op.cc
0 → 100644
浏览文件 @
24264bc0
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/pad_constant_like_op.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
Tensor
;
class
PadConstantLikeOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of PadConstantLikeOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) of PadConstantLikeOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
"Output(Out) of PadConstantLikeOp should not be null."
);
auto
x_dim
=
ctx
->
GetInputDim
(
"X"
);
auto
y_dim
=
ctx
->
GetInputDim
(
"Y"
);
PADDLE_ENFORCE_EQ
(
x_dim
.
size
(),
y_dim
.
size
(),
"The dimention of X and Y should be the same."
);
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
++
i
)
{
PADDLE_ENFORCE_GE
(
x_dim
[
i
],
y_dim
[
i
]);
}
ctx
->
SetOutputDim
(
"Out"
,
x_dim
);
ctx
->
ShareLoD
(
"X"
,
/*->*/
"Out"
);
}
};
class
PadConstantLikeOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
override
{
AddInput
(
"X"
,
"The input of pad_constant_like op. "
"The input should be a k-D tensor(k > 0 and k < 7)"
);
AddInput
(
"Y"
,
"The input of pad_constant_like op. "
"The input should be a k-D tensor(k > 0 and k < 7)"
);
AddOutput
(
"Out"
,
"The output of pad_constant_like op. "
"A tensor with the same shape as X."
);
AddAttr
<
float
>
(
"pad_value"
,
"(float, default 0.0) "
"The value to fill the padded areas."
)
.
SetDefault
(
0.0
f
);
AddComment
(
R"DOC(
PadConstantLikeOp Operator.
Pad input(Y) with a pad_value, the number of values padded to the edges of each
axis is specified by the difference of the shape of X and Y.
((0, shape_x_0 - shape_y_0), … (0, shape_x_n - shape_y_n)) unique pad widths for
each axis.
The input should be a k-D tensor(k > 0 and k < 7). As an example:
case1:
Given:
X = [[1, 2],
[3, 4],
[1, 2],
[3, 4]]],
X.shape = (4, 2)
Y = [[5, 6],
[7, 8]],
Y.shape = (2, 2)
And
pad_value = 0,
Return:
Out = [[5, 6],
[7, 8],
[0, 0],
[0, 0]]
Out.shape = (4, 2)
case2:
Given:
X = [[[[ 0, 1, 2],
[ 3, 4, 5]],
[[ 6, 7, 8],
[ 9, 10, 11]],
[[12, 13, 14],
[15, 16, 17]]],
[[[18, 19, 20],
[21, 22, 23]],
[[24, 25, 26],
[27, 28, 29]],
[[30, 31, 32],
[33, 34, 35]]]]
X.shape = (2, 3, 2, 3)
Y = [[[[35, 36, 37]],
[[38, 39, 40]],
[[41, 42, 43]]]]
Y.shape = (1, 3, 1, 3)
And
pad_value = -1,
Return:
Out = [[[[35, 36, 37],
[-1, -1, -1]],
[[38, 39, 40],
[-1, -1, -1]],
[[41, 42, 43],
[-1, -1, -1]]],
[[[-1, -1, -1],
[-1, -1, -1]],
[[-1, -1, -1],
[-1, -1, -1]],
[[-1, -1, -1],
[-1, -1, -1]]]]
Out.shape = (2, 3, 2, 3)
)DOC"
);
}
};
class
PadConstantLikeOpGrad
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Y"
),
"Input(Y) should not be null"
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
"Input(Out@GRAD) should not be null"
);
auto
y_dim
=
ctx
->
GetInputDim
(
"Y"
);
auto
dout_dim
=
ctx
->
GetInputDim
(
framework
::
GradVarName
(
"Out"
));
PADDLE_ENFORCE_EQ
(
dout_dim
.
size
(),
y_dim
.
size
(),
"The dimention of X and Y should be the same."
);
auto
y_grad_name
=
framework
::
GradVarName
(
"Y"
);
if
(
ctx
->
HasOutput
(
y_grad_name
))
{
ctx
->
SetOutputDim
(
y_grad_name
,
y_dim
);
ctx
->
ShareLoD
(
"Y"
,
/*->*/
y_grad_name
);
for
(
int
i
=
0
;
i
<
y_dim
.
size
();
++
i
)
{
PADDLE_ENFORCE_GE
(
dout_dim
[
i
],
y_dim
[
i
]);
}
}
}
};
class
PadConstantLikeOpGradMaker
:
public
framework
::
SingleGradOpDescMaker
{
public:
using
framework
::
SingleGradOpDescMaker
::
SingleGradOpDescMaker
;
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
bind
=
new
framework
::
OpDesc
();
bind
->
SetType
(
"pad_constant_like_grad"
);
bind
->
SetInput
(
"Y"
,
Input
(
"Y"
));
bind
->
SetInput
(
framework
::
GradVarName
(
"Out"
),
OutputGrad
(
"Out"
));
bind
->
SetOutput
(
framework
::
GradVarName
(
"Y"
),
InputGrad
(
"Y"
));
bind
->
SetAttrMap
(
Attrs
());
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
bind
);
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OPERATOR
(
pad_constant_like
,
ops
::
PadConstantLikeOp
,
ops
::
PadConstantLikeOpMaker
,
ops
::
PadConstantLikeOpGradMaker
);
REGISTER_OPERATOR
(
pad_constant_like_grad
,
ops
::
PadConstantLikeOpGrad
);
REGISTER_OP_CPU_KERNEL
(
pad_constant_like
,
ops
::
PadConstantLikeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
PadConstantLikeKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
REGISTER_OP_CPU_KERNEL
(
pad_constant_like_grad
,
ops
::
PadConstantLikeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
PadConstantLikeGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/pad_constant_like_op.cu
0 → 100644
浏览文件 @
24264bc0
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/fluid/operators/pad_constant_like_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
pad_constant_like
,
ops
::
PadConstantLikeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
PadConstantLikeKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
REGISTER_OP_CUDA_KERNEL
(
pad_constant_like_grad
,
ops
::
PadConstantLikeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
PadConstantLikeGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
paddle/fluid/operators/pad_constant_like_op.h
0 → 100644
浏览文件 @
24264bc0
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/padding.h"
namespace
paddle
{
namespace
operators
{
template
<
typename
DeviceContext
,
typename
T
>
class
PadConstantLikeKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
in_x
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
in_y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
if
(
in_x
->
dims
()
==
in_y
->
dims
())
{
// TensorCopy(in_y, context.GetPlace(), context, out);
out
->
ShareDataWith
(
*
in_y
);
return
;
}
T
pad_value
=
context
.
Attr
<
T
>
(
"pad_value"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
rank
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
)
->
dims
().
size
();
std
::
vector
<
int
>
pads
(
rank
*
2
,
0
);
for
(
int
j
=
0
;
j
<
rank
;
++
j
)
{
pads
[
j
*
2
]
=
0
;
pads
[
j
*
2
+
1
]
=
static_cast
<
int
>
(
in_x
->
dims
()[
j
]
-
in_y
->
dims
()[
j
]);
}
math
::
PaddingFunctor
<
DeviceContext
,
T
>
(
rank
,
context
,
pads
,
pad_value
,
*
in_y
,
out
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
PadConstantLikeGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
in_y
=
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
in_dout
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_y
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
if
(
d_y
==
nullptr
)
{
return
;
}
if
(
in_dout
->
dims
()
==
in_y
->
dims
())
{
// TensorCopy(in_dout, context.GetPlace(), context, d_y);
d_y
->
ShareDataWith
(
*
in_dout
);
return
;
}
d_y
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
rank
=
in_dout
->
dims
().
size
();
std
::
vector
<
int
>
pads
(
static_cast
<
size_t
>
(
rank
)
*
2
,
0
);
for
(
int
j
=
0
;
j
<
rank
;
++
j
)
{
pads
[
j
*
2
]
=
0
;
pads
[
j
*
2
+
1
]
=
static_cast
<
int
>
(
in_dout
->
dims
()[
j
]
-
in_y
->
dims
()[
j
]);
}
math
::
PaddingGradFunctor
<
DeviceContext
,
T
>
(
rank
,
context
,
pads
,
*
in_dout
,
d_y
);
}
};
}
// namespace operators
}
// namespace paddle
paddle/fluid/operators/pad_op.h
浏览文件 @
24264bc0
...
...
@@ -18,117 +18,44 @@ limitations under the License. */
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/padding.h"
namespace
paddle
{
namespace
operators
{
using
Tensor
=
framework
::
Tensor
;
template
<
typename
T
,
size_t
D
,
int
MajorType
=
Eigen
::
RowMajor
,
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
template
<
typename
DeviceContext
,
typename
T
,
size_t
D
>
void
PadFunction
(
const
framework
::
ExecutionContext
&
context
)
{
template
<
typename
DeviceContext
,
typename
T
>
class
PadKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
pads
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings
;
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
paddings
[
i
].
first
=
pads
[
i
*
2
];
paddings
[
i
].
second
=
pads
[
i
*
2
+
1
];
}
T
pad_value
=
context
.
Attr
<
T
>
(
"pad_value"
);
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
x
);
auto
out_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
out
);
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
out_tensor
.
device
(
place
)
=
x_tensor
.
pad
(
paddings
,
pad_value
);
}
int
rank
=
x
->
dims
().
size
();
math
::
PaddingFunctor
<
DeviceContext
,
T
>
(
rank
,
context
,
pads
,
pad_value
,
*
x
,
out
);
}
};
template
<
typename
DeviceContext
,
typename
T
>
class
PadKernel
:
public
framework
::
OpKernel
<
T
>
{
class
Pad
Grad
Kernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
int
rank
=
context
.
Input
<
Tensor
>
(
"X"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
PadFunction
<
DeviceContext
,
T
,
1
>
(
context
);
break
;
case
2
:
PadFunction
<
DeviceContext
,
T
,
2
>
(
context
);
break
;
case
3
:
PadFunction
<
DeviceContext
,
T
,
3
>
(
context
);
break
;
case
4
:
PadFunction
<
DeviceContext
,
T
,
4
>
(
context
);
break
;
case
5
:
PadFunction
<
DeviceContext
,
T
,
5
>
(
context
);
break
;
case
6
:
PadFunction
<
DeviceContext
,
T
,
6
>
(
context
);
break
;
default:
PADDLE_THROW
(
"PadOp only support tensors with no more than 6 dimensions."
);
}
}
};
template
<
typename
DeviceContext
,
typename
T
,
size_t
D
>
void
PadGradFunction
(
const
framework
::
ExecutionContext
&
context
)
{
auto
pads
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings
;
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
paddings
[
i
].
first
=
-
pads
[
i
*
2
];
paddings
[
i
].
second
=
-
pads
[
i
*
2
+
1
];
}
auto
*
d_out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
d_x
!=
nullptr
)
{
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
d_x_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
d_x
);
auto
d_out_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
d_out
);
auto
&
place
=
*
context
.
template
device_context
<
DeviceContext
>().
eigen_device
();
d_x_tensor
.
device
(
place
)
=
d_out_tensor
.
pad
(
paddings
,
0
);
if
(
d_x
==
nullptr
)
{
return
;
}
}
template
<
typename
DeviceContext
,
typename
T
>
class
PadGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
size_t
rank
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
PadGradFunction
<
DeviceContext
,
T
,
1
>
(
context
);
break
;
case
2
:
PadGradFunction
<
DeviceContext
,
T
,
2
>
(
context
);
break
;
case
3
:
PadGradFunction
<
DeviceContext
,
T
,
3
>
(
context
);
break
;
case
4
:
PadGradFunction
<
DeviceContext
,
T
,
4
>
(
context
);
break
;
case
5
:
PadGradFunction
<
DeviceContext
,
T
,
5
>
(
context
);
break
;
case
6
:
PadGradFunction
<
DeviceContext
,
T
,
6
>
(
context
);
break
;
default:
PADDLE_THROW
(
"PadOp only support tensors with no more than 6 dimensions."
);
}
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
int
rank
=
d_out
->
dims
().
size
();
math
::
PaddingGradFunctor
<
DeviceContext
,
T
>
(
rank
,
context
,
pads
,
*
d_out
,
d_x
);
}
};
...
...
python/paddle/fluid/tests/unittests/test_pad_constant_like.py
0 → 100644
浏览文件 @
24264bc0
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
unittest
import
numpy
as
np
from
op_test
import
OpTest
class
TestPadOp
(
OpTest
):
def
setUp
(
self
):
self
.
initTestCase
()
self
.
op_type
=
"pad_constant_like"
self
.
inputs
=
{
'X'
:
np
.
random
.
random
(
self
.
x_shape
).
astype
(
"float32"
),
'Y'
:
np
.
random
.
random
(
self
.
y_shape
).
astype
(
"float32"
)
}
self
.
attrs
=
{}
self
.
attrs
[
'pad_value'
]
=
self
.
pad_value
self
.
outputs
=
{
'Out'
:
np
.
pad
(
self
.
inputs
[
'Y'
],
self
.
paddings
,
mode
=
'constant'
,
constant_values
=
self
.
pad_value
)
}
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'Y'
],
'Out'
,
max_relative_error
=
0.006
)
def
initTestCase
(
self
):
self
.
x_shape
=
(
16
,
16
)
self
.
y_shape
=
(
3
,
16
)
self
.
pad_value
=
0.1
self
.
paddings
=
[(
0
,
13
),
(
0
,
0
)]
class
TestCase1
(
TestPadOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
4
,
3
,
4
,
4
)
self
.
y_shape
=
(
2
,
3
,
4
,
4
)
self
.
paddings
=
[(
0
,
2
),
(
0
,
0
),
(
0
,
0
),
(
0
,
0
)]
self
.
pad_value
=
0.5
class
TestCase2
(
TestPadOp
):
def
initTestCase
(
self
):
self
.
x_shape
=
(
4
,
3
,
4
,
4
)
self
.
y_shape
=
(
2
,
3
,
2
,
4
)
self
.
paddings
=
[(
0
,
2
),
(
0
,
0
),
(
0
,
2
),
(
0
,
0
)]
self
.
pad_value
=
0.5
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录