Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
23fc896b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
23fc896b
编写于
10月 19, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
差异文件
Merge remote-tracking branch 'ups/develop' into fea/fusion_seqconv_add
test=develop
上级
339e655a
a1d3db03
变更
35
展开全部
显示空白变更内容
内联
并排
Showing
35 changed file
with
3559 addition
and
319 deletion
+3559
-319
README.md
README.md
+5
-5
cmake/generic.cmake
cmake/generic.cmake
+4
-0
paddle/fluid/API.spec
paddle/fluid/API.spec
+5
-5
paddle/fluid/framework/ir/CMakeLists.txt
paddle/fluid/framework/ir/CMakeLists.txt
+6
-4
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
+63
-23
paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.cc
paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.cc
+6
-0
paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass_tester.cc
...e/fluid/framework/ir/conv_relu_mkldnn_fuse_pass_tester.cc
+33
-14
paddle/fluid/framework/ir/fuse_pass_base.cc
paddle/fluid/framework/ir/fuse_pass_base.cc
+62
-0
paddle/fluid/framework/ir/fuse_pass_base.h
paddle/fluid/framework/ir/fuse_pass_base.h
+12
-20
paddle/fluid/framework/ir/graph_pattern_detector.cc
paddle/fluid/framework/ir/graph_pattern_detector.cc
+2
-0
paddle/fluid/framework/ir/mkldnn_placement_pass.cc
paddle/fluid/framework/ir/mkldnn_placement_pass.cc
+37
-0
paddle/fluid/framework/ir/mkldnn_placement_pass.h
paddle/fluid/framework/ir/mkldnn_placement_pass.h
+31
-0
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+0
-4
paddle/fluid/inference/analysis/analyzer.cc
paddle/fluid/inference/analysis/analyzer.cc
+20
-1
paddle/fluid/inference/analysis/analyzer.h
paddle/fluid/inference/analysis/analyzer.h
+6
-0
paddle/fluid/inference/api/analysis_predictor.cc
paddle/fluid/inference/api/analysis_predictor.cc
+18
-4
paddle/fluid/inference/api/paddle_inference_api.h
paddle/fluid/inference/api/paddle_inference_api.h
+7
-0
paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc
paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc
+3
-3
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+1
-1
paddle/fluid/operators/detection/gpc.cc
paddle/fluid/operators/detection/gpc.cc
+2201
-0
paddle/fluid/operators/detection/gpc.h
paddle/fluid/operators/detection/gpc.h
+246
-0
paddle/fluid/operators/detection/multiclass_nms_op.cc
paddle/fluid/operators/detection/multiclass_nms_op.cc
+60
-21
paddle/fluid/operators/detection/poly_util.cc
paddle/fluid/operators/detection/poly_util.cc
+132
-0
paddle/fluid/operators/detection/poly_util.h
paddle/fluid/operators/detection/poly_util.h
+73
-0
paddle/fluid/operators/detection/polygon_box_transform_op.cc
paddle/fluid/operators/detection/polygon_box_transform_op.cc
+2
-2
paddle/fluid/operators/detection/polygon_box_transform_op.cu
paddle/fluid/operators/detection/polygon_box_transform_op.cu
+2
-2
paddle/fluid/operators/math/CMakeLists.txt
paddle/fluid/operators/math/CMakeLists.txt
+1
-1
paddle/fluid/operators/math/jit_kernel_exp.cc
paddle/fluid/operators/math/jit_kernel_exp.cc
+201
-60
paddle/fluid/operators/math/jit_kernel_lstm.cc
paddle/fluid/operators/math/jit_kernel_lstm.cc
+122
-70
paddle/fluid/operators/roi_pool_op.cc
paddle/fluid/operators/roi_pool_op.cc
+1
-1
paddle/fluid/operators/roi_pool_op.cu
paddle/fluid/operators/roi_pool_op.cu
+1
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+176
-68
python/paddle/fluid/nets.py
python/paddle/fluid/nets.py
+18
-8
python/paddle/fluid/regularizer.py
python/paddle/fluid/regularizer.py
+1
-0
python/paddle/fluid/tests/unittests/test_polygon_box_transform.py
...addle/fluid/tests/unittests/test_polygon_box_transform.py
+1
-1
未找到文件。
README.md
浏览文件 @
23fc896b
...
...
@@ -2,8 +2,8 @@
[
![Build Status
](
https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop
)
](https://travis-ci.org/PaddlePaddle/Paddle)
[
![Documentation Status
](
https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat
)
](http://
www.paddlepaddle.org/docs/develop/documentation/en
/getstarted/index_en.html)
[
![Documentation Status
](
https://img.shields.io/badge/中文文档-最新-brightgreen.svg
)
](http://
www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn
.html)
[
![Documentation Status
](
https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat
)
](http://
paddlepaddle.org/documentation/docs/en/1.0
/getstarted/index_en.html)
[
![Documentation Status
](
https://img.shields.io/badge/中文文档-最新-brightgreen.svg
)
](http://
paddlepaddle.org/documentation/docs/zh/1.0/beginners_guide/index
.html)
[
![Release
](
https://img.shields.io/github/release/PaddlePaddle/Paddle.svg
)
](https://github.com/PaddlePaddle/Paddle/releases)
[
![License
](
https://img.shields.io/badge/license-Apache%202-blue.svg
)
](LICENSE)
...
...
@@ -19,7 +19,7 @@ Our vision is to enable deep learning for everyone via PaddlePaddle.
Please refer to our
[
release announcement
](
https://github.com/PaddlePaddle/Paddle/releases
)
to track the latest feature of PaddlePaddle.
### Latest PaddlePaddle Release: [Fluid 1.0.
0
](https://github.com/PaddlePaddle/Paddle/tree/release/1.0.0)
### Latest PaddlePaddle Release: [Fluid 1.0.
1
](https://github.com/PaddlePaddle/Paddle/tree/release/1.0.0)
### Install Latest Stable Release:
```
# Linux CPU
...
...
@@ -27,9 +27,9 @@ pip install paddlepaddle
# Linux GPU cuda9cudnn7
pip install paddlepaddle-gpu
# Linux GPU cuda8cudnn7
pip install paddlepaddle-gpu==
0.15.0
.post87
pip install paddlepaddle-gpu==
1.0.1
.post87
# Linux GPU cuda8cudnn5
pip install paddlepaddle-gpu==
0.15.0
.post85
pip install paddlepaddle-gpu==
1.0.1
.post85
# For installation on other platform, refer to http://paddlepaddle.org/
```
...
...
cmake/generic.cmake
浏览文件 @
23fc896b
...
...
@@ -311,6 +311,8 @@ function(cc_test TARGET_NAME)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY ENVIRONMENT FLAGS_cpu_deterministic=true
)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY ENVIRONMENT FLAGS_init_allocated_mem=true
)
set_property
(
TEST
${
TARGET_NAME
}
PROPERTY ENVIRONMENT FLAGS_cudnn_deterministic=true
)
# No unit test should exceed 10 minutes.
set_tests_properties
(
${
TARGET_NAME
}
PROPERTIES TIMEOUT 600
)
endif
()
endfunction
(
cc_test
)
...
...
@@ -629,6 +631,8 @@ function(py_test TARGET_NAME)
PYTHONPATH=
${
PADDLE_BINARY_DIR
}
/python
${
py_test_ENVS
}
${
PYTHON_EXECUTABLE
}
-u
${
py_test_SRCS
}
${
py_test_ARGS
}
WORKING_DIRECTORY
${
CMAKE_CURRENT_BINARY_DIR
}
)
# No unit test should exceed 10 minutes.
set_tests_properties
(
${
TARGET_NAME
}
PROPERTIES TIMEOUT 600
)
endif
()
endfunction
()
...
...
paddle/fluid/API.spec
浏览文件 @
23fc896b
...
...
@@ -61,12 +61,12 @@ paddle.fluid.layers.cos_sim ArgSpec(args=['X', 'Y'], varargs=None, keywords=None
paddle.fluid.layers.cross_entropy ArgSpec(args=['input', 'label', 'soft_label', 'ignore_index'], varargs=None, keywords=None, defaults=(False, -100))
paddle.fluid.layers.square_error_cost ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', 'num_chunk_types', 'excluded_chunk_types'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act'
], varargs=None, keywords=None, defaults=(3, 1
, None, None, None, None))
paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act'
, 'name'], varargs=None, keywords=None, defaults=(3, 1, None
, None, None, None, None))
paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None))
paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', '
param_attr', 'bias_attr', 'use_cudnn'], varargs=None, keywords=None, defaults=(None, None, Fals
e))
paddle.fluid.layers.softmax ArgSpec(args=['input', '
param_attr', 'bias_attr', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(None, None,
True, None))
paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', '
use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, Non
e))
paddle.fluid.layers.softmax ArgSpec(args=['input', '
use_cudnn', 'name'], varargs=None, keywords=None, defaults=(
True, None))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False))
...
...
@@ -97,8 +97,8 @@ paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_ti
paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples'
], varargs=None, keywords=None, defaults=(
None, None, None, None))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr'
], varargs=None, keywords=None, defaults=(
None, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples'
, 'name'], varargs=None, keywords=None, defaults=(None,
None, None, None, None))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr'
, 'name'], varargs=None, keywords=None, defaults=(None,
None, None))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
...
...
paddle/fluid/framework/ir/CMakeLists.txt
浏览文件 @
23fc896b
...
...
@@ -10,7 +10,7 @@ function(pass_library TARGET DEST)
set
(
oneValueArgs
""
)
set
(
multiValueArgs SRCS DEPS
)
cmake_parse_arguments
(
op_library
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
cc_library
(
${
TARGET
}
SRCS
${
TARGET
}
.cc DEPS graph_pattern_detector pass
${
op_library_DEPS
}
)
cc_library
(
${
TARGET
}
SRCS
${
TARGET
}
.cc DEPS graph_pattern_detector pass
fuse_pass_base
${
op_library_DEPS
}
)
# add more DEST here, such as train, dist and collect USE_PASS into a file automatically.
if
(
${
DEST
}
STREQUAL
"base"
OR
${
DEST
}
STREQUAL
"inference"
)
message
(
STATUS
"add pass
${
TARGET
}
${
DEST
}
"
)
...
...
@@ -25,13 +25,11 @@ cc_library(graph_helper SRCS graph_helper.cc DEPS graph)
cc_library
(
pass SRCS pass.cc DEPS graph node graph_helper
)
cc_library
(
graph_traits SRCS graph_traits.cc DEPS graph
)
cc_library
(
graph_pattern_detector SRCS graph_pattern_detector.cc DEPS graph graph_helper graph_traits
)
cc_library
(
fuse_pass_base SRCS fuse_pass_base.cc DEPS pass
)
pass_library
(
graph_to_program_pass base
)
pass_library
(
graph_viz_pass base
)
pass_library
(
fc_fuse_pass inference
)
if
(
WITH_MKLDNN
)
pass_library
(
conv_relu_mkldnn_fuse_pass inference
)
endif
()
pass_library
(
attention_lstm_fuse_pass inference
)
pass_library
(
infer_clean_graph_pass inference
)
pass_library
(
fc_lstm_fuse_pass inference
)
...
...
@@ -39,6 +37,10 @@ pass_library(embedding_fc_lstm_fuse_pass inference)
pass_library
(
fc_gru_fuse_pass inference
)
pass_library
(
seq_concat_fc_fuse_pass inference
)
pass_library
(
conv_bn_fuse_pass inference
)
if
(
WITH_MKLDNN
)
pass_library
(
mkldnn_placement_pass base
)
pass_library
(
conv_relu_mkldnn_fuse_pass inference
)
endif
()
cc_library
(
fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector
)
...
...
paddle/fluid/framework/ir/conv_bn_fuse_pass.cc
浏览文件 @
23fc896b
...
...
@@ -126,12 +126,21 @@ std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl(
// conv, batch_norm,
// conv_weight, conv_out,
// bn_scale, bn_bias, bn_mean, bn_variance,
// bn_out, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance
// bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,
// bn_saved_variance
GET_CONV_BN_NODES
(
conv_bn_pattern
);
// check if fuse can be done and if MKL-DNN should be used
FuseOptions
fuse_option
=
FindFuseOption
(
*
conv
,
*
batch_norm
);
if
(
fuse_option
==
DO_NOT_FUSE
)
{
VLOG
(
3
)
<<
"do not perform conv+bn fuse"
;
return
;
}
// Create eltwise_y (conv bias) variable
VarDesc
eltwise_y_in_desc
(
patterns
::
PDNodeName
(
name_scope_
,
"eltwise_y_in"
));
eltwise_y_in_desc
.
SetPersistable
(
true
);
auto
*
eltwise_y_in_node
=
g
->
CreateVarNode
(
&
eltwise_y_in_desc
);
auto
*
eltwise_y_in_tensor
=
scope
->
Var
(
eltwise_y_in_node
->
Name
())
->
GetMutable
<
LoDTensor
>
();
...
...
@@ -151,27 +160,59 @@ std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl(
*
bn_mean
,
*
bn_variance
,
eltwise_y_in_tensor
,
epsilon
);
// Create an elementwise add node
// with MKL-DNN fuse conv+bn into conv with bias
// without MKL-DNN fuse conv+bn into conv+elementwise_add
if
(
fuse_option
==
FUSE_MKLDNN
)
{
auto
input_names
=
conv
->
Op
()
->
InputNames
();
bool
has_bias
=
std
::
find
(
input_names
.
begin
(),
input_names
.
end
(),
"Bias"
)
!=
input_names
.
end
();
if
(
has_bias
&&
conv
->
Op
()
->
Input
(
"Bias"
).
size
()
>
0
)
{
// reuse existing conv bias node
auto
conv_bias_names
=
conv
->
Op
()
->
Input
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
conv_bias_names
.
size
(),
1
);
auto
*
conv_bias_var
=
scope
->
FindVar
(
conv_bias_names
[
0
]);
auto
*
conv_bias_tensor
=
conv_bias_var
->
GetMutable
<
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
conv_bias_tensor
->
dims
(),
eltwise_y_in_tensor
->
dims
());
auto
eigen_conv_bias
=
EigenVector
<
float
>::
From
(
*
conv_bias_tensor
);
eigen_conv_bias
+=
EigenVector
<
float
>::
From
(
*
eltwise_y_in_tensor
);
}
else
{
// add new conv_bias node
conv
->
Op
()
->
SetInput
(
"Bias"
,
std
::
vector
<
std
::
string
>
({
eltwise_y_in_node
->
Name
()}));
IR_NODE_LINK_TO
(
eltwise_y_in_node
,
conv
);
}
conv
->
Op
()
->
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
bn_out
->
Name
()}));
GraphSafeRemoveNodes
(
graph
.
get
(),
{
conv_out
,
bn_scale
,
bn_bias
,
bn_mean
,
bn_variance
,
batch_norm
,
bn_mean_out
,
bn_variance_out
,
bn_saved_mean
,
bn_saved_variance
});
IR_NODE_LINK_TO
(
conv
,
bn_out
);
found_conv_bn_count
++
;
}
else
{
// fuse_option == FUSE_NATIVE
// create an elementwise add node.
OpDesc
desc
;
desc
.
SetInput
(
"X"
,
std
::
vector
<
std
::
string
>
({
conv_out
->
Name
()}));
desc
.
SetInput
(
"Y"
,
std
::
vector
<
std
::
string
>
({
eltwise_y_in_node
->
Name
()}));
desc
.
SetOutput
(
"Out"
,
std
::
vector
<
std
::
string
>
({
bn_out
->
Name
()}));
desc
.
SetType
(
"elementwise_add"
);
desc
.
SetAttr
(
"axis"
,
1
);
bool
a
=
boost
::
get
<
bool
>
(
conv
->
Op
()
->
GetAttr
(
"use_mkldnn"
));
desc
.
SetAttr
(
"use_mkldnn"
,
a
);
auto
eltwise_op
=
g
->
CreateOpNode
(
&
desc
);
// OpDesc will be copied.
GraphSafeRemoveNodes
(
graph
.
get
(),
{
bn_scale
,
bn_bias
,
bn_mean
,
bn_variance
,
batch_norm
,
bn_mean_out
,
bn_variance_out
,
bn_saved_mean
,
bn_saved_variance
});
GraphSafeRemoveNodes
(
graph
.
get
(),
{
bn_scale
,
bn_bias
,
bn_mean
,
bn_variance
,
batch_norm
,
bn_mean_out
,
bn_variance_out
,
bn_saved_mean
,
bn_saved_variance
});
PADDLE_ENFORCE
(
subgraph
.
count
(
conv_input
));
IR_NODE_LINK_TO
(
conv_out
,
eltwise_op
);
IR_NODE_LINK_TO
(
eltwise_y_in_node
,
eltwise_op
);
IR_NODE_LINK_TO
(
eltwise_op
,
bn_out
);
found_conv_bn_count
++
;
}
};
gpd
(
graph
.
get
(),
handler
);
...
...
@@ -237,7 +278,6 @@ std::unique_ptr<ir::Graph> ConvEltwiseAddBNFusePass::ApplyImpl(
{
bn_scale
,
bn_bias
,
bn_mean
,
bn_variance
,
batch_norm
,
bn_mean_out
,
bn_variance_out
,
bn_saved_mean
,
bn_saved_variance
,
eltwise_out
});
PADDLE_ENFORCE
(
subgraph
.
count
(
conv_input
));
IR_NODE_LINK_TO
(
eltwise
,
bn_out
);
found_conv_bn_count
++
;
...
...
paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.cc
浏览文件 @
23fc896b
...
...
@@ -46,6 +46,12 @@ std::unique_ptr<ir::Graph> ConvReLUFusePass::ApplyImpl(
GET_IR_NODE_FROM_SUBGRAPH
(
relu_out
,
relu_out
,
conv_relu_pattern
);
// Out
GET_IR_NODE_FROM_SUBGRAPH
(
relu
,
relu
,
conv_relu_pattern
);
// ReLU op
FuseOptions
fuse_option
=
FindFuseOption
(
*
conv
,
*
relu
);
if
(
fuse_option
==
DO_NOT_FUSE
)
{
VLOG
(
3
)
<<
"do not perform conv+relu fuse"
;
return
;
}
// Transform Conv node into ConvReLU node.
OpDesc
*
desc
=
conv
->
Op
();
desc
->
SetOutput
(
"Output"
,
std
::
vector
<
std
::
string
>
({
relu_out
->
Name
()}));
...
...
paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass_tester.cc
浏览文件 @
23fc896b
...
...
@@ -20,17 +20,19 @@ namespace paddle {
namespace
framework
{
namespace
ir
{
void
SetOp
(
ProgramDesc
*
prog
,
const
std
::
string
&
type
,
void
SetOp
(
ProgramDesc
*
prog
,
const
std
::
string
&
type
,
const
std
::
string
&
name
,
const
std
::
vector
<
std
::
string
>&
inputs
,
const
std
::
vector
<
std
::
string
>&
outputs
)
{
const
std
::
vector
<
std
::
string
>&
outputs
,
bool
use_mkldnn
=
false
)
{
auto
*
op
=
prog
->
MutableBlock
(
0
)
->
AppendOp
();
op
->
SetType
(
type
);
if
(
type
==
"conv2d"
)
{
op
->
SetAttr
(
"use_mkldnn"
,
true
);
op
->
SetAttr
(
"use_mkldnn"
,
use_mkldnn
);
op
->
SetAttr
(
"name"
,
name
);
op
->
SetInput
(
"Input"
,
{
inputs
[
0
]});
op
->
SetInput
(
"Filter"
,
{
inputs
[
1
]});
op
->
SetInput
(
"Bias"
,
{
inputs
[
2
]});
}
else
if
(
type
==
"relu"
)
{
op
->
SetAttr
(
"use_mkldnn"
,
use_mkldnn
);
op
->
SetInput
(
"X"
,
inputs
);
}
op
->
SetOutput
(
"Out"
,
outputs
);
...
...
@@ -43,7 +45,8 @@ void SetOp(ProgramDesc* prog, const std::string& type,
ProgramDesc
BuildProgramDesc
()
{
ProgramDesc
prog
;
for
(
auto
&
v
:
std
::
vector
<
std
::
string
>
({
"a"
,
"b"
,
"c"
,
"weights"
,
"bias"
,
"f"
,
"g"
}))
{
std
::
vector
<
std
::
string
>
({
"a"
,
"b"
,
"c"
,
"weights"
,
"bias"
,
"f"
,
"g"
,
"h"
,
"weights2"
,
"bias2"
,
"k"
,
"l"
}))
{
auto
*
var
=
prog
.
MutableBlock
(
0
)
->
Var
(
v
);
var
->
SetType
(
proto
::
VarType
::
SELECTED_ROWS
);
if
(
v
==
"weights"
||
v
==
"bias"
)
{
...
...
@@ -51,14 +54,24 @@ ProgramDesc BuildProgramDesc() {
}
}
SetOp
(
&
prog
,
"OP0"
,
std
::
vector
<
std
::
string
>
({
"a"
}),
SetOp
(
&
prog
,
"OP0"
,
"op0"
,
std
::
vector
<
std
::
string
>
({
"a"
}),
std
::
vector
<
std
::
string
>
({
"b"
}));
SetOp
(
&
prog
,
"OP1"
,
std
::
vector
<
std
::
string
>
({
"b"
}),
SetOp
(
&
prog
,
"OP1"
,
"op1"
,
std
::
vector
<
std
::
string
>
({
"b"
}),
std
::
vector
<
std
::
string
>
({
"c"
}));
SetOp
(
&
prog
,
"conv2d"
,
std
::
vector
<
std
::
string
>
({
"c"
,
"weights"
,
"bias"
}),
std
::
vector
<
std
::
string
>
({
"f"
}));
SetOp
(
&
prog
,
"relu"
,
std
::
vector
<
std
::
string
>
({
"f"
}),
std
::
vector
<
std
::
string
>
({
"g"
}));
// conv+relu, both with MKL-DNN
SetOp
(
&
prog
,
"conv2d"
,
"conv1"
,
std
::
vector
<
std
::
string
>
({
"c"
,
"weights"
,
"bias"
}),
std
::
vector
<
std
::
string
>
({
"f"
}),
true
);
SetOp
(
&
prog
,
"relu"
,
"relu1"
,
std
::
vector
<
std
::
string
>
({
"f"
}),
std
::
vector
<
std
::
string
>
({
"g"
}),
true
);
SetOp
(
&
prog
,
"OP3"
,
"op3"
,
std
::
vector
<
std
::
string
>
({
"g"
}),
std
::
vector
<
std
::
string
>
({
"h"
}));
// conv+relu, only one with MKL-DNN
SetOp
(
&
prog
,
"conv2d"
,
"conv2"
,
std
::
vector
<
std
::
string
>
({
"h"
,
"weights2"
,
"bias2"
}),
std
::
vector
<
std
::
string
>
({
"k"
}),
true
);
SetOp
(
&
prog
,
"relu"
,
"relu2"
,
std
::
vector
<
std
::
string
>
({
"k"
}),
std
::
vector
<
std
::
string
>
({
"l"
}));
return
prog
;
}
...
...
@@ -88,11 +101,17 @@ TEST(ConvReLUFusePass, basic) {
auto
*
op
=
node
->
Op
();
ASSERT_TRUE
(
op
->
HasAttr
(
"use_mkldnn"
));
EXPECT_TRUE
(
boost
::
get
<
bool
>
(
op
->
GetAttr
(
"use_mkldnn"
)));
// check if only "conv1" convolution is fused
auto
op_name
=
boost
::
get
<
std
::
string
>
(
op
->
GetAttr
(
"name"
));
if
(
op_name
==
"conv1"
)
{
ASSERT_TRUE
(
op
->
HasAttr
(
"fuse_relu"
));
bool
fuse_relu
=
boost
::
get
<
bool
>
(
op
->
GetAttr
(
"fuse_relu"
));
if
(
fuse_relu
)
{
++
conv_relu_count
;
}
}
else
if
(
op_name
==
"conv2"
)
{
ASSERT_FALSE
(
op
->
HasAttr
(
"fuse_relu"
));
}
}
}
EXPECT_EQ
(
conv_relu_count
,
1
);
...
...
paddle/fluid/framework/ir/fuse_pass_base.cc
0 → 100644
浏览文件 @
23fc896b
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
void
FusePassBase
::
Init
(
const
std
::
string
&
repr
,
Graph
*
graph
)
const
{
repr_
=
repr
;
graph_
=
graph
;
}
Scope
*
FusePassBase
::
param_scope
()
const
{
PADDLE_ENFORCE
(
graph_
->
Has
(
kParamScopeAttr
));
return
graph_
->
Get
<
framework
::
Scope
*>
(
kParamScopeAttr
);
}
void
FusePassBase
::
AddStatis
(
int
count_of_fused
)
const
{
PADDLE_ENFORCE
(
graph_
);
PADDLE_ENFORCE
(
!
repr_
.
empty
());
if
(
!
graph_
->
Has
(
kFuseStatisAttr
))
{
graph_
->
Set
(
kFuseStatisAttr
,
new
std
::
unordered_map
<
std
::
string
,
int
>
);
}
auto
&
info
=
graph_
->
Get
<
std
::
unordered_map
<
std
::
string
,
int
>>
(
kFuseStatisAttr
);
info
[
repr_
]
=
count_of_fused
;
}
FuseOptions
FusePassBase
::
FindFuseOption
(
const
Node
&
node1
,
const
Node
&
node2
)
const
{
#ifdef PADDLE_WITH_MKLDNN
bool
node1_mkldnn
=
node1
.
Op
()
->
HasAttr
(
"use_mkldnn"
)
&&
boost
::
get
<
bool
>
(
node1
.
Op
()
->
GetAttr
(
"use_mkldnn"
));
bool
node2_mkldnn
=
node2
.
Op
()
->
HasAttr
(
"use_mkldnn"
)
&&
boost
::
get
<
bool
>
(
node2
.
Op
()
->
GetAttr
(
"use_mkldnn"
));
if
(
node1_mkldnn
&&
node2_mkldnn
)
return
FUSE_MKLDNN
;
else
if
(
!
node1_mkldnn
&&
!
node2_mkldnn
)
return
FUSE_NATIVE
;
else
return
DO_NOT_FUSE
;
#else
return
FUSE_NATIVE
;
#endif
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/ir/fuse_pass_base.h
浏览文件 @
23fc896b
...
...
@@ -25,32 +25,24 @@ namespace ir {
static
const
char
kParamScopeAttr
[]
=
"__param_scope__"
;
static
const
char
kFuseStatisAttr
[]
=
"__fuse_statis__"
;
enum
FuseOptions
{
DO_NOT_FUSE
,
// fusing will not be done
FUSE_NATIVE
,
// fusing will be done without MKL-DNN
FUSE_MKLDNN
// fusing will be done with MKL-DNN
};
class
FusePassBase
:
public
Pass
{
public:
void
Init
(
const
std
::
string
&
repr
,
Graph
*
graph
)
const
{
repr_
=
repr
;
graph_
=
graph
;
}
Scope
*
param_scope
()
const
{
PADDLE_ENFORCE
(
graph_
->
Has
(
kParamScopeAttr
));
return
graph_
->
Get
<
framework
::
Scope
*>
(
kParamScopeAttr
);
}
void
AddStatis
(
int
count_of_fused
)
const
{
PADDLE_ENFORCE
(
graph_
);
PADDLE_ENFORCE
(
!
repr_
.
empty
());
if
(
!
graph_
->
Has
(
kFuseStatisAttr
))
{
graph_
->
Set
(
kFuseStatisAttr
,
new
std
::
unordered_map
<
std
::
string
,
int
>
);
}
auto
&
info
=
graph_
->
Get
<
std
::
unordered_map
<
std
::
string
,
int
>>
(
kFuseStatisAttr
);
info
[
repr_
]
=
count_of_fused
;
}
void
Init
(
const
std
::
string
&
repr
,
Graph
*
graph
)
const
;
Scope
*
param_scope
()
const
;
void
AddStatis
(
int
count_of_fused
)
const
;
virtual
~
FusePassBase
()
{}
protected:
virtual
FuseOptions
FindFuseOption
(
const
Node
&
node1
,
const
Node
&
node2
)
const
;
mutable
Graph
*
graph_
;
mutable
std
::
string
repr_
;
};
...
...
paddle/fluid/framework/ir/graph_pattern_detector.cc
浏览文件 @
23fc896b
...
...
@@ -259,6 +259,8 @@ GraphPatternDetector::DetectPatterns() {
return
result
;
}
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
void
GraphPatternDetector
::
UniquePatterns
(
std
::
vector
<
GraphPatternDetector
::
subgraph_t
>
*
subgraphs
)
{
if
(
subgraphs
->
empty
())
return
;
...
...
paddle/fluid/framework/ir/mkldnn_placement_pass.cc
0 → 100644
浏览文件 @
23fc896b
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/mkldnn_placement_pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
std
::
unique_ptr
<
ir
::
Graph
>
MKLDNNPlacementPass
::
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
{
VLOG
(
3
)
<<
"Aplies MKL-DNN placement strategy."
;
for
(
const
Node
*
n
:
graph
->
Nodes
())
{
if
(
n
->
IsOp
()
&&
n
->
Op
()
->
HasAttr
(
"use_mkldnn"
))
{
n
->
Op
()
->
SetAttr
(
"use_mkldnn"
,
true
);
}
}
return
graph
;
}
}
// namespace ir
}
// namespace framework
}
// namespace paddle
REGISTER_PASS
(
mkldnn_placement_pass
,
paddle
::
framework
::
ir
::
MKLDNNPlacementPass
);
paddle/fluid/framework/ir/mkldnn_placement_pass.h
0 → 100644
浏览文件 @
23fc896b
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/ir/pass.h"
namespace
paddle
{
namespace
framework
{
namespace
ir
{
class
MKLDNNPlacementPass
:
public
Pass
{
protected:
std
::
unique_ptr
<
ir
::
Graph
>
ApplyImpl
(
std
::
unique_ptr
<
ir
::
Graph
>
graph
)
const
override
;
};
}
// namespace ir
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/op_desc.cc
浏览文件 @
23fc896b
...
...
@@ -85,10 +85,6 @@ class CompileTimeInferShapeContext : public InferShapeContext {
VLOG
(
3
)
<<
"input "
<<
in
<<
" is not LodTensor"
;
return
;
}
PADDLE_ENFORCE_EQ
(
in_var
->
GetType
(),
proto
::
VarType
::
LOD_TENSOR
,
"The %d-th output of Output(%s) must be LoDTensor."
,
j
,
out
);
out_var
->
SetLoDLevel
(
in_var
->
GetLoDLevel
());
}
...
...
paddle/fluid/inference/analysis/analyzer.cc
浏览文件 @
23fc896b
...
...
@@ -101,7 +101,11 @@ Analyzer::Analyzer() { Register("manager1", new DfgPassManagerImpl); }
void
Analyzer
::
Run
(
Argument
*
argument
)
{
std
::
vector
<
std
::
string
>
passes
;
for
(
auto
&
pass
:
all_ir_passes_
)
{
if
(
use_mkldnn_
)
{
VLOG
(
3
)
<<
"Adding MKL-DNN placement pass"
;
passes
.
push_back
(
"mkldnn_placement_pass"
);
}
for
(
auto
&
pass
:
ir_passes_
)
{
if
(
!
disabled_ir_passes_
.
count
(
pass
))
{
passes
.
push_back
(
pass
);
passes
.
push_back
(
"graph_viz_pass"
);
// add graphviz for debug.
...
...
@@ -117,11 +121,26 @@ void Analyzer::Run(Argument* argument) {
}
}
Analyzer
&
Analyzer
::
IncludeAllIrPasses
()
{
ir_passes_
=
all_ir_passes_
;
return
*
this
;
}
Analyzer
&
Analyzer
::
DisableIrPasses
(
const
std
::
vector
<
std
::
string
>&
passes
)
{
disabled_ir_passes_
.
insert
(
passes
.
begin
(),
passes
.
end
());
return
*
this
;
}
Analyzer
&
Analyzer
::
IncludeIrPasses
(
const
std
::
vector
<
std
::
string
>&
passes
)
{
ir_passes_
=
passes
;
return
*
this
;
}
Analyzer
&
Analyzer
::
SetUseMkldnn
(
bool
use_mkldnn
)
{
use_mkldnn_
=
use_mkldnn
;
return
*
this
;
}
}
// namespace analysis
}
// namespace inference
}
// namespace paddle
paddle/fluid/inference/analysis/analyzer.h
浏览文件 @
23fc896b
...
...
@@ -54,6 +54,9 @@ class Analyzer : public OrderedRegistry<PassManager> {
void
Run
(
Argument
*
argument
);
Analyzer
&
DisableIrPasses
(
const
std
::
vector
<
std
::
string
>&
passes
);
Analyzer
&
IncludeIrPasses
(
const
std
::
vector
<
std
::
string
>&
passes
);
Analyzer
&
IncludeAllIrPasses
();
Analyzer
&
SetUseMkldnn
(
bool
use_mkldnn
);
DISABLE_COPY_AND_ASSIGN
(
Analyzer
);
...
...
@@ -81,6 +84,9 @@ class Analyzer : public OrderedRegistry<PassManager> {
}};
std
::
unordered_set
<
std
::
string
>
disabled_ir_passes_
;
// Ir passes to run
std
::
vector
<
std
::
string
>
ir_passes_
;
bool
use_mkldnn_
;
};
}
// namespace analysis
...
...
paddle/fluid/inference/api/analysis_predictor.cc
浏览文件 @
23fc896b
...
...
@@ -225,10 +225,24 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
argument_
.
origin_program_desc
.
reset
(
new
ProgramDesc
(
*
inference_program_
->
Proto
()));
PADDLE_ENFORCE
(
config_
.
ir_mode
==
contrib
::
AnalysisConfig
::
IrPassMode
::
kExclude
,
"Only kExclude is supported yet."
);
Analyzer
().
DisableIrPasses
(
config_
.
ir_passes
).
Run
(
&
argument_
);
switch
(
config_
.
ir_mode
)
{
case
contrib
::
AnalysisConfig
::
IrPassMode
::
kExclude
:
Analyzer
()
.
IncludeAllIrPasses
()
.
SetUseMkldnn
(
config_
.
_use_mkldnn
)
.
DisableIrPasses
(
config_
.
ir_passes
)
.
Run
(
&
argument_
);
break
;
case
contrib
::
AnalysisConfig
::
IrPassMode
::
kInclude
:
Analyzer
()
.
SetUseMkldnn
(
config_
.
_use_mkldnn
)
.
IncludeIrPasses
(
config_
.
ir_passes
)
.
Run
(
&
argument_
);
break
;
default:
LOG
(
ERROR
)
<<
"Only kExclude and kInclude modes are supoorted yet."
;
}
CHECK
(
argument_
.
transformed_program_desc
);
VLOG
(
5
)
<<
"to prepare executor"
;
...
...
paddle/fluid/inference/api/paddle_inference_api.h
浏览文件 @
23fc896b
...
...
@@ -259,10 +259,17 @@ struct AnalysisConfig : public NativeConfig {
kExclude
// Specify the disabled passes in `ir_passes`.
};
void
SetIncludeMode
()
{
ir_mode
=
IrPassMode
::
kInclude
;
// this pass has to be run at the beginning of all fuse passes
ir_passes
=
{
"infer_clean_graph_pass"
};
}
// Determine whether to perform graph optimization.
bool
enable_ir_optim
=
true
;
// Manually determine the IR passes to run.
IrPassMode
ir_mode
{
IrPassMode
::
kExclude
};
// passes to be excluded/included
std
::
vector
<
std
::
string
>
ir_passes
{
"embedding_fc_lstm_fuse_pass"
};
// NOT stable yet.
...
...
paddle/fluid/inference/tests/api/analyzer_rnn2_tester.cc
浏览文件 @
23fc896b
...
...
@@ -18,12 +18,12 @@ namespace paddle {
namespace
inference
{
using
namespace
framework
;
// NOLINT
static
std
::
vector
<
float
>
result_data
;
struct
DataRecord
{
std
::
vector
<
std
::
vector
<
std
::
vector
<
float
>>>
link_step_data_all
;
std
::
vector
<
size_t
>
lod
;
std
::
vector
<
std
::
vector
<
float
>>
rnn_link_data
;
std
::
vector
<
float
>
result_data
;
size_t
num_samples
;
// total number of samples
size_t
batch_iter
{
0
};
size_t
batch_size
{
1
};
...
...
@@ -57,6 +57,7 @@ struct DataRecord {
std
::
ifstream
file
(
path
);
std
::
string
line
;
int
num_lines
=
0
;
result_data
.
clear
();
while
(
std
::
getline
(
file
,
line
))
{
num_lines
++
;
std
::
vector
<
std
::
string
>
data
;
...
...
@@ -135,13 +136,12 @@ TEST(Analyzer_rnn2, profile) {
if
(
FLAGS_num_threads
==
1
&&
!
FLAGS_test_all_data
)
{
// the first inference result
DataRecord
data
(
FLAGS_infer_data
,
FLAGS_batch_size
);
PADDLE_ENFORCE_GT
(
outputs
.
size
(),
0
);
size_t
size
=
GetSize
(
outputs
[
0
]);
PADDLE_ENFORCE_GT
(
size
,
0
);
float
*
result
=
static_cast
<
float
*>
(
outputs
[
0
].
data
.
data
());
for
(
size_t
i
=
0
;
i
<
size
;
i
++
)
{
EXPECT_NEAR
(
result
[
i
],
data
.
result_data
[
i
],
1e-3
);
EXPECT_NEAR
(
result
[
i
],
result_data
[
i
],
1e-3
);
}
}
}
...
...
paddle/fluid/operators/detection/CMakeLists.txt
浏览文件 @
23fc896b
...
...
@@ -20,7 +20,7 @@ detection_library(box_coder_op SRCS box_coder_op.cc box_coder_op.cu)
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op.cu
)
detection_library
(
mine_hard_examples_op SRCS mine_hard_examples_op.cc
)
detection_library
(
multiclass_nms_op SRCS multiclass_nms_op.cc
)
detection_library
(
multiclass_nms_op SRCS multiclass_nms_op.cc
poly_util.cc gpc.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc prior_box_op.cu
)
detection_library
(
anchor_generator_op SRCS anchor_generator_op.cc
anchor_generator_op.cu
)
...
...
paddle/fluid/operators/detection/gpc.cc
0 → 100644
浏览文件 @
23fc896b
此差异已折叠。
点击以展开。
paddle/fluid/operators/detection/gpc.h
0 → 100644
浏览文件 @
23fc896b
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/***************************************************************************
*
* Copyright (c) 2015 Baidu.com, Inc. All Rights Reserved
*
**************************************************************************/
/**
* @file include/gpc.h
* @author huhan02(com@baidu.com)
* @date 2015/12/18 13:52:10
* @brief
*
* @modified by sunyipeng
* @email sunyipeng@baidu.com
* @date 2018/6/12
**/
#ifndef PADDLE_FLUID_OPERATORS_DETECTION_GPC_H_ // GPC_H_
#define PADDLE_FLUID_OPERATORS_DETECTION_GPC_H_ // GPC_H_
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
namespace
gpc
{
typedef
enum
{
// Set operation type
GPC_DIFF
,
// Difference
GPC_INT
,
// Intersection
GPC_XOR
,
// Exclusive or
GPC_UNION
// Union
}
gpc_op
;
typedef
struct
{
// Polygon vertex structure
double
x
;
// Vertex x component
double
y
;
// vertex y component
}
gpc_vertex
;
typedef
struct
{
// Vertex list structure
int
num_vertices
;
// Number of vertices in list
gpc_vertex
*
vertex
;
// Vertex array pointer
}
gpc_vertex_list
;
typedef
struct
{
// Polygon set structure
int
num_contours
;
// Number of contours in polygon
int
*
hole
;
// Hole external contour flags
gpc_vertex_list
*
contour
;
// Contour array pointer
}
gpc_polygon
;
typedef
struct
{
// Tristrip set structure
int
num_strips
;
// Number of tristrips
gpc_vertex_list
*
strip
;
// Tristrip array pointer
}
gpc_tristrip
;
typedef
enum
{
LEFT
,
RIGHT
}
gpc_left_right
;
typedef
enum
{
ABOVE
,
BELOW
}
gpc_above_below
;
typedef
enum
{
CLIP
,
SUBJ
}
gpc_clip_subj
;
typedef
enum
{
/* Edge intersection classes */
NUL
,
/* Empty non-intersection */
EMX
,
/* External maximum */
ELI
,
/* External left intermediate */
TED
,
/* Top edge */
ERI
,
/* External right intermediate */
RED
,
/* Right edge */
IMM
,
/* Internal maximum and minimum */
IMN
,
/* Internal minimum */
EMN
,
/* External minimum */
EMM
,
/* External maximum and minimum */
LED
,
/* Left edge */
ILI
,
/* Internal left intermediate */
BED
,
/* Bottom edge */
IRI
,
/* Internal right intermediate */
IMX
,
/* Internal maximum */
FUL
/* Full non-intersection */
}
vertex_type
;
typedef
enum
{
/* Horizontal edge states */
NH
,
/* No horizontal edge */
BH
,
/* Bottom horizontal edge */
TH
/* Top horizontal edge */
}
h_state
;
typedef
enum
{
/* Edge bundle state */
UNBUNDLED
,
/* Isolated edge not within a bundle */
BUNDLE_HEAD
,
/* Bundle head node */
BUNDLE_TAIL
/* Passive bundle tail node */
}
bundle_state
;
typedef
struct
v_shape
{
/* Internal vertex list datatype */
double
x
;
/* X coordinate component */
double
y
;
/* Y coordinate component */
struct
v_shape
*
next
;
/* Pointer to next vertex in list */
}
vertex_node
;
typedef
struct
p_shape
{
/* Internal contour / tristrip type */
int
active
;
/* Active flag / vertex count */
int
hole
;
/* Hole / external contour flag */
vertex_node
*
v
[
2
];
/* Left and right vertex list ptrs */
struct
p_shape
*
next
;
/* Pointer to next polygon contour */
struct
p_shape
*
proxy
;
/* Pointer to actual structure used */
}
polygon_node
;
typedef
struct
edge_shape
{
gpc_vertex
vertex
;
/* Piggy-backed contour vertex data */
gpc_vertex
bot
;
/* Edge lower (x, y) coordinate */
gpc_vertex
top
;
/* Edge upper (x, y) coordinate */
double
xb
;
/* Scanbeam bottom x coordinate */
double
xt
;
/* Scanbeam top x coordinate */
double
dx
;
/* Change in x for a unit y increase */
int
type
;
/* Clip / subject edge flag */
int
bundle
[
2
][
2
];
/* Bundle edge flags */
int
bside
[
2
];
/* Bundle left / right indicators */
bundle_state
bstate
[
2
];
/* Edge bundle state */
polygon_node
*
outp
[
2
];
/* Output polygon / tristrip pointer */
struct
edge_shape
*
prev
;
/* Previous edge in the AET */
struct
edge_shape
*
next
;
/* Next edge in the AET */
struct
edge_shape
*
pred
;
/* Edge connected at the lower end */
struct
edge_shape
*
succ
;
/* Edge connected at the upper end */
struct
edge_shape
*
next_bound
;
/* Pointer to next bound in LMT */
}
edge_node
;
inline
bool
gpc_eq
(
float
a
,
float
b
)
{
return
(
fabs
(
a
-
b
)
<=
1e-6
);
}
inline
bool
gpc_prev_index
(
float
a
,
float
b
)
{
return
(
fabs
(
a
-
b
)
<=
1e-6
);
}
inline
int
gpc_prev_index
(
int
i
,
int
n
)
{
return
((
i
-
1
+
n
)
%
n
);
}
inline
int
gpc_next_index
(
int
i
,
int
n
)
{
return
((
i
+
1
)
%
n
);
}
inline
int
gpc_optimal
(
gpc_vertex
*
v
,
int
i
,
int
n
)
{
return
(
v
[(
i
+
1
)
%
n
].
y
!=
v
[
i
].
y
||
v
[(
i
-
1
+
n
)
%
n
].
y
!=
v
[
i
].
y
);
}
inline
int
gpc_fwd_min
(
edge_node
*
v
,
int
i
,
int
n
)
{
return
(
v
[(
i
+
1
)
%
n
].
vertex
.
y
>
v
[
i
].
vertex
.
y
&&
v
[(
i
-
1
+
n
)
%
n
].
vertex
.
y
>=
v
[
i
].
vertex
.
y
);
}
inline
int
gpc_not_fmax
(
edge_node
*
v
,
int
i
,
int
n
)
{
return
(
v
[(
i
+
1
)
%
n
].
vertex
.
y
>
v
[
i
].
vertex
.
y
);
}
inline
int
gpc_rev_min
(
edge_node
*
v
,
int
i
,
int
n
)
{
return
(
v
[(
i
+
1
)
%
n
].
vertex
.
y
>=
v
[
i
].
vertex
.
y
&&
v
[(
i
-
1
+
n
)
%
n
].
vertex
.
y
>
v
[
i
].
vertex
.
y
);
}
inline
int
gpc_not_rmax
(
edge_node
*
v
,
int
i
,
int
n
)
{
return
(
v
[(
i
-
1
+
n
)
%
n
].
vertex
.
y
>
v
[
i
].
vertex
.
y
);
}
// inline void gpc_p_edge(edge_node *d, edge_node *e, int p, double i, double j)
// {
inline
void
gpc_p_edge
(
edge_node
*
d
,
edge_node
*
e
,
int
p
)
{
d
=
e
;
do
{
d
=
d
->
prev
;
}
while
(
!
d
->
outp
[
p
]);
// i = d->bot.x + d->dx * (j - d->bot.y);
}
// inline void gpc_n_edge(edge_node *d, edge_node *e, int p, double i, double j)
// {
inline
void
gpc_n_edge
(
edge_node
*
d
,
edge_node
*
e
,
int
p
)
{
d
=
e
;
do
{
d
=
d
->
next
;
}
while
(
!
d
->
outp
[
p
]);
// i = d->bot.x + d->dx * (j - d->bot.y);
}
template
<
typename
T
>
void
gpc_malloc
(
T
*&
p
,
int
b
,
char
*
s
)
{
if
(
b
>
0
)
{
p
=
(
T
*
)
malloc
(
b
);
if
(
!
p
)
{
fprintf
(
stderr
,
"gpc malloc failure: %s
\n
"
,
s
);
exit
(
0
);
}
}
else
{
p
=
NULL
;
}
}
template
<
typename
T
>
void
gpc_free
(
T
*&
p
)
{
if
(
p
)
{
free
(
p
);
p
=
NULL
;
}
}
/*
===========================================================================
Public Function Prototypes
===========================================================================
*/
void
add_vertex
(
vertex_node
**
t
,
double
x
,
double
y
);
void
gpc_vertex_create
(
edge_node
*
e
,
int
p
,
int
s
,
double
x
,
double
y
);
/*
void gpc_read_polygon(FILE *infile_ptr, int read_hole_flags,
gpc_polygon *polygon);
void gpc_write_polygon(FILE *outfile_ptr, int write_hole_flags,
gpc_polygon *polygon);
*/
void
gpc_add_contour
(
gpc_polygon
*
polygon
,
gpc_vertex_list
*
contour
,
int
hole
);
void
gpc_polygon_clip
(
gpc_op
set_operation
,
gpc_polygon
*
subject_polygon
,
gpc_polygon
*
clip_polygon
,
gpc_polygon
*
result_polygon
);
void
gpc_tristrip_clip
(
gpc_op
set_operation
,
gpc_polygon
*
subject_polygon
,
gpc_polygon
*
clip_polygon
,
gpc_tristrip
*
result_tristrip
);
void
gpc_polygon_to_tristrip
(
gpc_polygon
*
polygon
,
gpc_tristrip
*
tristrip
);
void
gpc_free_polygon
(
gpc_polygon
*
polygon
);
void
gpc_free_tristrip
(
gpc_tristrip
*
tristrip
);
}
// namespace gpc
#endif // PADDLE_FLUID_OPERATORS_DETECTION_GPC_H_
/* vim: set expandtab ts=4 sw=4 sts=4 tw=100: */
paddle/fluid/operators/detection/multiclass_nms_op.cc
浏览文件 @
23fc896b
...
...
@@ -9,10 +9,11 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/poly_util.h"
namespace
paddle
{
namespace
operators
{
...
...
@@ -20,9 +21,6 @@ namespace operators {
using
Tensor
=
framework
::
Tensor
;
using
LoDTensor
=
framework
::
LoDTensor
;
constexpr
int64_t
kOutputDim
=
6
;
constexpr
int64_t
kBBoxSize
=
4
;
class
MultiClassNMSOp
:
public
framework
::
OperatorWithKernel
{
public:
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
...
...
@@ -42,10 +40,15 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
"The rank of Input(BBoxes) must be 3."
);
PADDLE_ENFORCE_EQ
(
score_dims
.
size
(),
3
,
"The rank of Input(Scores) must be 3."
);
PADDLE_ENFORCE_EQ
(
box_dims
[
2
],
4
,
"The 2nd dimension of Input(BBoxes) must be 4, "
PADDLE_ENFORCE
(
box_dims
[
2
]
==
4
||
box_dims
[
2
]
==
8
||
box_dims
[
2
]
==
16
||
box_dims
[
2
]
==
24
||
box_dims
[
2
]
==
32
,
"The 2nd dimension of Input(BBoxes) must be 4 or 8, "
"represents the layout of coordinate "
"[xmin, ymin, xmax, ymax]"
);
"[xmin, ymin, xmax, ymax] or "
"4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
"8 points: [xi, yi] i= 1,2,...,8 or "
"12 points: [xi, yi] i= 1,2,...,12 or "
"16 points: [xi, yi] i= 1,2,...,16"
);
PADDLE_ENFORCE_EQ
(
box_dims
[
1
],
score_dims
[
2
],
"The 1st dimensiong of Input(BBoxes) must be equal to "
"3rd dimension of Input(Scores), which represents the "
...
...
@@ -53,7 +56,7 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
// Here the box_dims[0] is not the real dimension of output.
// It will be rewritten in the computing kernel.
ctx
->
SetOutputDim
(
"Out"
,
{
box_dims
[
1
],
6
});
ctx
->
SetOutputDim
(
"Out"
,
{
box_dims
[
1
],
box_dims
[
2
]
+
2
});
}
protected:
...
...
@@ -128,6 +131,21 @@ static inline T JaccardOverlap(const T* box1, const T* box2,
}
}
template
<
class
T
>
T
PolyIoU
(
const
T
*
box1
,
const
T
*
box2
,
const
size_t
box_size
,
const
bool
normalized
)
{
T
bbox1_area
=
PolyArea
<
T
>
(
box1
,
box_size
,
normalized
);
T
bbox2_area
=
PolyArea
<
T
>
(
box2
,
box_size
,
normalized
);
T
inter_area
=
PolyOverlapArea
<
T
>
(
box1
,
box2
,
box_size
,
normalized
);
if
(
bbox1_area
==
0
||
bbox2_area
==
0
||
inter_area
==
0
)
{
// If coordinate values are is invalid
// if area size <= 0, return 0.
return
T
(
0.
);
}
else
{
return
inter_area
/
(
bbox1_area
+
bbox2_area
-
inter_area
);
}
}
template
<
typename
T
>
class
MultiClassNMSKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -137,6 +155,8 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
// The total boxes for each instance.
int64_t
num_boxes
=
bbox
.
dims
()[
0
];
// 4: [xmin ymin xmax ymax]
// 8: [x1 y1 x2 y2 x3 y3 x4 y4]
// 16, 24, or 32: [x1 y1 x2 y2 ... xn yn], n = 8, 12 or 16
int64_t
box_size
=
bbox
.
dims
()[
1
];
std
::
vector
<
T
>
scores_data
(
num_boxes
);
...
...
@@ -154,8 +174,19 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
for
(
size_t
k
=
0
;
k
<
selected_indices
->
size
();
++
k
)
{
if
(
keep
)
{
const
int
kept_idx
=
(
*
selected_indices
)[
k
];
T
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
T
overlap
=
T
(
0.
);
// 4: [xmin ymin xmax ymax]
if
(
box_size
==
4
)
{
overlap
=
JaccardOverlap
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
true
);
}
// 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
if
(
box_size
==
8
||
box_size
==
16
||
box_size
==
24
||
box_size
==
32
)
{
overlap
=
PolyIoU
<
T
>
(
bbox_data
+
idx
*
box_size
,
bbox_data
+
kept_idx
*
box_size
,
box_size
,
true
);
}
keep
=
overlap
<=
adaptive_threshold
;
}
else
{
break
;
...
...
@@ -228,7 +259,9 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
void
MultiClassOutput
(
const
Tensor
&
scores
,
const
Tensor
&
bboxes
,
const
std
::
map
<
int
,
std
::
vector
<
int
>>&
selected_indices
,
Tensor
*
outs
)
const
{
int
predict_dim
=
scores
.
dims
()[
1
];
int64_t
predict_dim
=
scores
.
dims
()[
1
];
int64_t
box_size
=
bboxes
.
dims
()[
1
];
int64_t
out_dim
=
bboxes
.
dims
()[
1
]
+
2
;
auto
*
scores_data
=
scores
.
data
<
T
>
();
auto
*
bboxes_data
=
bboxes
.
data
<
T
>
();
auto
*
odata
=
outs
->
data
<
T
>
();
...
...
@@ -240,11 +273,11 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
const
std
::
vector
<
int
>&
indices
=
it
.
second
;
for
(
size_t
j
=
0
;
j
<
indices
.
size
();
++
j
)
{
int
idx
=
indices
[
j
];
const
T
*
bdata
=
bboxes_data
+
idx
*
kBBoxS
ize
;
odata
[
count
*
kOutputD
im
]
=
label
;
// label
odata
[
count
*
kOutputD
im
+
1
]
=
sdata
[
idx
];
// score
// xmin, ymin, xmax, ymax
std
::
memcpy
(
odata
+
count
*
kOutputDim
+
2
,
bdata
,
4
*
sizeof
(
T
));
const
T
*
bdata
=
bboxes_data
+
idx
*
box_s
ize
;
odata
[
count
*
out_d
im
]
=
label
;
// label
odata
[
count
*
out_d
im
+
1
]
=
sdata
[
idx
];
// score
// xmin, ymin, xmax, ymax
or multi-points coordinates
std
::
memcpy
(
odata
+
count
*
out_dim
+
2
,
bdata
,
box_size
*
sizeof
(
T
));
count
++
;
}
}
...
...
@@ -261,6 +294,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
int64_t
class_num
=
score_dims
[
1
];
int64_t
predict_dim
=
score_dims
[
2
];
int64_t
box_dim
=
boxes
->
dims
()[
2
];
int64_t
out_dim
=
boxes
->
dims
()[
2
]
+
2
;
std
::
vector
<
std
::
map
<
int
,
std
::
vector
<
int
>>>
all_indices
;
std
::
vector
<
size_t
>
batch_starts
=
{
0
};
...
...
@@ -283,7 +317,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
T
*
od
=
outs
->
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
od
[
0
]
=
-
1
;
}
else
{
outs
->
mutable_data
<
T
>
({
num_kept
,
kOutputD
im
},
ctx
.
GetPlace
());
outs
->
mutable_data
<
T
>
({
num_kept
,
out_d
im
},
ctx
.
GetPlace
());
for
(
int64_t
i
=
0
;
i
<
batch_size
;
++
i
)
{
Tensor
ins_score
=
scores
->
Slice
(
i
,
i
+
1
);
ins_score
.
Resize
({
class_num
,
predict_dim
});
...
...
@@ -311,10 +345,11 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void
Make
()
override
{
AddInput
(
"BBoxes"
,
"(Tensor) A 3-D Tensor with shape [N, M, 4] represents the "
"(Tensor) A 3-D Tensor with shape "
"[N, M, 4 or 8 16 24 32] represents the "
"predicted locations of M bounding bboxes, N is the batch size. "
"Each bounding box has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax]."
);
"[xmin, ymin, xmax, ymax]
, when box size equals to 4
."
);
AddInput
(
"Scores"
,
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"predicted confidence predictions. N is the batch size, C is the "
...
...
@@ -351,8 +386,12 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput
(
"Out"
,
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
"detections. Each row has 6 values: "
"[label, confidence, xmin, ymin, xmax, ymax], No is the total "
"number of detections in this mini-batch. For each instance, "
"[label, confidence, xmin, ymin, xmax, ymax] or "
"(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
"detections. Each row has 10 values: "
"[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
"total number of detections in this mini-batch."
"For each instance, "
"the offsets in first dimension are called LoD, the number of "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected bbox."
);
...
...
paddle/fluid/operators/detection/poly_util.cc
0 → 100644
浏览文件 @
23fc896b
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef POLY_UTIL_CC_
#define POLY_UTIL_CC_
#include "paddle/fluid/operators/detection/poly_util.h"
#include "paddle/fluid/framework/op_registry.h"
namespace
paddle
{
namespace
operators
{
using
gpc
::
gpc_polygon_clip
;
using
gpc
::
gpc_free_polygon
;
template
<
class
T
>
void
Array2PointVec
(
const
T
*&
box
,
const
size_t
box_size
,
std
::
vector
<
Point_
<
T
>>&
vec
)
{
size_t
pts_num
=
box_size
/
2
;
vec
.
resize
(
pts_num
);
for
(
size_t
i
=
0
;
i
<
pts_num
;
i
++
)
{
vec
.
at
(
i
).
x
=
box
[
2
*
i
];
vec
.
at
(
i
).
y
=
box
[
2
*
i
+
1
];
}
}
template
<
class
T
>
void
Array2Poly
(
const
T
*&
box
,
const
size_t
box_size
,
gpc
::
gpc_polygon
&
poly
)
{
size_t
pts_num
=
box_size
/
2
;
poly
.
num_contours
=
1
;
poly
.
hole
=
(
int
*
)
malloc
(
sizeof
(
int
));
poly
.
hole
[
0
]
=
0
;
poly
.
contour
=
(
gpc
::
gpc_vertex_list
*
)
malloc
(
sizeof
(
gpc
::
gpc_vertex_list
));
poly
.
contour
->
num_vertices
=
pts_num
;
poly
.
contour
->
vertex
=
(
gpc
::
gpc_vertex
*
)
malloc
(
sizeof
(
gpc
::
gpc_vertex
)
*
pts_num
);
for
(
size_t
i
=
0
;
i
<
pts_num
;
++
i
)
{
poly
.
contour
->
vertex
[
i
].
x
=
box
[
2
*
i
];
poly
.
contour
->
vertex
[
i
].
y
=
box
[
2
*
i
+
1
];
}
}
template
<
class
T
>
void
PointVec2Poly
(
const
std
::
vector
<
Point_
<
T
>>&
vec
,
gpc
::
gpc_polygon
&
poly
)
{
int
pts_num
=
vec
.
size
();
poly
.
num_contours
=
1
;
poly
.
hole
=
(
int
*
)
malloc
(
sizeof
(
int
));
poly
.
hole
[
0
]
=
0
;
poly
.
contour
=
(
gpc
::
gpc_vertex_list
*
)
malloc
(
sizeof
(
gpc
::
gpc_vertex_list
));
poly
.
contour
->
num_vertices
=
pts_num
;
poly
.
contour
->
vertex
=
(
gpc
::
gpc_vertex
*
)
malloc
(
sizeof
(
gpc
::
gpc_vertex
)
*
pts_num
);
for
(
size_t
i
=
0
;
i
<
pts_num
;
++
i
)
{
poly
.
contour
->
vertex
[
i
].
x
=
vec
[
i
].
x
;
poly
.
contour
->
vertex
[
i
].
y
=
vec
[
i
].
y
;
}
}
template
<
class
T
>
void
Poly2PointVec
(
const
gpc
::
gpc_vertex_list
&
contour
,
std
::
vector
<
Point_
<
T
>>&
vec
)
{
int
pts_num
=
contour
.
num_vertices
;
vec
.
resize
(
pts_num
);
for
(
int
i
=
0
;
i
<
pts_num
;
i
++
)
{
vec
.
at
(
i
).
x
=
contour
.
vertex
[
i
].
x
;
vec
.
at
(
i
).
y
=
contour
.
vertex
[
i
].
y
;
}
}
template
<
class
T
>
T
GetContourArea
(
std
::
vector
<
Point_
<
T
>>&
vec
)
{
size_t
pts_num
=
vec
.
size
();
if
(
pts_num
<
3
)
return
T
(
0.
);
T
area
=
T
(
0.
);
for
(
size_t
i
=
0
;
i
<
pts_num
;
++
i
)
{
area
+=
vec
[
i
].
x
*
vec
[(
i
+
1
)
%
pts_num
].
y
-
vec
[
i
].
y
*
vec
[(
i
+
1
)
%
pts_num
].
x
;
}
return
std
::
fabs
(
area
/
2.0
);
}
template
<
class
T
>
T
PolyArea
(
const
T
*
box
,
const
size_t
box_size
,
const
bool
normalized
)
{
// If coordinate values are is invalid
// if area size <= 0, return 0.
std
::
vector
<
Point_
<
T
>>
vec
;
Array2PointVec
<
T
>
(
box
,
box_size
,
vec
);
return
GetContourArea
<
T
>
(
vec
);
}
template
<
class
T
>
T
PolyOverlapArea
(
const
T
*
box1
,
const
T
*
box2
,
const
size_t
box_size
,
const
bool
normalized
)
{
gpc
::
gpc_polygon
poly1
;
gpc
::
gpc_polygon
poly2
;
Array2Poly
<
T
>
(
box1
,
box_size
,
poly1
);
Array2Poly
<
T
>
(
box2
,
box_size
,
poly2
);
gpc
::
gpc_polygon
respoly
;
gpc
::
gpc_op
op
=
gpc
::
GPC_INT
;
gpc
::
gpc_polygon_clip
(
op
,
&
poly2
,
&
poly1
,
&
respoly
);
T
inter_area
=
T
(
0.
);
int
contour_num
=
respoly
.
num_contours
;
for
(
int
i
=
0
;
i
<
contour_num
;
++
i
)
{
std
::
vector
<
Point_
<
T
>>
resvec
;
Poly2PointVec
<
T
>
(
respoly
.
contour
[
i
],
resvec
);
// inter_area += std::fabs(cv::contourArea(resvec)) + 0.5f *
// (cv::arcLength(resvec, true));
inter_area
+=
GetContourArea
<
T
>
(
resvec
);
}
gpc
::
gpc_free_polygon
(
&
poly1
);
gpc
::
gpc_free_polygon
(
&
poly2
);
gpc
::
gpc_free_polygon
(
&
respoly
);
return
inter_area
;
}
}
// namespace operators
}
// namespace paddle
#endif
paddle/fluid/operators/detection/poly_util.h
0 → 100644
浏览文件 @
23fc896b
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef POLY_UTIL_H_
#define POLY_UTIL_H_
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/gpc.h"
namespace
paddle
{
namespace
operators
{
template
<
class
T
>
class
Point_
{
public:
// default constructor
Point_
()
{}
Point_
(
T
_x
,
T
_y
)
{}
Point_
(
const
Point_
&
pt
)
{}
Point_
&
operator
=
(
const
Point_
&
pt
);
// conversion to another data type
// template<typename _T> operator Point_<_T>() const;
// conversion to the old-style C structures
// operator Vec<T, 2>() const;
// checks whether the point is inside the specified rectangle
// bool inside(const Rect_<T>& r) const;
T
x
;
//!< x coordinate of the point
T
y
;
//!< y coordinate of the point
};
template
<
class
T
>
void
Array2PointVec
(
const
T
*&
box
,
const
size_t
box_size
,
std
::
vector
<
Point_
<
T
>>&
vec
);
template
<
class
T
>
void
Array2Poly
(
const
T
*&
box
,
const
size_t
box_size
,
gpc
::
gpc_polygon
&
poly
);
template
<
class
T
>
void
PointVec2Poly
(
const
std
::
vector
<
Point_
<
T
>>&
vec
,
gpc
::
gpc_polygon
&
poly
);
template
<
class
T
>
void
Poly2PointVec
(
const
gpc
::
gpc_vertex_list
&
contour
,
std
::
vector
<
Point_
<
T
>>&
vec
);
template
<
class
T
>
T
GetContourArea
(
std
::
vector
<
Point_
<
T
>>&
vec
);
template
<
class
T
>
T
PolyArea
(
const
T
*
box
,
const
size_t
box_size
,
const
bool
normalized
);
template
<
class
T
>
T
PolyOverlapArea
(
const
T
*
box1
,
const
T
*
box2
,
const
size_t
box_size
,
const
bool
normalized
);
}
// namespace operators
}
// namespace paddle
#include "paddle/fluid/operators/detection/poly_util.cc"
#endif // POLY_UTIL_H_
paddle/fluid/operators/detection/polygon_box_transform_op.cc
浏览文件 @
23fc896b
...
...
@@ -41,9 +41,9 @@ class PolygonBoxTransformCPUKernel : public framework::OpKernel<T> {
for
(
int
id_w
=
0
;
id_w
<
width
;
++
id_w
)
{
id
=
id_n
*
height
*
width
+
width
*
id_h
+
id_w
;
if
(
id_n
%
2
==
0
)
{
out_data
[
id
]
=
id_w
-
in_data
[
id
];
out_data
[
id
]
=
id_w
*
4
-
in_data
[
id
];
}
else
{
out_data
[
id
]
=
id_h
-
in_data
[
id
];
out_data
[
id
]
=
id_h
*
4
-
in_data
[
id
];
}
}
}
...
...
paddle/fluid/operators/detection/polygon_box_transform_op.cu
浏览文件 @
23fc896b
...
...
@@ -32,9 +32,9 @@ __global__ void PolygonBoxTransformKernel(const int n, const int h, const int w,
if
(
id_n
<
n
&&
id_h
<
h
&&
id_w
<
w
)
{
int
id
=
id_n
*
h
*
w
+
w
*
id_h
+
id_w
;
if
(
id_n
%
2
==
0
)
{
output
[
id
]
=
id_w
-
input
[
id
];
output
[
id
]
=
id_w
*
4
-
input
[
id
];
}
else
{
output
[
id
]
=
id_h
-
input
[
id
];
output
[
id
]
=
id_h
*
4
-
input
[
id
];
}
}
}
...
...
paddle/fluid/operators/math/CMakeLists.txt
浏览文件 @
23fc896b
...
...
@@ -76,5 +76,5 @@ cc_test(concat_test SRCS concat_test.cc DEPS concat)
cc_test
(
cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info
)
cc_library
(
jit_kernel
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_lstm.cc
DEPS cpu_info cblas
activation_functions
)
DEPS cpu_info cblas
)
cc_test
(
jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel
)
paddle/fluid/operators/math/jit_kernel_exp.cc
浏览文件 @
23fc896b
此差异已折叠。
点击以展开。
paddle/fluid/operators/math/jit_kernel_lstm.cc
浏览文件 @
23fc896b
...
...
@@ -25,13 +25,18 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
namespace
math
{
#ifdef __AVX__
namespace
jitkernel
{
namespace
detail
{
__m256
Exp
(
__m256
a
);
}
// namespace detail
#ifdef __AVX__
__m256
ExpAVX
(
__m256
x
);
#endif
namespace
jitkernel
{
#ifdef __AVX2__
__m256
ExpAVX2
(
__m256
x
);
#endif
}
// namespace detail
namespace
jit
=
platform
::
jit
;
#ifdef __AVX__
...
...
@@ -43,43 +48,72 @@ class AVXAct {
virtual
__m256
Compute
(
__m256
x
)
const
=
0
;
};
template
<
act_type
type
>
template
<
act_type
type
,
jit
::
cpu_isa_t
isa
>
class
AVXActImpl
:
public
AVXAct
{
public:
__m256
Compute
(
__m256
x
)
const
override
{
PADDLE_THROW
(
"Unkown type!"
);
}
};
template
<
>
__m256
AVXActImpl
<
kSigmoid
>::
Compute
(
__m256
x
)
const
{
__m256
ones
=
_mm256_set1_ps
(
1.0
f
);
x
=
_mm256_max_ps
(
x
,
_mm256_set1_ps
(
SIGMOID_THRESHOLD_MIN
));
x
=
_mm256_min_ps
(
x
,
_mm256_set1_ps
(
SIGMOID_THRESHOLD_MAX
));
x
=
_mm256_sub_ps
(
_mm256_set1_ps
(
0.0
f
),
x
);
x
=
detail
::
Exp
(
x
);
x
=
_mm256_add_ps
(
ones
,
x
);
return
_mm256_div_ps
(
ones
,
x
);
}
#define AVX_SIGMOID(isa, expisa) \
template <> \
__m256 AVXActImpl<kSigmoid, isa>::Compute(__m256 x) const { \
__m256 ones = _mm256_set1_ps(1.0f); \
x = _mm256_max_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MIN)); \
x = _mm256_min_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MAX)); \
x = _mm256_sub_ps(_mm256_set1_ps(0.0f), x); \
x = expisa(x); \
x = _mm256_add_ps(ones, x); \
return _mm256_div_ps(ones, x); \
}
template
<
>
__m256
AVXActImpl
<
kTanh
>::
Compute
(
__m256
x
)
const
{
__m256
ones
=
_mm256_set1_ps
(
1.0
f
);
x
=
_mm256_mul_ps
(
_mm256_set1_ps
(
-
2.0
f
),
x
);
x
=
_mm256_min_ps
(
x
,
_mm256_set1_ps
(
EXP_MAX_INPUT
));
x
=
detail
::
Exp
(
x
);
x
=
_mm256_add_ps
(
ones
,
x
);
x
=
_mm256_div_ps
(
_mm256_set1_ps
(
2.0
f
),
x
);
return
_mm256_sub_ps
(
x
,
ones
);
}
#define AVX_TANH(isa, expisa) \
template <> \
__m256 AVXActImpl<kTanh, isa>::Compute(__m256 x) const { \
__m256 ones = _mm256_set1_ps(1.0f); \
x = _mm256_mul_ps(_mm256_set1_ps(-2.0f), x); \
x = _mm256_min_ps(x, _mm256_set1_ps(EXP_MAX_INPUT)); \
x = expisa(x); \
x = _mm256_add_ps(ones, x); \
x = _mm256_div_ps(_mm256_set1_ps(2.0f), x); \
return _mm256_sub_ps(x, ones); \
}
template
<
>
__m256
AVXActImpl
<
kRelu
>::
Compute
(
__m256
x
)
const
{
return
_mm256_max_ps
(
x
,
_mm256_setzero_ps
());
}
#define AVX_RELU(isa) \
template <> \
__m256 AVXActImpl<kRelu, isa>::Compute(__m256 x) const { \
return _mm256_max_ps(x, _mm256_setzero_ps()); \
}
#define AVX_IDENTITY(isa) \
template <> \
__m256 AVXActImpl<kIdentity, isa>::Compute(__m256 x) const { \
return x; \
}
#define FOR_EACH_AVX_ISA(macro_) \
macro_(jit::avx); \
macro_(jit::avx2); \
macro_(jit::avx512f)
FOR_EACH_AVX_ISA
(
AVX_RELU
);
FOR_EACH_AVX_ISA
(
AVX_IDENTITY
);
AVX_SIGMOID
(
jit
::
avx
,
detail
::
ExpAVX
);
AVX_TANH
(
jit
::
avx
,
detail
::
ExpAVX
);
#ifdef __AVX2__
AVX_SIGMOID
(
jit
::
avx2
,
detail
::
ExpAVX2
);
AVX_SIGMOID
(
jit
::
avx512f
,
detail
::
ExpAVX2
);
AVX_TANH
(
jit
::
avx2
,
detail
::
ExpAVX2
);
AVX_TANH
(
jit
::
avx512f
,
detail
::
ExpAVX2
);
#endif
#undef FOR_EACH_AVX_ISA
#undef AVX_IDENTITY
#undef AVX_RELU
#undef AVX_TANH
#undef AVX_SIGMOID
template
<
>
__m256
AVXActImpl
<
kIdentity
>::
Compute
(
__m256
x
)
const
{
return
x
;
}
#endif
template
<
typename
T
>
...
...
@@ -119,23 +153,6 @@ class LSTMKernelImpl : public LSTMKernel<T> {
act_cell_d_
=
GetActKernel
<
T
>
(
act_cell
,
d
);
vmul_d_
=
KernelPool
::
Instance
().
template
Get
<
VMulKernel
<
T
>
>
(
d
);
vadd_d_
=
KernelPool
::
Instance
().
template
Get
<
VAddKernel
<
T
>
>
(
d
);
#ifdef __AVX__
auto
GetAVXAct
=
[
&
](
const
std
::
string
&
type
)
->
std
::
unique_ptr
<
AVXAct
>
{
if
(
type
==
"sigmoid"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kSigmoid
>
());
}
else
if
(
type
==
"relu"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kRelu
>
());
}
else
if
(
type
==
"tanh"
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kTanh
>
());
}
else
if
(
type
==
"identity"
||
type
==
""
)
{
return
std
::
unique_ptr
<
AVXAct
>
(
new
AVXActImpl
<
kIdentity
>
());
}
PADDLE_THROW
(
"Not support type: %s"
,
type
);
};
avx_act_gate_
=
GetAVXAct
(
act_gate
);
avx_act_cand_
=
GetAVXAct
(
act_cand
);
avx_act_cell_
=
GetAVXAct
(
act_cell
);
#endif
}
void
ComputeCtHt
(
T
*
gates
,
const
T
*
ct_1
,
T
*
ct
,
T
*
ht
,
const
T
*
wp_data
,
...
...
@@ -176,6 +193,27 @@ class LSTMKernelImpl : public LSTMKernel<T> {
};
#define INTRI8_FLOAT(isa) \
template <> \
LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl( \
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_cell, int d) \
: LSTMKernel<float>() { \
auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> { \
if (type == "sigmoid") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>()); \
} else if (type == "relu") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>()); \
} else if (type == "tanh") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>()); \
} else if (type == "identity" || type == "") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>()); \
} \
PADDLE_THROW("Not support type: %s", type); \
}; \
avx_act_gate_ = GetAVXAct(act_gate); \
avx_act_cand_ = GetAVXAct(act_cand); \
avx_act_cell_ = GetAVXAct(act_cell); \
} \
template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
float* gates, const float* ct_1, float* ct, float* ht, \
...
...
@@ -195,6 +233,20 @@ class LSTMKernelImpl : public LSTMKernel<T> {
/* H_t = act_cell(C_t) * ogated */
\
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
} \
template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1( \
float* gates, float* ct, float* ht, const float* wp_data) const { \
__m256 c, i, o; \
c = _mm256_loadu_ps(gates); \
i = _mm256_loadu_ps(gates + 8); \
o = _mm256_loadu_ps(gates + 24); \
/* C_t = igated * cgated*/
\
c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
_mm256_storeu_ps(ct, c); \
/* H_t = act_cell(C_t) * ogated */
\
o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
}
// TODO(TJ): optimize keq16
...
...
paddle/fluid/operators/roi_pool_op.cc
浏览文件 @
23fc896b
...
...
@@ -174,4 +174,4 @@ REGISTER_OP_CPU_KERNEL(
REGISTER_OP_CPU_KERNEL
(
roi_pool_grad
,
ops
::
CPUROIPoolGradOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
CPUROIPoolOpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
ops
::
CPUROIPool
Grad
OpKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
);
paddle/fluid/operators/roi_pool_op.cu
浏览文件 @
23fc896b
...
...
@@ -249,4 +249,4 @@ REGISTER_OP_CUDA_KERNEL(
REGISTER_OP_CUDA_KERNEL
(
roi_pool_grad
,
ops
::
GPUROIPoolGradOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
GPUROIPoolOpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
ops
::
GPUROIPool
Grad
OpKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
);
python/paddle/fluid/layers/nn.py
浏览文件 @
23fc896b
此差异已折叠。
点击以展开。
python/paddle/fluid/nets.py
浏览文件 @
23fc896b
...
...
@@ -64,23 +64,33 @@ def simple_img_conv_pool(input,
average-pooling. Default :math:`max`.
global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
pool_size and pool_padding while be ignored. Default False
conv_stride (int|list|tuple): The stride size of the
C
onv2d Layer. If stride is a
conv_stride (int|list|tuple): The stride size of the
c
onv2d Layer. If stride is a
list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
conv_padding (int|list|tuple): The padding size of the
C
onv2d Layer. If padding is
conv_padding (int|list|tuple): The padding size of the
c
onv2d Layer. If padding is
a list or tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
conv_dilation (int|list|tuple): The dilation size of the
C
onv2d Layer. If dilation is
conv_dilation (int|list|tuple): The dilation size of the
c
onv2d Layer. If dilation is
a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
conv_groups (int): The groups number of the
C
onv2d Layer. According to grouped
conv_groups (int): The groups number of the
c
onv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1
param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None
bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None
act (str): Activation type for Conv2d. Default: None
connected to the second half of the input channels. Default: groups=1.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(
\\
frac{2.0 }{filter\_elem\_num})^{0.5}`.
Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
act (str): Activation type for conv2d, if it is set to None, activation is not
appended. Default: None.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True
...
...
python/paddle/fluid/regularizer.py
浏览文件 @
23fc896b
...
...
@@ -237,6 +237,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
'Ids'
:
idx
},
outputs
=
{
'Out'
:
decay
},
attrs
=
{
'is_sparse'
:
True
})
param
=
decay
# Append sign op
block
.
append_op
(
...
...
python/paddle/fluid/tests/unittests/test_polygon_box_transform.py
浏览文件 @
23fc896b
...
...
@@ -37,7 +37,7 @@ def PolygonBoxRestore(input):
indexes
=
indexes
.
repeat
(
[
batch_size
],
axis
=
0
)
# [batch_size, geo_channels/2, 2, h, w]
return
indexes
.
reshape
(
input
.
shape
)
-
input
# [batch_size, geo_channels, h, w]
input
.
shape
)
*
4
-
input
# [batch_size, geo_channels, h, w]
class
TestPolygonBoxRestoreOp
(
OpTest
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录