提交 23fc896b 编写于 作者: T tensor-tang

Merge remote-tracking branch 'ups/develop' into fea/fusion_seqconv_add

test=develop
...@@ -2,8 +2,8 @@ ...@@ -2,8 +2,8 @@
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle) [![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/index_en.html) [![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://paddlepaddle.org/documentation/docs/en/1.0/getstarted/index_en.html)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html) [![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://paddlepaddle.org/documentation/docs/zh/1.0/beginners_guide/index.html)
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases) [![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE) [![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
...@@ -19,7 +19,7 @@ Our vision is to enable deep learning for everyone via PaddlePaddle. ...@@ -19,7 +19,7 @@ Our vision is to enable deep learning for everyone via PaddlePaddle.
Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest feature of PaddlePaddle. Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest feature of PaddlePaddle.
### Latest PaddlePaddle Release: [Fluid 1.0.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.0.0) ### Latest PaddlePaddle Release: [Fluid 1.0.1](https://github.com/PaddlePaddle/Paddle/tree/release/1.0.0)
### Install Latest Stable Release: ### Install Latest Stable Release:
``` ```
# Linux CPU # Linux CPU
...@@ -27,9 +27,9 @@ pip install paddlepaddle ...@@ -27,9 +27,9 @@ pip install paddlepaddle
# Linux GPU cuda9cudnn7 # Linux GPU cuda9cudnn7
pip install paddlepaddle-gpu pip install paddlepaddle-gpu
# Linux GPU cuda8cudnn7 # Linux GPU cuda8cudnn7
pip install paddlepaddle-gpu==0.15.0.post87 pip install paddlepaddle-gpu==1.0.1.post87
# Linux GPU cuda8cudnn5 # Linux GPU cuda8cudnn5
pip install paddlepaddle-gpu==0.15.0.post85 pip install paddlepaddle-gpu==1.0.1.post85
# For installation on other platform, refer to http://paddlepaddle.org/ # For installation on other platform, refer to http://paddlepaddle.org/
``` ```
......
...@@ -311,6 +311,8 @@ function(cc_test TARGET_NAME) ...@@ -311,6 +311,8 @@ function(cc_test TARGET_NAME)
set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_cpu_deterministic=true) set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_cpu_deterministic=true)
set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_init_allocated_mem=true) set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_init_allocated_mem=true)
set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_cudnn_deterministic=true) set_property(TEST ${TARGET_NAME} PROPERTY ENVIRONMENT FLAGS_cudnn_deterministic=true)
# No unit test should exceed 10 minutes.
set_tests_properties(${TARGET_NAME} PROPERTIES TIMEOUT 600)
endif() endif()
endfunction(cc_test) endfunction(cc_test)
...@@ -629,6 +631,8 @@ function(py_test TARGET_NAME) ...@@ -629,6 +631,8 @@ function(py_test TARGET_NAME)
PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_ENVS} PYTHONPATH=${PADDLE_BINARY_DIR}/python ${py_test_ENVS}
${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS} ${PYTHON_EXECUTABLE} -u ${py_test_SRCS} ${py_test_ARGS}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR})
# No unit test should exceed 10 minutes.
set_tests_properties(${TARGET_NAME} PROPERTIES TIMEOUT 600)
endif() endif()
endfunction() endfunction()
......
...@@ -61,12 +61,12 @@ paddle.fluid.layers.cos_sim ArgSpec(args=['X', 'Y'], varargs=None, keywords=None ...@@ -61,12 +61,12 @@ paddle.fluid.layers.cos_sim ArgSpec(args=['X', 'Y'], varargs=None, keywords=None
paddle.fluid.layers.cross_entropy ArgSpec(args=['input', 'label', 'soft_label', 'ignore_index'], varargs=None, keywords=None, defaults=(False, -100)) paddle.fluid.layers.cross_entropy ArgSpec(args=['input', 'label', 'soft_label', 'ignore_index'], varargs=None, keywords=None, defaults=(False, -100))
paddle.fluid.layers.square_error_cost ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.square_error_cost ArgSpec(args=['input', 'label'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', 'num_chunk_types', 'excluded_chunk_types'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.chunk_eval ArgSpec(args=['input', 'label', 'chunk_scheme', 'num_chunk_types', 'excluded_chunk_types'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(3, 1, None, None, None, None)) paddle.fluid.layers.sequence_conv ArgSpec(args=['input', 'num_filters', 'filter_size', 'filter_stride', 'padding', 'bias_attr', 'param_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(3, 1, None, None, None, None, None))
paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None)) paddle.fluid.layers.conv2d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None))
paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None)) paddle.fluid.layers.conv3d ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None))
paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.sequence_pool ArgSpec(args=['input', 'pool_type'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn'], varargs=None, keywords=None, defaults=(None, None, False)) paddle.fluid.layers.sequence_softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.layers.softmax ArgSpec(args=['input', 'param_attr', 'bias_attr', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(None, None, True, None)) paddle.fluid.layers.softmax ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(True, None))
paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None)) paddle.fluid.layers.pool2d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None))
paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None)) paddle.fluid.layers.pool3d ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None))
paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False)) paddle.fluid.layers.batch_norm ArgSpec(args=['input', 'act', 'is_test', 'momentum', 'epsilon', 'param_attr', 'bias_attr', 'data_layout', 'in_place', 'name', 'moving_mean_name', 'moving_variance_name', 'do_model_average_for_mean_and_var', 'fuse_with_relu'], varargs=None, keywords=None, defaults=(None, False, 0.9, 1e-05, None, None, 'NCHW', False, None, None, None, False, False))
...@@ -97,8 +97,8 @@ paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_ti ...@@ -97,8 +97,8 @@ paddle.fluid.layers.warpctc ArgSpec(args=['input', 'label', 'blank', 'norm_by_ti
paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.sequence_reshape ArgSpec(args=['input', 'new_dim'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None)) paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples'], varargs=None, keywords=None, defaults=(None, None, None, None)) paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None)) paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'name'], varargs=None, keywords=None, defaults=(0, None))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
......
...@@ -10,7 +10,7 @@ function(pass_library TARGET DEST) ...@@ -10,7 +10,7 @@ function(pass_library TARGET DEST)
set(oneValueArgs "") set(oneValueArgs "")
set(multiValueArgs SRCS DEPS) set(multiValueArgs SRCS DEPS)
cmake_parse_arguments(op_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN}) cmake_parse_arguments(op_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cc_library(${TARGET} SRCS ${TARGET}.cc DEPS graph_pattern_detector pass ${op_library_DEPS}) cc_library(${TARGET} SRCS ${TARGET}.cc DEPS graph_pattern_detector pass fuse_pass_base ${op_library_DEPS})
# add more DEST here, such as train, dist and collect USE_PASS into a file automatically. # add more DEST here, such as train, dist and collect USE_PASS into a file automatically.
if (${DEST} STREQUAL "base" OR ${DEST} STREQUAL "inference") if (${DEST} STREQUAL "base" OR ${DEST} STREQUAL "inference")
message(STATUS "add pass ${TARGET} ${DEST}") message(STATUS "add pass ${TARGET} ${DEST}")
...@@ -25,13 +25,11 @@ cc_library(graph_helper SRCS graph_helper.cc DEPS graph) ...@@ -25,13 +25,11 @@ cc_library(graph_helper SRCS graph_helper.cc DEPS graph)
cc_library(pass SRCS pass.cc DEPS graph node graph_helper) cc_library(pass SRCS pass.cc DEPS graph node graph_helper)
cc_library(graph_traits SRCS graph_traits.cc DEPS graph) cc_library(graph_traits SRCS graph_traits.cc DEPS graph)
cc_library(graph_pattern_detector SRCS graph_pattern_detector.cc DEPS graph graph_helper graph_traits) cc_library(graph_pattern_detector SRCS graph_pattern_detector.cc DEPS graph graph_helper graph_traits)
cc_library(fuse_pass_base SRCS fuse_pass_base.cc DEPS pass)
pass_library(graph_to_program_pass base) pass_library(graph_to_program_pass base)
pass_library(graph_viz_pass base) pass_library(graph_viz_pass base)
pass_library(fc_fuse_pass inference) pass_library(fc_fuse_pass inference)
if (WITH_MKLDNN)
pass_library(conv_relu_mkldnn_fuse_pass inference)
endif ()
pass_library(attention_lstm_fuse_pass inference) pass_library(attention_lstm_fuse_pass inference)
pass_library(infer_clean_graph_pass inference) pass_library(infer_clean_graph_pass inference)
pass_library(fc_lstm_fuse_pass inference) pass_library(fc_lstm_fuse_pass inference)
...@@ -39,6 +37,10 @@ pass_library(embedding_fc_lstm_fuse_pass inference) ...@@ -39,6 +37,10 @@ pass_library(embedding_fc_lstm_fuse_pass inference)
pass_library(fc_gru_fuse_pass inference) pass_library(fc_gru_fuse_pass inference)
pass_library(seq_concat_fc_fuse_pass inference) pass_library(seq_concat_fc_fuse_pass inference)
pass_library(conv_bn_fuse_pass inference) pass_library(conv_bn_fuse_pass inference)
if(WITH_MKLDNN)
pass_library(mkldnn_placement_pass base)
pass_library(conv_relu_mkldnn_fuse_pass inference)
endif()
cc_library(fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector ) cc_library(fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector )
......
...@@ -126,12 +126,21 @@ std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl( ...@@ -126,12 +126,21 @@ std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl(
// conv, batch_norm, // conv, batch_norm,
// conv_weight, conv_out, // conv_weight, conv_out,
// bn_scale, bn_bias, bn_mean, bn_variance, // bn_scale, bn_bias, bn_mean, bn_variance,
// bn_out, bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,
// bn_saved_variance
GET_CONV_BN_NODES(conv_bn_pattern); GET_CONV_BN_NODES(conv_bn_pattern);
// check if fuse can be done and if MKL-DNN should be used
FuseOptions fuse_option = FindFuseOption(*conv, *batch_norm);
if (fuse_option == DO_NOT_FUSE) {
VLOG(3) << "do not perform conv+bn fuse";
return;
}
// Create eltwise_y (conv bias) variable // Create eltwise_y (conv bias) variable
VarDesc eltwise_y_in_desc( VarDesc eltwise_y_in_desc(
patterns::PDNodeName(name_scope_, "eltwise_y_in")); patterns::PDNodeName(name_scope_, "eltwise_y_in"));
eltwise_y_in_desc.SetPersistable(true);
auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc); auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
auto* eltwise_y_in_tensor = auto* eltwise_y_in_tensor =
scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>(); scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();
...@@ -151,27 +160,59 @@ std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl( ...@@ -151,27 +160,59 @@ std::unique_ptr<ir::Graph> ConvBNFusePass::ApplyImpl(
*bn_mean, *bn_variance, eltwise_y_in_tensor, *bn_mean, *bn_variance, eltwise_y_in_tensor,
epsilon); epsilon);
// Create an elementwise add node // with MKL-DNN fuse conv+bn into conv with bias
// without MKL-DNN fuse conv+bn into conv+elementwise_add
if (fuse_option == FUSE_MKLDNN) {
auto input_names = conv->Op()->InputNames();
bool has_bias = std::find(input_names.begin(), input_names.end(),
"Bias") != input_names.end();
if (has_bias && conv->Op()->Input("Bias").size() > 0) {
// reuse existing conv bias node
auto conv_bias_names = conv->Op()->Input("Bias");
PADDLE_ENFORCE_EQ(conv_bias_names.size(), 1);
auto* conv_bias_var = scope->FindVar(conv_bias_names[0]);
auto* conv_bias_tensor = conv_bias_var->GetMutable<LoDTensor>();
PADDLE_ENFORCE_EQ(conv_bias_tensor->dims(),
eltwise_y_in_tensor->dims());
auto eigen_conv_bias = EigenVector<float>::From(*conv_bias_tensor);
eigen_conv_bias += EigenVector<float>::From(*eltwise_y_in_tensor);
} else {
// add new conv_bias node
conv->Op()->SetInput(
"Bias", std::vector<std::string>({eltwise_y_in_node->Name()}));
IR_NODE_LINK_TO(eltwise_y_in_node, conv);
}
conv->Op()->SetOutput("Output",
std::vector<std::string>({bn_out->Name()}));
GraphSafeRemoveNodes(
graph.get(),
{conv_out, bn_scale, bn_bias, bn_mean, bn_variance, batch_norm,
bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance});
IR_NODE_LINK_TO(conv, bn_out);
found_conv_bn_count++;
} else { // fuse_option == FUSE_NATIVE
// create an elementwise add node.
OpDesc desc; OpDesc desc;
desc.SetInput("X", std::vector<std::string>({conv_out->Name()})); desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()})); desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()})); desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
desc.SetType("elementwise_add"); desc.SetType("elementwise_add");
desc.SetAttr("axis", 1); desc.SetAttr("axis", 1);
bool a = boost::get<bool>(conv->Op()->GetAttr("use_mkldnn"));
desc.SetAttr("use_mkldnn", a);
auto eltwise_op = g->CreateOpNode(&desc); // OpDesc will be copied. auto eltwise_op = g->CreateOpNode(&desc); // OpDesc will be copied.
GraphSafeRemoveNodes(graph.get(), {bn_scale, bn_bias, bn_mean, bn_variance, GraphSafeRemoveNodes(
batch_norm, bn_mean_out, bn_variance_out, graph.get(),
bn_saved_mean, bn_saved_variance}); {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out,
bn_variance_out, bn_saved_mean, bn_saved_variance});
PADDLE_ENFORCE(subgraph.count(conv_input));
IR_NODE_LINK_TO(conv_out, eltwise_op); IR_NODE_LINK_TO(conv_out, eltwise_op);
IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op); IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
IR_NODE_LINK_TO(eltwise_op, bn_out); IR_NODE_LINK_TO(eltwise_op, bn_out);
found_conv_bn_count++; found_conv_bn_count++;
}
}; };
gpd(graph.get(), handler); gpd(graph.get(), handler);
...@@ -237,7 +278,6 @@ std::unique_ptr<ir::Graph> ConvEltwiseAddBNFusePass::ApplyImpl( ...@@ -237,7 +278,6 @@ std::unique_ptr<ir::Graph> ConvEltwiseAddBNFusePass::ApplyImpl(
{bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out, {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out,
bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out}); bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out});
PADDLE_ENFORCE(subgraph.count(conv_input));
IR_NODE_LINK_TO(eltwise, bn_out); IR_NODE_LINK_TO(eltwise, bn_out);
found_conv_bn_count++; found_conv_bn_count++;
......
...@@ -46,6 +46,12 @@ std::unique_ptr<ir::Graph> ConvReLUFusePass::ApplyImpl( ...@@ -46,6 +46,12 @@ std::unique_ptr<ir::Graph> ConvReLUFusePass::ApplyImpl(
GET_IR_NODE_FROM_SUBGRAPH(relu_out, relu_out, conv_relu_pattern); // Out GET_IR_NODE_FROM_SUBGRAPH(relu_out, relu_out, conv_relu_pattern); // Out
GET_IR_NODE_FROM_SUBGRAPH(relu, relu, conv_relu_pattern); // ReLU op GET_IR_NODE_FROM_SUBGRAPH(relu, relu, conv_relu_pattern); // ReLU op
FuseOptions fuse_option = FindFuseOption(*conv, *relu);
if (fuse_option == DO_NOT_FUSE) {
VLOG(3) << "do not perform conv+relu fuse";
return;
}
// Transform Conv node into ConvReLU node. // Transform Conv node into ConvReLU node.
OpDesc* desc = conv->Op(); OpDesc* desc = conv->Op();
desc->SetOutput("Output", std::vector<std::string>({relu_out->Name()})); desc->SetOutput("Output", std::vector<std::string>({relu_out->Name()}));
......
...@@ -20,17 +20,19 @@ namespace paddle { ...@@ -20,17 +20,19 @@ namespace paddle {
namespace framework { namespace framework {
namespace ir { namespace ir {
void SetOp(ProgramDesc* prog, const std::string& type, void SetOp(ProgramDesc* prog, const std::string& type, const std::string& name,
const std::vector<std::string>& inputs, const std::vector<std::string>& inputs,
const std::vector<std::string>& outputs) { const std::vector<std::string>& outputs, bool use_mkldnn = false) {
auto* op = prog->MutableBlock(0)->AppendOp(); auto* op = prog->MutableBlock(0)->AppendOp();
op->SetType(type); op->SetType(type);
if (type == "conv2d") { if (type == "conv2d") {
op->SetAttr("use_mkldnn", true); op->SetAttr("use_mkldnn", use_mkldnn);
op->SetAttr("name", name);
op->SetInput("Input", {inputs[0]}); op->SetInput("Input", {inputs[0]});
op->SetInput("Filter", {inputs[1]}); op->SetInput("Filter", {inputs[1]});
op->SetInput("Bias", {inputs[2]}); op->SetInput("Bias", {inputs[2]});
} else if (type == "relu") { } else if (type == "relu") {
op->SetAttr("use_mkldnn", use_mkldnn);
op->SetInput("X", inputs); op->SetInput("X", inputs);
} }
op->SetOutput("Out", outputs); op->SetOutput("Out", outputs);
...@@ -43,7 +45,8 @@ void SetOp(ProgramDesc* prog, const std::string& type, ...@@ -43,7 +45,8 @@ void SetOp(ProgramDesc* prog, const std::string& type,
ProgramDesc BuildProgramDesc() { ProgramDesc BuildProgramDesc() {
ProgramDesc prog; ProgramDesc prog;
for (auto& v : for (auto& v :
std::vector<std::string>({"a", "b", "c", "weights", "bias", "f", "g"})) { std::vector<std::string>({"a", "b", "c", "weights", "bias", "f", "g",
"h", "weights2", "bias2", "k", "l"})) {
auto* var = prog.MutableBlock(0)->Var(v); auto* var = prog.MutableBlock(0)->Var(v);
var->SetType(proto::VarType::SELECTED_ROWS); var->SetType(proto::VarType::SELECTED_ROWS);
if (v == "weights" || v == "bias") { if (v == "weights" || v == "bias") {
...@@ -51,14 +54,24 @@ ProgramDesc BuildProgramDesc() { ...@@ -51,14 +54,24 @@ ProgramDesc BuildProgramDesc() {
} }
} }
SetOp(&prog, "OP0", std::vector<std::string>({"a"}), SetOp(&prog, "OP0", "op0", std::vector<std::string>({"a"}),
std::vector<std::string>({"b"})); std::vector<std::string>({"b"}));
SetOp(&prog, "OP1", std::vector<std::string>({"b"}), SetOp(&prog, "OP1", "op1", std::vector<std::string>({"b"}),
std::vector<std::string>({"c"})); std::vector<std::string>({"c"}));
SetOp(&prog, "conv2d", std::vector<std::string>({"c", "weights", "bias"}), // conv+relu, both with MKL-DNN
std::vector<std::string>({"f"})); SetOp(&prog, "conv2d", "conv1",
SetOp(&prog, "relu", std::vector<std::string>({"f"}), std::vector<std::string>({"c", "weights", "bias"}),
std::vector<std::string>({"g"})); std::vector<std::string>({"f"}), true);
SetOp(&prog, "relu", "relu1", std::vector<std::string>({"f"}),
std::vector<std::string>({"g"}), true);
SetOp(&prog, "OP3", "op3", std::vector<std::string>({"g"}),
std::vector<std::string>({"h"}));
// conv+relu, only one with MKL-DNN
SetOp(&prog, "conv2d", "conv2",
std::vector<std::string>({"h", "weights2", "bias2"}),
std::vector<std::string>({"k"}), true);
SetOp(&prog, "relu", "relu2", std::vector<std::string>({"k"}),
std::vector<std::string>({"l"}));
return prog; return prog;
} }
...@@ -88,11 +101,17 @@ TEST(ConvReLUFusePass, basic) { ...@@ -88,11 +101,17 @@ TEST(ConvReLUFusePass, basic) {
auto* op = node->Op(); auto* op = node->Op();
ASSERT_TRUE(op->HasAttr("use_mkldnn")); ASSERT_TRUE(op->HasAttr("use_mkldnn"));
EXPECT_TRUE(boost::get<bool>(op->GetAttr("use_mkldnn"))); EXPECT_TRUE(boost::get<bool>(op->GetAttr("use_mkldnn")));
// check if only "conv1" convolution is fused
auto op_name = boost::get<std::string>(op->GetAttr("name"));
if (op_name == "conv1") {
ASSERT_TRUE(op->HasAttr("fuse_relu")); ASSERT_TRUE(op->HasAttr("fuse_relu"));
bool fuse_relu = boost::get<bool>(op->GetAttr("fuse_relu")); bool fuse_relu = boost::get<bool>(op->GetAttr("fuse_relu"));
if (fuse_relu) { if (fuse_relu) {
++conv_relu_count; ++conv_relu_count;
} }
} else if (op_name == "conv2") {
ASSERT_FALSE(op->HasAttr("fuse_relu"));
}
} }
} }
EXPECT_EQ(conv_relu_count, 1); EXPECT_EQ(conv_relu_count, 1);
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
namespace paddle {
namespace framework {
namespace ir {
void FusePassBase::Init(const std::string& repr, Graph* graph) const {
repr_ = repr;
graph_ = graph;
}
Scope* FusePassBase::param_scope() const {
PADDLE_ENFORCE(graph_->Has(kParamScopeAttr));
return graph_->Get<framework::Scope*>(kParamScopeAttr);
}
void FusePassBase::AddStatis(int count_of_fused) const {
PADDLE_ENFORCE(graph_);
PADDLE_ENFORCE(!repr_.empty());
if (!graph_->Has(kFuseStatisAttr)) {
graph_->Set(kFuseStatisAttr, new std::unordered_map<std::string, int>);
}
auto& info =
graph_->Get<std::unordered_map<std::string, int>>(kFuseStatisAttr);
info[repr_] = count_of_fused;
}
FuseOptions FusePassBase::FindFuseOption(const Node& node1,
const Node& node2) const {
#ifdef PADDLE_WITH_MKLDNN
bool node1_mkldnn = node1.Op()->HasAttr("use_mkldnn") &&
boost::get<bool>(node1.Op()->GetAttr("use_mkldnn"));
bool node2_mkldnn = node2.Op()->HasAttr("use_mkldnn") &&
boost::get<bool>(node2.Op()->GetAttr("use_mkldnn"));
if (node1_mkldnn && node2_mkldnn)
return FUSE_MKLDNN;
else if (!node1_mkldnn && !node2_mkldnn)
return FUSE_NATIVE;
else
return DO_NOT_FUSE;
#else
return FUSE_NATIVE;
#endif
};
} // namespace ir
} // namespace framework
} // namespace paddle
...@@ -25,32 +25,24 @@ namespace ir { ...@@ -25,32 +25,24 @@ namespace ir {
static const char kParamScopeAttr[] = "__param_scope__"; static const char kParamScopeAttr[] = "__param_scope__";
static const char kFuseStatisAttr[] = "__fuse_statis__"; static const char kFuseStatisAttr[] = "__fuse_statis__";
enum FuseOptions {
DO_NOT_FUSE, // fusing will not be done
FUSE_NATIVE, // fusing will be done without MKL-DNN
FUSE_MKLDNN // fusing will be done with MKL-DNN
};
class FusePassBase : public Pass { class FusePassBase : public Pass {
public: public:
void Init(const std::string& repr, Graph* graph) const { void Init(const std::string& repr, Graph* graph) const;
repr_ = repr; Scope* param_scope() const;
graph_ = graph; void AddStatis(int count_of_fused) const;
}
Scope* param_scope() const {
PADDLE_ENFORCE(graph_->Has(kParamScopeAttr));
return graph_->Get<framework::Scope*>(kParamScopeAttr);
}
void AddStatis(int count_of_fused) const {
PADDLE_ENFORCE(graph_);
PADDLE_ENFORCE(!repr_.empty());
if (!graph_->Has(kFuseStatisAttr)) {
graph_->Set(kFuseStatisAttr, new std::unordered_map<std::string, int>);
}
auto& info =
graph_->Get<std::unordered_map<std::string, int>>(kFuseStatisAttr);
info[repr_] = count_of_fused;
}
virtual ~FusePassBase() {} virtual ~FusePassBase() {}
protected: protected:
virtual FuseOptions FindFuseOption(const Node& node1,
const Node& node2) const;
mutable Graph* graph_; mutable Graph* graph_;
mutable std::string repr_; mutable std::string repr_;
}; };
......
...@@ -259,6 +259,8 @@ GraphPatternDetector::DetectPatterns() { ...@@ -259,6 +259,8 @@ GraphPatternDetector::DetectPatterns() {
return result; return result;
} }
// TODO(Superjomn) enhance the function as it marks unique unique as duplicates
// see https://github.com/PaddlePaddle/Paddle/issues/13550
void GraphPatternDetector::UniquePatterns( void GraphPatternDetector::UniquePatterns(
std::vector<GraphPatternDetector::subgraph_t> *subgraphs) { std::vector<GraphPatternDetector::subgraph_t> *subgraphs) {
if (subgraphs->empty()) return; if (subgraphs->empty()) return;
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/mkldnn_placement_pass.h"
namespace paddle {
namespace framework {
namespace ir {
std::unique_ptr<ir::Graph> MKLDNNPlacementPass::ApplyImpl(
std::unique_ptr<ir::Graph> graph) const {
VLOG(3) << "Aplies MKL-DNN placement strategy.";
for (const Node* n : graph->Nodes()) {
if (n->IsOp() && n->Op()->HasAttr("use_mkldnn")) {
n->Op()->SetAttr("use_mkldnn", true);
}
}
return graph;
}
} // namespace ir
} // namespace framework
} // namespace paddle
REGISTER_PASS(mkldnn_placement_pass,
paddle::framework::ir::MKLDNNPlacementPass);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace ir {
class MKLDNNPlacementPass : public Pass {
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
};
} // namespace ir
} // namespace framework
} // namespace paddle
...@@ -85,10 +85,6 @@ class CompileTimeInferShapeContext : public InferShapeContext { ...@@ -85,10 +85,6 @@ class CompileTimeInferShapeContext : public InferShapeContext {
VLOG(3) << "input " << in << " is not LodTensor"; VLOG(3) << "input " << in << " is not LodTensor";
return; return;
} }
PADDLE_ENFORCE_EQ(in_var->GetType(), proto::VarType::LOD_TENSOR,
"The %d-th output of Output(%s) must be LoDTensor.", j,
out);
out_var->SetLoDLevel(in_var->GetLoDLevel()); out_var->SetLoDLevel(in_var->GetLoDLevel());
} }
......
...@@ -101,7 +101,11 @@ Analyzer::Analyzer() { Register("manager1", new DfgPassManagerImpl); } ...@@ -101,7 +101,11 @@ Analyzer::Analyzer() { Register("manager1", new DfgPassManagerImpl); }
void Analyzer::Run(Argument* argument) { void Analyzer::Run(Argument* argument) {
std::vector<std::string> passes; std::vector<std::string> passes;
for (auto& pass : all_ir_passes_) { if (use_mkldnn_) {
VLOG(3) << "Adding MKL-DNN placement pass";
passes.push_back("mkldnn_placement_pass");
}
for (auto& pass : ir_passes_) {
if (!disabled_ir_passes_.count(pass)) { if (!disabled_ir_passes_.count(pass)) {
passes.push_back(pass); passes.push_back(pass);
passes.push_back("graph_viz_pass"); // add graphviz for debug. passes.push_back("graph_viz_pass"); // add graphviz for debug.
...@@ -117,11 +121,26 @@ void Analyzer::Run(Argument* argument) { ...@@ -117,11 +121,26 @@ void Analyzer::Run(Argument* argument) {
} }
} }
Analyzer& Analyzer::IncludeAllIrPasses() {
ir_passes_ = all_ir_passes_;
return *this;
}
Analyzer& Analyzer::DisableIrPasses(const std::vector<std::string>& passes) { Analyzer& Analyzer::DisableIrPasses(const std::vector<std::string>& passes) {
disabled_ir_passes_.insert(passes.begin(), passes.end()); disabled_ir_passes_.insert(passes.begin(), passes.end());
return *this; return *this;
} }
Analyzer& Analyzer::IncludeIrPasses(const std::vector<std::string>& passes) {
ir_passes_ = passes;
return *this;
}
Analyzer& Analyzer::SetUseMkldnn(bool use_mkldnn) {
use_mkldnn_ = use_mkldnn;
return *this;
}
} // namespace analysis } // namespace analysis
} // namespace inference } // namespace inference
} // namespace paddle } // namespace paddle
...@@ -54,6 +54,9 @@ class Analyzer : public OrderedRegistry<PassManager> { ...@@ -54,6 +54,9 @@ class Analyzer : public OrderedRegistry<PassManager> {
void Run(Argument* argument); void Run(Argument* argument);
Analyzer& DisableIrPasses(const std::vector<std::string>& passes); Analyzer& DisableIrPasses(const std::vector<std::string>& passes);
Analyzer& IncludeIrPasses(const std::vector<std::string>& passes);
Analyzer& IncludeAllIrPasses();
Analyzer& SetUseMkldnn(bool use_mkldnn);
DISABLE_COPY_AND_ASSIGN(Analyzer); DISABLE_COPY_AND_ASSIGN(Analyzer);
...@@ -81,6 +84,9 @@ class Analyzer : public OrderedRegistry<PassManager> { ...@@ -81,6 +84,9 @@ class Analyzer : public OrderedRegistry<PassManager> {
}}; }};
std::unordered_set<std::string> disabled_ir_passes_; std::unordered_set<std::string> disabled_ir_passes_;
// Ir passes to run
std::vector<std::string> ir_passes_;
bool use_mkldnn_;
}; };
} // namespace analysis } // namespace analysis
......
...@@ -225,10 +225,24 @@ void AnalysisPredictor::OptimizeInferenceProgram() { ...@@ -225,10 +225,24 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
argument_.origin_program_desc.reset( argument_.origin_program_desc.reset(
new ProgramDesc(*inference_program_->Proto())); new ProgramDesc(*inference_program_->Proto()));
PADDLE_ENFORCE(
config_.ir_mode == contrib::AnalysisConfig::IrPassMode::kExclude, switch (config_.ir_mode) {
"Only kExclude is supported yet."); case contrib::AnalysisConfig::IrPassMode::kExclude:
Analyzer().DisableIrPasses(config_.ir_passes).Run(&argument_); Analyzer()
.IncludeAllIrPasses()
.SetUseMkldnn(config_._use_mkldnn)
.DisableIrPasses(config_.ir_passes)
.Run(&argument_);
break;
case contrib::AnalysisConfig::IrPassMode::kInclude:
Analyzer()
.SetUseMkldnn(config_._use_mkldnn)
.IncludeIrPasses(config_.ir_passes)
.Run(&argument_);
break;
default:
LOG(ERROR) << "Only kExclude and kInclude modes are supoorted yet.";
}
CHECK(argument_.transformed_program_desc); CHECK(argument_.transformed_program_desc);
VLOG(5) << "to prepare executor"; VLOG(5) << "to prepare executor";
......
...@@ -259,10 +259,17 @@ struct AnalysisConfig : public NativeConfig { ...@@ -259,10 +259,17 @@ struct AnalysisConfig : public NativeConfig {
kExclude // Specify the disabled passes in `ir_passes`. kExclude // Specify the disabled passes in `ir_passes`.
}; };
void SetIncludeMode() {
ir_mode = IrPassMode::kInclude;
// this pass has to be run at the beginning of all fuse passes
ir_passes = {"infer_clean_graph_pass"};
}
// Determine whether to perform graph optimization. // Determine whether to perform graph optimization.
bool enable_ir_optim = true; bool enable_ir_optim = true;
// Manually determine the IR passes to run. // Manually determine the IR passes to run.
IrPassMode ir_mode{IrPassMode::kExclude}; IrPassMode ir_mode{IrPassMode::kExclude};
// passes to be excluded/included
std::vector<std::string> ir_passes{"embedding_fc_lstm_fuse_pass"}; std::vector<std::string> ir_passes{"embedding_fc_lstm_fuse_pass"};
// NOT stable yet. // NOT stable yet.
......
...@@ -18,12 +18,12 @@ namespace paddle { ...@@ -18,12 +18,12 @@ namespace paddle {
namespace inference { namespace inference {
using namespace framework; // NOLINT using namespace framework; // NOLINT
static std::vector<float> result_data;
struct DataRecord { struct DataRecord {
std::vector<std::vector<std::vector<float>>> link_step_data_all; std::vector<std::vector<std::vector<float>>> link_step_data_all;
std::vector<size_t> lod; std::vector<size_t> lod;
std::vector<std::vector<float>> rnn_link_data; std::vector<std::vector<float>> rnn_link_data;
std::vector<float> result_data;
size_t num_samples; // total number of samples size_t num_samples; // total number of samples
size_t batch_iter{0}; size_t batch_iter{0};
size_t batch_size{1}; size_t batch_size{1};
...@@ -57,6 +57,7 @@ struct DataRecord { ...@@ -57,6 +57,7 @@ struct DataRecord {
std::ifstream file(path); std::ifstream file(path);
std::string line; std::string line;
int num_lines = 0; int num_lines = 0;
result_data.clear();
while (std::getline(file, line)) { while (std::getline(file, line)) {
num_lines++; num_lines++;
std::vector<std::string> data; std::vector<std::string> data;
...@@ -135,13 +136,12 @@ TEST(Analyzer_rnn2, profile) { ...@@ -135,13 +136,12 @@ TEST(Analyzer_rnn2, profile) {
if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) {
// the first inference result // the first inference result
DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
PADDLE_ENFORCE_GT(outputs.size(), 0); PADDLE_ENFORCE_GT(outputs.size(), 0);
size_t size = GetSize(outputs[0]); size_t size = GetSize(outputs[0]);
PADDLE_ENFORCE_GT(size, 0); PADDLE_ENFORCE_GT(size, 0);
float *result = static_cast<float *>(outputs[0].data.data()); float *result = static_cast<float *>(outputs[0].data.data());
for (size_t i = 0; i < size; i++) { for (size_t i = 0; i < size; i++) {
EXPECT_NEAR(result[i], data.result_data[i], 1e-3); EXPECT_NEAR(result[i], result_data[i], 1e-3);
} }
} }
} }
......
...@@ -20,7 +20,7 @@ detection_library(box_coder_op SRCS box_coder_op.cc box_coder_op.cu) ...@@ -20,7 +20,7 @@ detection_library(box_coder_op SRCS box_coder_op.cc box_coder_op.cu)
detection_library(iou_similarity_op SRCS iou_similarity_op.cc detection_library(iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op.cu) iou_similarity_op.cu)
detection_library(mine_hard_examples_op SRCS mine_hard_examples_op.cc) detection_library(mine_hard_examples_op SRCS mine_hard_examples_op.cc)
detection_library(multiclass_nms_op SRCS multiclass_nms_op.cc) detection_library(multiclass_nms_op SRCS multiclass_nms_op.cc poly_util.cc gpc.cc)
detection_library(prior_box_op SRCS prior_box_op.cc prior_box_op.cu) detection_library(prior_box_op SRCS prior_box_op.cc prior_box_op.cu)
detection_library(anchor_generator_op SRCS anchor_generator_op.cc detection_library(anchor_generator_op SRCS anchor_generator_op.cc
anchor_generator_op.cu) anchor_generator_op.cu)
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/**
* @file src/gpc.cpp
* @author huhan02(com@baidu.com)
* @date 2015/12/18 14:17:30
* @brief
*
* @modified by sunyipeng
* @email sunyipeng@baidu.com
* @date 2018/6/12
**/
#include "paddle/fluid/operators/detection/gpc.h"
namespace gpc {
typedef struct lmt_shape { /* Local minima table */
double y; /* Y coordinate at local minimum */
edge_node *first_bound; /* Pointer to bound list */
struct lmt_shape *next; /* Pointer to next local minimum */
} lmt_node;
typedef struct sbt_t_shape { /* Scanbeam tree */
double y; /* Scanbeam node y value */
struct sbt_t_shape *less; /* Pointer to nodes with lower y */
struct sbt_t_shape *more; /* Pointer to nodes with higher y */
} sb_tree;
typedef struct it_shape { /* Intersection table */
edge_node *ie[2]; /* Intersecting edge (bundle) pair */
gpc_vertex point; /* Point of intersection */
struct it_shape *next; /* The next intersection table node */
} it_node;
typedef struct st_shape { /* Sorted edge table */
edge_node *edge; /* Pointer to AET edge */
double xb; /* Scanbeam bottom x coordinate */
double xt; /* Scanbeam top x coordinate */
double dx; /* Change in x for a unit y increase */
struct st_shape *prev; /* Previous edge in sorted list */
} st_node;
typedef struct bbox_shape { /* Contour axis-aligned bounding box */
double xmin; /* Minimum x coordinate */
double ymin; /* Minimum y coordinate */
double xmax; /* Maximum x coordinate */
double ymax; /* Maximum y coordinate */
} bbox;
/*
===========================================================================
Global Data
===========================================================================
*/
/* Horizontal edge state transitions within scanbeam boundary */
const h_state next_h_state[3][6] = {
/* ABOVE BELOW CROSS */
/* L R L R L R */
/* NH */
{BH, TH, TH, BH, NH, NH},
/* BH */
{NH, NH, NH, NH, TH, TH},
/* TH */
{NH, NH, NH, NH, BH, BH}};
/*
===========================================================================
Private Functions
===========================================================================
*/
static void reset_it(it_node **it) {
it_node *itn;
while (*it) {
itn = (*it)->next;
gpc_free<it_node>(*it);
*it = itn;
}
}
static void reset_lmt(lmt_node **lmt) {
lmt_node *lmtn;
while (*lmt) {
lmtn = (*lmt)->next;
gpc_free<lmt_node>(*lmt);
*lmt = lmtn;
}
}
static void insert_bound(edge_node **b, edge_node *e) {
edge_node *existing_bound = NULL;
if (!*b) {
/* Link node e to the tail of the list */
*b = e;
} else {
/* Do primary sort on the x field */
if (e[0].bot.x < (*b)[0].bot.x) {
/* Insert a new node mid-list */
existing_bound = *b;
*b = e;
(*b)->next_bound = existing_bound;
} else {
if (e[0].bot.x == (*b)[0].bot.x) {
/* Do secondary sort on the dx field */
if (e[0].dx < (*b)[0].dx) {
/* Insert a new node mid-list */
existing_bound = *b;
*b = e;
(*b)->next_bound = existing_bound;
} else {
/* Head further down the list */
insert_bound(&((*b)->next_bound), e);
}
} else {
/* Head further down the list */
insert_bound(&((*b)->next_bound), e);
}
}
}
}
static edge_node **bound_list(lmt_node **lmt, double y) {
lmt_node *existing_node;
if (!*lmt) {
/* Add node onto the tail end of the LMT */
gpc_malloc<lmt_node>(*lmt, sizeof(lmt_node),
const_cast<char *>("LMT insertion"));
(*lmt)->y = y;
(*lmt)->first_bound = NULL;
(*lmt)->next = NULL;
return &((*lmt)->first_bound);
} else if (y < (*lmt)->y) {
/* Insert a new LMT node before the current node */
existing_node = *lmt;
gpc_malloc<lmt_node>(*lmt, sizeof(lmt_node),
const_cast<char *>("LMT insertion"));
(*lmt)->y = y;
(*lmt)->first_bound = NULL;
(*lmt)->next = existing_node;
return &((*lmt)->first_bound);
} else {
if (y > (*lmt)->y) {
/* Head further up the LMT */
return bound_list(&((*lmt)->next), y);
} else {
/* Use this existing LMT node */
return &((*lmt)->first_bound);
}
}
}
static void add_to_sbtree(int *entries, sb_tree **sbtree, double y) {
if (!*sbtree) {
/* Add a new tree node here */
gpc_malloc<sb_tree>(*sbtree, sizeof(sb_tree),
const_cast<char *>("scanbeam tree insertion"));
(*sbtree)->y = y;
(*sbtree)->less = NULL;
(*sbtree)->more = NULL;
(*entries)++;
} else {
if ((*sbtree)->y > y) {
/* Head into the 'less' sub-tree */
add_to_sbtree(entries, &((*sbtree)->less), y);
} else {
if ((*sbtree)->y < y) {
/* Head into the 'more' sub-tree */
add_to_sbtree(entries, &((*sbtree)->more), y);
}
}
}
}
static void build_sbt(int *entries, double *sbt, sb_tree *sbtree) {
if (sbtree->less) {
build_sbt(entries, sbt, sbtree->less);
}
sbt[*entries] = sbtree->y;
(*entries)++;
if (sbtree->more) {
build_sbt(entries, sbt, sbtree->more);
}
}
static void free_sbtree(sb_tree **sbtree) {
if (*sbtree) {
free_sbtree(&((*sbtree)->less));
free_sbtree(&((*sbtree)->more));
gpc_free<sb_tree>(*sbtree);
}
}
static int count_optimal_vertices(gpc_vertex_list c) {
int result = 0;
int i = 0;
/* Ignore non-contributing contours */
if (c.num_vertices > 0) {
for (i = 0; i < c.num_vertices; i++) {
/* Ignore superfluous vertices embedded in horizontal edges */
if (gpc_optimal(c.vertex, i, c.num_vertices)) {
result++;
}
}
}
return result;
}
static edge_node *build_lmt(lmt_node **lmt, sb_tree **sbtree, int *sbt_entries,
gpc_polygon *p, int type, gpc_op op) {
int c = 0;
int i = 0;
int min = 0;
int max = 0;
int num_edges = 0;
int v = 0;
int num_vertices = 0;
int total_vertices = 0;
int e_index = 0;
edge_node *e = NULL;
edge_node *edge_table = NULL;
for (c = 0; c < p->num_contours; c++) {
total_vertices += count_optimal_vertices(p->contour[c]);
}
/* Create the entire input polygon edge table in one go */
gpc_malloc<edge_node>(edge_table, total_vertices * sizeof(edge_node),
const_cast<char *>("edge table creation"));
for (c = 0; c < p->num_contours; c++) {
if (p->contour[c].num_vertices < 0) {
/* Ignore the non-contributing contour and repair the vertex count */
p->contour[c].num_vertices = -p->contour[c].num_vertices;
} else {
/* Perform contour optimisation */
num_vertices = 0;
for (i = 0; i < p->contour[c].num_vertices; i++) {
if (gpc_optimal(p->contour[c].vertex, i, p->contour[c].num_vertices)) {
edge_table[num_vertices].vertex.x = p->contour[c].vertex[i].x;
edge_table[num_vertices].vertex.y = p->contour[c].vertex[i].y;
/* Record vertex in the scanbeam table */
add_to_sbtree(sbt_entries, sbtree, edge_table[num_vertices].vertex.y);
num_vertices++;
}
}
/* Do the contour forward pass */
for (min = 0; min < num_vertices; min++) {
/* If a forward local minimum... */
if (gpc_fwd_min(edge_table, min, num_vertices)) {
/* Search for the next local maximum... */
num_edges = 1;
max = gpc_next_index(min, num_vertices);
while (gpc_not_fmax(edge_table, max, num_vertices)) {
num_edges++;
max = gpc_next_index(max, num_vertices);
}
/* Build the next edge list */
e = &edge_table[e_index];
e_index += num_edges;
v = min;
e[0].bstate[BELOW] = UNBUNDLED;
e[0].bundle[BELOW][CLIP] = 0;
e[0].bundle[BELOW][SUBJ] = 0;
for (i = 0; i < num_edges; i++) {
e[i].xb = edge_table[v].vertex.x;
e[i].bot.x = edge_table[v].vertex.x;
e[i].bot.y = edge_table[v].vertex.y;
v = gpc_next_index(v, num_vertices);
e[i].top.x = edge_table[v].vertex.x;
e[i].top.y = edge_table[v].vertex.y;
e[i].dx = (edge_table[v].vertex.x - e[i].bot.x) /
(e[i].top.y - e[i].bot.y);
e[i].type = type;
e[i].outp[ABOVE] = NULL;
e[i].outp[BELOW] = NULL;
e[i].next = NULL;
e[i].prev = NULL;
e[i].succ =
((num_edges > 1) && (i < (num_edges - 1))) ? &(e[i + 1]) : NULL;
e[i].pred = ((num_edges > 1) && (i > 0)) ? &(e[i - 1]) : NULL;
e[i].next_bound = NULL;
e[i].bside[CLIP] = (op == GPC_DIFF) ? RIGHT : LEFT;
e[i].bside[SUBJ] = LEFT;
}
insert_bound(bound_list(lmt, edge_table[min].vertex.y), e);
}
}
/* Do the contour reverse pass */
for (min = 0; min < num_vertices; min++) {
/* If a reverse local minimum... */
if (gpc_rev_min(edge_table, min, num_vertices)) {
/* Search for the previous local maximum... */
num_edges = 1;
max = gpc_prev_index(min, num_vertices);
while (gpc_not_rmax(edge_table, max, num_vertices)) {
num_edges++;
max = gpc_prev_index(max, num_vertices);
}
/* Build the previous edge list */
e = &edge_table[e_index];
e_index += num_edges;
v = min;
e[0].bstate[BELOW] = UNBUNDLED;
e[0].bundle[BELOW][CLIP] = 0;
e[0].bundle[BELOW][SUBJ] = 0;
for (i = 0; i < num_edges; i++) {
e[i].xb = edge_table[v].vertex.x;
e[i].bot.x = edge_table[v].vertex.x;
e[i].bot.y = edge_table[v].vertex.y;
v = gpc_prev_index(v, num_vertices);
e[i].top.x = edge_table[v].vertex.x;
e[i].top.y = edge_table[v].vertex.y;
e[i].dx = (edge_table[v].vertex.x - e[i].bot.x) /
(e[i].top.y - e[i].bot.y);
e[i].type = type;
e[i].outp[ABOVE] = NULL;
e[i].outp[BELOW] = NULL;
e[i].next = NULL;
e[i].prev = NULL;
e[i].succ =
((num_edges > 1) && (i < (num_edges - 1))) ? &(e[i + 1]) : NULL;
e[i].pred = ((num_edges > 1) && (i > 0)) ? &(e[i - 1]) : NULL;
e[i].next_bound = NULL;
e[i].bside[CLIP] = (op == GPC_DIFF) ? RIGHT : LEFT;
e[i].bside[SUBJ] = LEFT;
}
insert_bound(bound_list(lmt, edge_table[min].vertex.y), e);
}
}
}
}
return edge_table;
} // NOLINT
static void add_edge_to_aet(edge_node **aet, edge_node *edge, edge_node *prev) {
if (!*aet) {
/* Append edge onto the tail end of the AET */
*aet = edge;
edge->prev = prev;
edge->next = NULL;
} else {
/* Do primary sort on the xb field */
if (edge->xb < (*aet)->xb) {
/* Insert edge here (before the AET edge) */
edge->prev = prev;
edge->next = *aet;
(*aet)->prev = edge;
*aet = edge;
} else {
if (edge->xb == (*aet)->xb) {
/* Do secondary sort on the dx field */
if (edge->dx < (*aet)->dx) {
/* Insert edge here (before the AET edge) */
edge->prev = prev;
edge->next = *aet;
(*aet)->prev = edge;
*aet = edge;
} else {
/* Head further into the AET */
add_edge_to_aet(&((*aet)->next), edge, *aet);
}
} else {
/* Head further into the AET */
add_edge_to_aet(&((*aet)->next), edge, *aet);
}
}
}
}
static void add_intersection(it_node **it, edge_node *edge0, edge_node *edge1,
double x, double y) {
it_node *existing_node;
if (!*it) {
/* Append a new node to the tail of the list */
gpc_malloc<it_node>(*it, sizeof(it_node),
const_cast<char *>("IT insertion"));
(*it)->ie[0] = edge0;
(*it)->ie[1] = edge1;
(*it)->point.x = x;
(*it)->point.y = y;
(*it)->next = NULL;
} else {
if ((*it)->point.y > y) {
/* Insert a new node mid-list */
existing_node = *it;
gpc_malloc<it_node>(*it, sizeof(it_node),
const_cast<char *>("IT insertion"));
(*it)->ie[0] = edge0;
(*it)->ie[1] = edge1;
(*it)->point.x = x;
(*it)->point.y = y;
(*it)->next = existing_node;
} else {
/* Head further down the list */
add_intersection(&((*it)->next), edge0, edge1, x, y);
}
}
}
static void add_st_edge(st_node **st, it_node **it, edge_node *edge,
double dy) {
st_node *existing_node;
double den = 0.0;
double r = 0.0;
double x = 0.0;
double y = 0.0;
if (!*st) {
/* Append edge onto the tail end of the ST */
gpc_malloc<st_node>(*st, sizeof(st_node),
const_cast<char *>("ST insertion"));
(*st)->edge = edge;
(*st)->xb = edge->xb;
(*st)->xt = edge->xt;
(*st)->dx = edge->dx;
(*st)->prev = NULL;
} else {
den = ((*st)->xt - (*st)->xb) - (edge->xt - edge->xb);
/* If new edge and ST edge don't cross */
if ((edge->xt >= (*st)->xt) || (edge->dx == (*st)->dx) ||
(fabs(den) <= DBL_EPSILON)) {
/* No intersection - insert edge here (before the ST edge) */
existing_node = *st;
gpc_malloc<st_node>(*st, sizeof(st_node),
const_cast<char *>("ST insertion"));
(*st)->edge = edge;
(*st)->xb = edge->xb;
(*st)->xt = edge->xt;
(*st)->dx = edge->dx;
(*st)->prev = existing_node;
} else {
/* Compute intersection between new edge and ST edge */
r = (edge->xb - (*st)->xb) / den;
x = (*st)->xb + r * ((*st)->xt - (*st)->xb);
y = r * dy;
/* Insert the edge pointers and the intersection point in the IT */
add_intersection(it, (*st)->edge, edge, x, y);
/* Head further into the ST */
add_st_edge(&((*st)->prev), it, edge, dy);
}
}
}
static void build_intersection_table(it_node **it, edge_node *aet, double dy) {
st_node *st;
st_node *stp;
edge_node *edge = NULL;
/* Build intersection table for the current scanbeam */
reset_it(it);
st = NULL;
/* Process each AET edge */
for (edge = aet; edge; edge = edge->next) {
if ((edge->bstate[ABOVE] == BUNDLE_HEAD) || edge->bundle[ABOVE][CLIP] ||
edge->bundle[ABOVE][SUBJ]) {
add_st_edge(&st, it, edge, dy);
}
}
/* Free the sorted edge table */
while (st) {
stp = st->prev;
gpc_free<st_node>(st);
st = stp;
}
}
static int count_contours(polygon_node *polygon) {
int nc = 0;
int nv = 0;
vertex_node *v = NULL;
vertex_node *nextv = NULL;
for (nc = 0; polygon; polygon = polygon->next) {
if (polygon->active) {
/* Count the vertices in the current contour */
nv = 0;
for (v = polygon->proxy->v[LEFT]; v; v = v->next) {
nv++;
}
/* Record valid vertex counts in the active field */
if (nv > 2) {
polygon->active = nv;
nc++;
} else {
/* Invalid contour: just free the heap */
for (v = polygon->proxy->v[LEFT]; v; v = nextv) {
nextv = v->next;
gpc_free<vertex_node>(v);
}
polygon->active = 0;
}
}
}
return nc;
}
static void add_left(polygon_node *p, double x, double y) {
vertex_node *nv = NULL;
/* Create a new vertex node and set its fields */
gpc_malloc<vertex_node>(nv, sizeof(vertex_node),
const_cast<char *>("vertex node creation"));
nv->x = x;
nv->y = y;
/* Add vertex nv to the left end of the polygon's vertex list */
nv->next = p->proxy->v[LEFT];
/* Update proxy->[LEFT] to point to nv */
p->proxy->v[LEFT] = nv;
}
static void merge_left(polygon_node *p, polygon_node *q, polygon_node *list) {
polygon_node *target = NULL;
/* Label contour as a hole */
q->proxy->hole = 1;
if (p->proxy != q->proxy) {
/* Assign p's vertex list to the left end of q's list */
p->proxy->v[RIGHT]->next = q->proxy->v[LEFT];
q->proxy->v[LEFT] = p->proxy->v[LEFT];
/* Redirect any p->proxy references to q->proxy */
for (target = p->proxy; list; list = list->next) {
if (list->proxy == target) {
list->active = 0;
list->proxy = q->proxy;
}
}
}
}
static void add_right(polygon_node *p, double x, double y) {
vertex_node *nv = NULL;
/* Create a new vertex node and set its fields */
gpc_malloc<vertex_node>(nv, sizeof(vertex_node),
const_cast<char *>("vertex node creation"));
nv->x = x;
nv->y = y;
nv->next = NULL;
/* Add vertex nv to the right end of the polygon's vertex list */
p->proxy->v[RIGHT]->next = nv;
/* Update proxy->v[RIGHT] to point to nv */
p->proxy->v[RIGHT] = nv;
}
static void merge_right(polygon_node *p, polygon_node *q, polygon_node *list) {
polygon_node *target = NULL;
/* Label contour as external */
q->proxy->hole = 0;
if (p->proxy != q->proxy) {
/* Assign p's vertex list to the right end of q's list */
q->proxy->v[RIGHT]->next = p->proxy->v[LEFT];
q->proxy->v[RIGHT] = p->proxy->v[RIGHT];
/* Redirect any p->proxy references to q->proxy */
for (target = p->proxy; list; list = list->next) {
if (list->proxy == target) {
list->active = 0;
list->proxy = q->proxy;
}
}
}
}
static void add_local_min(polygon_node **p, edge_node *edge, double x,
double y) {
polygon_node *existing_min = NULL;
vertex_node *nv = NULL;
existing_min = *p;
gpc_malloc<polygon_node>(*p, sizeof(polygon_node),
const_cast<char *>("polygon node creation"));
/* Create a new vertex node and set its fields */
gpc_malloc<vertex_node>(nv, sizeof(vertex_node),
const_cast<char *>("vertex node creation"));
nv->x = x;
nv->y = y;
nv->next = NULL;
/* Initialise proxy to point to p itself */
(*p)->proxy = (*p);
(*p)->active = 1;
(*p)->next = existing_min;
/* Make v[LEFT] and v[RIGHT] point to new vertex nv */
(*p)->v[LEFT] = nv;
(*p)->v[RIGHT] = nv;
/* Assign polygon p to the edge */
edge->outp[ABOVE] = *p;
}
static int count_tristrips(polygon_node *tn) {
int total = 0;
for (total = 0; tn; tn = tn->next) {
if (tn->active > 2) {
total++;
}
}
return total;
}
void add_vertex(vertex_node **t, double x, double y) {
if (!(*t)) {
gpc_malloc<vertex_node>(*t, sizeof(vertex_node),
const_cast<char *>("tristrip vertex creation"));
(*t)->x = x;
(*t)->y = y;
(*t)->next = NULL;
} else {
/* Head further down the list */
add_vertex(&((*t)->next), x, y);
}
}
void gpc_vertex_create(edge_node *e, int p, int s, double x, double y) {
add_vertex(&(e->outp[p]->v[s]), x, y);
e->outp[p]->active++;
}
static void new_tristrip(polygon_node **tn, edge_node *edge, double x,
double y) {
if (!(*tn)) {
gpc_malloc<polygon_node>(*tn, sizeof(polygon_node),
const_cast<char *>("tristrip node creation"));
(*tn)->next = NULL;
(*tn)->v[LEFT] = NULL;
(*tn)->v[RIGHT] = NULL;
(*tn)->active = 1;
add_vertex(&((*tn)->v[LEFT]), x, y);
edge->outp[ABOVE] = *tn;
} else {
/* Head further down the list */
new_tristrip(&((*tn)->next), edge, x, y);
}
}
static bbox *create_contour_bboxes(gpc_polygon *p) {
bbox *box;
int c = 0;
int v = 0;
gpc_malloc<bbox>(box, p->num_contours * sizeof(bbox),
const_cast<char *>("Bounding box creation"));
/* Construct contour bounding boxes */
for (c = 0; c < p->num_contours; c++) {
/* Initialise bounding box extent */
box[c].xmin = DBL_MAX;
box[c].ymin = DBL_MAX;
box[c].xmax = -DBL_MAX;
box[c].ymax = -DBL_MAX;
for (v = 0; v < p->contour[c].num_vertices; v++) {
/* Adjust bounding box */
if (p->contour[c].vertex[v].x < box[c].xmin) {
box[c].xmin = p->contour[c].vertex[v].x;
}
if (p->contour[c].vertex[v].y < box[c].ymin) {
box[c].ymin = p->contour[c].vertex[v].y;
}
if (p->contour[c].vertex[v].x > box[c].xmax) {
box[c].xmax = p->contour[c].vertex[v].x;
}
if (p->contour[c].vertex[v].y > box[c].ymax) {
box[c].ymax = p->contour[c].vertex[v].y;
}
}
}
return box;
}
static void minimax_test(gpc_polygon *subj, gpc_polygon *clip, gpc_op op) {
bbox *s_bbox;
bbox *c_bbox;
int s = 0;
int c = 0;
int *o_table = NULL;
int overlap = 0;
s_bbox = create_contour_bboxes(subj);
c_bbox = create_contour_bboxes(clip);
gpc_malloc<int>(o_table,
subj->num_contours * clip->num_contours * sizeof(int),
const_cast<char *>("overlap table creation"));
/* Check all subject contour bounding boxes against clip boxes */
for (s = 0; s < subj->num_contours; s++) {
for (c = 0; c < clip->num_contours; c++) {
o_table[c * subj->num_contours + s] =
(!((s_bbox[s].xmax < c_bbox[c].xmin) ||
(s_bbox[s].xmin > c_bbox[c].xmax))) &&
(!((s_bbox[s].ymax < c_bbox[c].ymin) ||
(s_bbox[s].ymin > c_bbox[c].ymax)));
}
}
/* For each clip contour, search for any subject contour overlaps */
for (c = 0; c < clip->num_contours; c++) {
overlap = 0;
for (s = 0; (!overlap) && (s < subj->num_contours); s++) {
overlap = o_table[c * subj->num_contours + s];
}
if (!overlap) {
/* Flag non contributing status by negating vertex count */
clip->contour[c].num_vertices = -clip->contour[c].num_vertices;
}
}
if (op == GPC_INT) {
/* For each subject contour, search for any clip contour overlaps */
for (s = 0; s < subj->num_contours; s++) {
overlap = 0;
for (c = 0; (!overlap) && (c < clip->num_contours); c++) {
overlap = o_table[c * subj->num_contours + s];
}
if (!overlap) {
/* Flag non contributing status by negating vertex count */
subj->contour[s].num_vertices = -subj->contour[s].num_vertices;
}
}
}
gpc_free<bbox>(s_bbox);
gpc_free<bbox>(c_bbox);
gpc_free<int>(o_table);
}
/*
===========================================================================
Public Functions
===========================================================================
*/
void gpc_free_polygon(gpc_polygon *p) {
int c = 0;
for (c = 0; c < p->num_contours; c++) {
gpc_free<gpc_vertex>(p->contour[c].vertex);
}
gpc_free<int>(p->hole);
gpc_free<gpc_vertex_list>(p->contour);
p->num_contours = 0;
}
/*
void gpc_read_polygon(FILE *fp, int read_hole_flags, gpc_polygon *p) {
int c = 0;
int v = 0;
fscanf(fp, "%d", &(p->num_contours));
gpc_malloc<int>(p->hole, p->num_contours * sizeof(int),
(char *)"hole flag array creation");
gpc_malloc<gpc_vertex_list>(p->contour,
p->num_contours * sizeof(gpc_vertex_list),
(char *)"contour creation");
for (c = 0; c < p->num_contours; c++) {
fscanf(fp, "%d", &(p->contour[c].num_vertices));
if (read_hole_flags) {
fscanf(fp, "%d", &(p->hole[c]));
} else {
p->hole[c] = 0; // Assume all contours to be external
}
gpc_malloc<gpc_vertex>(p->contour[c].vertex,
p->contour[c].num_vertices * sizeof(gpc_vertex),
(char *)"vertex creation");
for (v = 0; v < p->contour[c].num_vertices; v++) {
fscanf(fp, "%lf %lf", &(p->contour[c].vertex[v].x),
&(p->contour[c].vertex[v].y));
}
}
}
void gpc_write_polygon(FILE *fp, int write_hole_flags, gpc_polygon *p) {
int c = 0;
int v = 0;
fprintf(fp, "%d\n", p->num_contours);
for (c = 0; c < p->num_contours; c++) {
fprintf(fp, "%d\n", p->contour[c].num_vertices);
if (write_hole_flags) {
fprintf(fp, "%d\n", p->hole[c]);
}
for (v = 0; v < p->contour[c].num_vertices; v++) {
fprintf(fp, "% .*lf % .*lf\n", DBL_DIG, p->contour[c].vertex[v].x,
DBL_DIG, p->contour[c].vertex[v].y);
}
}
}
*/
void gpc_add_contour(gpc_polygon *p, gpc_vertex_list *new_contour, int hole) {
int *extended_hole = NULL;
int c = 0;
int v = 0;
gpc_vertex_list *extended_contour = NULL;
/* Create an extended hole array */
gpc_malloc<int>(extended_hole, (p->num_contours + 1) * sizeof(int),
const_cast<char *>("contour hole addition"));
/* Create an extended contour array */
gpc_malloc<gpc_vertex_list>(extended_contour,
(p->num_contours + 1) * sizeof(gpc_vertex_list),
const_cast<char *>("contour addition"));
/* Copy the old contour and hole data into the extended arrays */
for (c = 0; c < p->num_contours; c++) {
extended_hole[c] = p->hole[c];
extended_contour[c] = p->contour[c];
}
/* Copy the new contour and hole onto the end of the extended arrays */
c = p->num_contours;
extended_hole[c] = hole;
extended_contour[c].num_vertices = new_contour->num_vertices;
gpc_malloc<gpc_vertex>(extended_contour[c].vertex,
new_contour->num_vertices * sizeof(gpc_vertex),
const_cast<char *>("contour addition"));
for (v = 0; v < new_contour->num_vertices; v++) {
extended_contour[c].vertex[v] = new_contour->vertex[v];
}
/* Dispose of the old contour */
gpc_free<gpc_vertex_list>(p->contour);
gpc_free<int>(p->hole);
/* Update the polygon information */
p->num_contours++;
p->hole = extended_hole;
p->contour = extended_contour;
}
// gpc_polygon_clip
void gpc_polygon_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
gpc_polygon *result) {
sb_tree *sbtree = NULL;
it_node *it = NULL;
it_node *intersect = NULL;
edge_node *edge = NULL;
edge_node *prev_edge = NULL;
edge_node *next_edge = NULL;
edge_node *succ_edge = NULL;
edge_node *e0 = NULL;
edge_node *e1 = NULL;
edge_node *aet = NULL;
edge_node *c_heap = NULL;
edge_node *s_heap = NULL;
lmt_node *lmt = NULL;
lmt_node *local_min = NULL;
polygon_node *out_poly = NULL;
polygon_node *p = NULL;
polygon_node *q = NULL;
polygon_node *poly = NULL;
polygon_node *npoly = NULL;
polygon_node *cf = NULL;
vertex_node *vtx = NULL;
vertex_node *nv = NULL;
h_state horiz[2];
int in[2];
int exists[2];
int parity[2] = {LEFT, LEFT};
int c = 0;
int v = 0;
int contributing = 0;
int search = 0;
int scanbeam = 0;
int sbt_entries = 0;
int vclass = 0;
int bl = 0;
int br = 0;
int tl = 0;
int tr = 0;
double *sbt = NULL;
double xb = 0.0;
double px = 0.0;
double yb = 0.0;
double yt = 0.0;
double dy = 0.0;
double ix = 0.0;
double iy = 0.0;
/* Test for trivial NULL result cases */
if (((subj->num_contours == 0) && (clip->num_contours == 0)) ||
((subj->num_contours == 0) && ((op == GPC_INT) || (op == GPC_DIFF))) ||
((clip->num_contours == 0) && (op == GPC_INT))) {
result->num_contours = 0;
result->hole = NULL;
result->contour = NULL;
return;
}
/* Identify potentialy contributing contours */
if (((op == GPC_INT) || (op == GPC_DIFF)) && (subj->num_contours > 0) &&
(clip->num_contours > 0)) {
minimax_test(subj, clip, op);
}
/* Build LMT */
if (subj->num_contours > 0) {
s_heap = build_lmt(&lmt, &sbtree, &sbt_entries, subj, SUBJ, op);
}
if (clip->num_contours > 0) {
c_heap = build_lmt(&lmt, &sbtree, &sbt_entries, clip, CLIP, op);
}
/* Return a NULL result if no contours contribute */
if (lmt == NULL) {
result->num_contours = 0;
result->hole = NULL;
result->contour = NULL;
reset_lmt(&lmt);
gpc_free<edge_node>(s_heap);
gpc_free<edge_node>(c_heap);
return;
}
/* Build scanbeam table from scanbeam tree */
gpc_malloc<double>(sbt, sbt_entries * sizeof(double),
const_cast<char *>("sbt creation"));
build_sbt(&scanbeam, sbt, sbtree);
scanbeam = 0;
free_sbtree(&sbtree);
/* Allow pointer re-use without causing memory leak */
if (subj == result) {
gpc_free_polygon(subj);
}
if (clip == result) {
gpc_free_polygon(clip);
}
/* Invert clip polygon for difference operation */
if (op == GPC_DIFF) {
parity[CLIP] = RIGHT;
}
local_min = lmt;
// Process each scanbeam
while (scanbeam < sbt_entries) {
/* Set yb and yt to the bottom and top of the scanbeam */
yb = sbt[scanbeam++];
if (scanbeam < sbt_entries) {
yt = sbt[scanbeam];
dy = yt - yb;
}
/* === SCANBEAM BOUNDARY PROCESSING ================================ */
/* If LMT node corresponding to yb exists */
if (local_min) {
if (local_min->y == yb) {
/* Add edges starting at this local minimum to the AET */
for (edge = local_min->first_bound; edge; edge = edge->next_bound) {
add_edge_to_aet(&aet, edge, NULL);
}
local_min = local_min->next;
}
}
/* Set dummy previous x value */
px = -DBL_MAX;
/* Create bundles within AET */
e0 = aet;
e1 = aet;
/* Set up bundle fields of first edge */
aet->bundle[ABOVE][aet->type] = (aet->top.y != yb);
aet->bundle[ABOVE][!aet->type] = 0;
aet->bstate[ABOVE] = UNBUNDLED;
for (next_edge = aet->next; next_edge; next_edge = next_edge->next) {
/* Set up bundle fields of next edge */
next_edge->bundle[ABOVE][next_edge->type] = (next_edge->top.y != yb);
next_edge->bundle[ABOVE][!next_edge->type] = 0;
next_edge->bstate[ABOVE] = UNBUNDLED;
/* Bundle edges above the scanbeam boundary if they coincide */
if (next_edge->bundle[ABOVE][next_edge->type]) {
if (gpc_eq(e0->xb, next_edge->xb) && gpc_eq(e0->dx, next_edge->dx) &&
(e0->top.y != yb)) {
next_edge->bundle[ABOVE][next_edge->type] ^=
e0->bundle[ABOVE][next_edge->type];
next_edge->bundle[ABOVE][!next_edge->type] =
e0->bundle[ABOVE][!next_edge->type];
next_edge->bstate[ABOVE] = BUNDLE_HEAD;
e0->bundle[ABOVE][CLIP] = 0;
e0->bundle[ABOVE][SUBJ] = 0;
e0->bstate[ABOVE] = BUNDLE_TAIL;
}
e0 = next_edge;
}
}
horiz[CLIP] = NH;
horiz[SUBJ] = NH;
// Process each edge at this scanbeam boundary
for (edge = aet; edge; edge = edge->next) {
exists[CLIP] =
edge->bundle[ABOVE][CLIP] + (edge->bundle[BELOW][CLIP] << 1);
exists[SUBJ] =
edge->bundle[ABOVE][SUBJ] + (edge->bundle[BELOW][SUBJ] << 1);
if (exists[CLIP] || exists[SUBJ]) {
/* Set bundle side */
edge->bside[CLIP] = parity[CLIP];
edge->bside[SUBJ] = parity[SUBJ];
/* Determine contributing status and quadrant occupancies */
switch (op) {
case GPC_DIFF:
case GPC_INT:
contributing = (exists[CLIP] && (parity[SUBJ] || horiz[SUBJ])) ||
(exists[SUBJ] && (parity[CLIP] || horiz[CLIP])) ||
(exists[CLIP] && exists[SUBJ] &&
(parity[CLIP] == parity[SUBJ]));
br = (parity[CLIP]) && (parity[SUBJ]);
bl = (parity[CLIP] ^ edge->bundle[ABOVE][CLIP]) &&
(parity[SUBJ] ^ edge->bundle[ABOVE][SUBJ]);
tr = (parity[CLIP] ^ (horiz[CLIP] != NH)) &&
(parity[SUBJ] ^ (horiz[SUBJ] != NH));
tl = (parity[CLIP] ^ (horiz[CLIP] != NH) ^
edge->bundle[BELOW][CLIP]) &&
(parity[SUBJ] ^ (horiz[SUBJ] != NH) ^
edge->bundle[BELOW][SUBJ]);
break;
case GPC_XOR:
contributing = exists[CLIP] || exists[SUBJ];
br = (parity[CLIP]) ^ (parity[SUBJ]);
bl = (parity[CLIP] ^ edge->bundle[ABOVE][CLIP]) ^
(parity[SUBJ] ^ edge->bundle[ABOVE][SUBJ]);
tr = (parity[CLIP] ^ (horiz[CLIP] != NH)) ^
(parity[SUBJ] ^ (horiz[SUBJ] != NH));
tl = (parity[CLIP] ^ (horiz[CLIP] != NH) ^
edge->bundle[BELOW][CLIP]) ^
(parity[SUBJ] ^ (horiz[SUBJ] != NH) ^
edge->bundle[BELOW][SUBJ]);
break;
case GPC_UNION:
contributing = (exists[CLIP] && (!parity[SUBJ] || horiz[SUBJ])) ||
(exists[SUBJ] && (!parity[CLIP] || horiz[CLIP])) ||
(exists[CLIP] && exists[SUBJ] &&
(parity[CLIP] == parity[SUBJ]));
br = (parity[CLIP]) || (parity[SUBJ]);
bl = (parity[CLIP] ^ edge->bundle[ABOVE][CLIP]) ||
(parity[SUBJ] ^ edge->bundle[ABOVE][SUBJ]);
tr = (parity[CLIP] ^ (horiz[CLIP] != NH)) ||
(parity[SUBJ] ^ (horiz[SUBJ] != NH));
tl = (parity[CLIP] ^ (horiz[CLIP] != NH) ^
edge->bundle[BELOW][CLIP]) ||
(parity[SUBJ] ^ (horiz[SUBJ] != NH) ^
edge->bundle[BELOW][SUBJ]);
break;
}
// Update parity
parity[CLIP] ^= edge->bundle[ABOVE][CLIP];
parity[SUBJ] ^= edge->bundle[ABOVE][SUBJ];
/* Update horizontal state */
if (exists[CLIP]) {
horiz[CLIP] = next_h_state[horiz[CLIP]]
[((exists[CLIP] - 1) << 1) + parity[CLIP]];
}
if (exists[SUBJ]) {
horiz[SUBJ] = next_h_state[horiz[SUBJ]]
[((exists[SUBJ] - 1) << 1) + parity[SUBJ]];
}
vclass = tr + (tl << 1) + (br << 2) + (bl << 3);
if (contributing) {
xb = edge->xb;
switch (vclass) {
case EMN:
case IMN:
add_local_min(&out_poly, edge, xb, yb);
px = xb;
cf = edge->outp[ABOVE];
break;
case ERI:
if (xb != px) {
add_right(cf, xb, yb);
px = xb;
}
edge->outp[ABOVE] = cf;
cf = NULL;
break;
case ELI:
add_left(edge->outp[BELOW], xb, yb);
px = xb;
cf = edge->outp[BELOW];
break;
case EMX:
if (xb != px) {
add_left(cf, xb, yb);
px = xb;
}
merge_right(cf, edge->outp[BELOW], out_poly);
cf = NULL;
break;
case ILI:
if (xb != px) {
add_left(cf, xb, yb);
px = xb;
}
edge->outp[ABOVE] = cf;
cf = NULL;
break;
case IRI:
add_right(edge->outp[BELOW], xb, yb);
px = xb;
cf = edge->outp[BELOW];
edge->outp[BELOW] = NULL;
break;
case IMX:
if (xb != px) {
add_right(cf, xb, yb);
px = xb;
}
merge_left(cf, edge->outp[BELOW], out_poly);
cf = NULL;
edge->outp[BELOW] = NULL;
break;
case IMM:
if (xb != px) {
add_right(cf, xb, yb);
px = xb;
}
merge_left(cf, edge->outp[BELOW], out_poly);
edge->outp[BELOW] = NULL;
add_local_min(&out_poly, edge, xb, yb);
cf = edge->outp[ABOVE];
break;
case EMM:
if (xb != px) {
add_left(cf, xb, yb);
px = xb;
}
merge_right(cf, edge->outp[BELOW], out_poly);
edge->outp[BELOW] = NULL;
add_local_min(&out_poly, edge, xb, yb);
cf = edge->outp[ABOVE];
break;
case LED:
if (edge->bot.y == yb) {
add_left(edge->outp[BELOW], xb, yb);
}
edge->outp[ABOVE] = edge->outp[BELOW];
px = xb;
break;
case RED:
if (edge->bot.y == yb) {
add_right(edge->outp[BELOW], xb, yb);
}
edge->outp[ABOVE] = edge->outp[BELOW];
px = xb;
break;
default:
break;
} /* End of switch */
} /* End of contributing conditional */
} /* End of edge exists conditional */
} // End of AET loop
/* Delete terminating edges from the AET, otherwise compute xt */
for (edge = aet; edge; edge = edge->next) {
if (edge->top.y == yb) {
prev_edge = edge->prev;
next_edge = edge->next;
if (prev_edge) {
prev_edge->next = next_edge;
} else {
aet = next_edge;
}
if (next_edge) {
next_edge->prev = prev_edge;
}
/* Copy bundle head state to the adjacent tail edge if required */
if ((edge->bstate[BELOW] == BUNDLE_HEAD) && prev_edge) {
if (prev_edge->bstate[BELOW] == BUNDLE_TAIL) {
prev_edge->outp[BELOW] = edge->outp[BELOW];
prev_edge->bstate[BELOW] = UNBUNDLED;
if (prev_edge->prev) {
if (prev_edge->prev->bstate[BELOW] == BUNDLE_TAIL) {
prev_edge->bstate[BELOW] = BUNDLE_HEAD;
}
}
}
}
} else {
if (edge->top.y == yt) {
edge->xt = edge->top.x;
} else {
edge->xt = edge->bot.x + edge->dx * (yt - edge->bot.y);
}
}
}
if (scanbeam < sbt_entries) {
/* === SCANBEAM INTERIOR PROCESSING ============================== */
build_intersection_table(&it, aet, dy);
/* Process each node in the intersection table */
for (intersect = it; intersect; intersect = intersect->next) {
e0 = intersect->ie[0];
e1 = intersect->ie[1];
/* Only generate output for contributing intersections */
if ((e0->bundle[ABOVE][CLIP] || e0->bundle[ABOVE][SUBJ]) &&
(e1->bundle[ABOVE][CLIP] || e1->bundle[ABOVE][SUBJ])) {
p = e0->outp[ABOVE];
q = e1->outp[ABOVE];
ix = intersect->point.x;
iy = intersect->point.y + yb;
in[CLIP] = (e0->bundle[ABOVE][CLIP] && !e0->bside[CLIP]) ||
(e1->bundle[ABOVE][CLIP] && e1->bside[CLIP]) ||
(!e0->bundle[ABOVE][CLIP] && !e1->bundle[ABOVE][CLIP] &&
e0->bside[CLIP] && e1->bside[CLIP]);
in[SUBJ] = (e0->bundle[ABOVE][SUBJ] && !e0->bside[SUBJ]) ||
(e1->bundle[ABOVE][SUBJ] && e1->bside[SUBJ]) ||
(!e0->bundle[ABOVE][SUBJ] && !e1->bundle[ABOVE][SUBJ] &&
e0->bside[SUBJ] && e1->bside[SUBJ]);
// Determine quadrant occupancies
switch (op) {
case GPC_DIFF:
case GPC_INT:
tr = (in[CLIP]) && (in[SUBJ]);
tl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP]) &&
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ]);
br = (in[CLIP] ^ e0->bundle[ABOVE][CLIP]) &&
(in[SUBJ] ^ e0->bundle[ABOVE][SUBJ]);
bl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP] ^
e0->bundle[ABOVE][CLIP]) &&
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ] ^
e0->bundle[ABOVE][SUBJ]);
break;
case GPC_XOR:
tr = (in[CLIP]) ^ (in[SUBJ]);
tl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP]) ^
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ]);
br = (in[CLIP] ^ e0->bundle[ABOVE][CLIP]) ^
(in[SUBJ] ^ e0->bundle[ABOVE][SUBJ]);
bl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP] ^
e0->bundle[ABOVE][CLIP]) ^
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ] ^
e0->bundle[ABOVE][SUBJ]);
break;
case GPC_UNION:
tr = (in[CLIP]) || (in[SUBJ]);
tl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP]) ||
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ]);
br = (in[CLIP] ^ e0->bundle[ABOVE][CLIP]) ||
(in[SUBJ] ^ e0->bundle[ABOVE][SUBJ]);
bl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP] ^
e0->bundle[ABOVE][CLIP]) ||
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ] ^
e0->bundle[ABOVE][SUBJ]);
break;
}
vclass = tr + (tl << 1) + (br << 2) + (bl << 3);
switch (vclass) {
case EMN:
add_local_min(&out_poly, e0, ix, iy);
e1->outp[ABOVE] = e0->outp[ABOVE];
break;
case ERI:
if (p) {
add_right(p, ix, iy);
e1->outp[ABOVE] = p;
e0->outp[ABOVE] = NULL;
}
break;
case ELI:
if (q) {
add_left(q, ix, iy);
e0->outp[ABOVE] = q;
e1->outp[ABOVE] = NULL;
}
break;
case EMX:
if (p && q) {
add_left(p, ix, iy);
merge_right(p, q, out_poly);
e0->outp[ABOVE] = NULL;
e1->outp[ABOVE] = NULL;
}
break;
case IMN:
add_local_min(&out_poly, e0, ix, iy);
e1->outp[ABOVE] = e0->outp[ABOVE];
break;
case ILI:
if (p) {
add_left(p, ix, iy);
e1->outp[ABOVE] = p;
e0->outp[ABOVE] = NULL;
}
break;
case IRI:
if (q) {
add_right(q, ix, iy);
e0->outp[ABOVE] = q;
e1->outp[ABOVE] = NULL;
}
break;
case IMX:
if (p && q) {
add_right(p, ix, iy);
merge_left(p, q, out_poly);
e0->outp[ABOVE] = NULL;
e1->outp[ABOVE] = NULL;
}
break;
case IMM:
if (p && q) {
add_right(p, ix, iy);
merge_left(p, q, out_poly);
add_local_min(&out_poly, e0, ix, iy);
e1->outp[ABOVE] = e0->outp[ABOVE];
}
break;
case EMM:
if (p && q) {
add_left(p, ix, iy);
merge_right(p, q, out_poly);
add_local_min(&out_poly, e0, ix, iy);
e1->outp[ABOVE] = e0->outp[ABOVE];
}
break;
default:
break;
} // End of switch
} /* End of contributing intersection conditional */
/* Swap bundle sides in response to edge crossing */
if (e0->bundle[ABOVE][CLIP]) {
e1->bside[CLIP] = !e1->bside[CLIP];
}
if (e1->bundle[ABOVE][CLIP]) {
e0->bside[CLIP] = !e0->bside[CLIP];
}
if (e0->bundle[ABOVE][SUBJ]) {
e1->bside[SUBJ] = !e1->bside[SUBJ];
}
if (e1->bundle[ABOVE][SUBJ]) {
e0->bside[SUBJ] = !e0->bside[SUBJ];
}
/* Swap e0 and e1 bundles in the AET */
prev_edge = e0->prev;
next_edge = e1->next;
if (next_edge) {
next_edge->prev = e0;
}
if (e0->bstate[ABOVE] == BUNDLE_HEAD) {
search = 1;
while (search) {
prev_edge = prev_edge->prev;
if (prev_edge) {
if (prev_edge->bstate[ABOVE] != BUNDLE_TAIL) {
search = 0;
}
} else {
search = 0;
}
}
}
if (!prev_edge) {
aet->prev = e1;
e1->next = aet;
aet = e0->next;
} else {
prev_edge->next->prev = e1;
e1->next = prev_edge->next;
prev_edge->next = e0->next;
}
e0->next->prev = prev_edge;
e1->next->prev = e1;
e0->next = next_edge;
} /* End of IT loop*/
// Prepare for next scanbeam
for (edge = aet; edge; edge = next_edge) {
next_edge = edge->next;
succ_edge = edge->succ;
if ((edge->top.y == yt) && succ_edge) {
/* Replace AET edge by its successor */
succ_edge->outp[BELOW] = edge->outp[ABOVE];
succ_edge->bstate[BELOW] = edge->bstate[ABOVE];
succ_edge->bundle[BELOW][CLIP] = edge->bundle[ABOVE][CLIP];
succ_edge->bundle[BELOW][SUBJ] = edge->bundle[ABOVE][SUBJ];
prev_edge = edge->prev;
if (prev_edge) {
prev_edge->next = succ_edge;
} else {
aet = succ_edge;
}
if (next_edge) {
next_edge->prev = succ_edge;
}
succ_edge->prev = prev_edge;
succ_edge->next = next_edge;
} else {
/* Update this edge */
edge->outp[BELOW] = edge->outp[ABOVE];
edge->bstate[BELOW] = edge->bstate[ABOVE];
edge->bundle[BELOW][CLIP] = edge->bundle[ABOVE][CLIP];
edge->bundle[BELOW][SUBJ] = edge->bundle[ABOVE][SUBJ];
edge->xb = edge->xt;
}
edge->outp[ABOVE] = NULL;
}
}
} /* === END OF SCANBEAM PROCESSING ================================== */
// Generate result polygon from out_poly
result->contour = NULL;
result->hole = NULL;
result->num_contours = count_contours(out_poly);
if (result->num_contours > 0) {
gpc_malloc<int>(result->hole, result->num_contours * sizeof(int),
const_cast<char *>("hole flag table creation"));
gpc_malloc<gpc_vertex_list>(result->contour,
result->num_contours * sizeof(gpc_vertex_list),
const_cast<char *>("contour creation"));
c = 0;
for (poly = out_poly; poly; poly = npoly) {
npoly = poly->next;
if (poly->active) {
result->hole[c] = poly->proxy->hole;
result->contour[c].num_vertices = poly->active;
gpc_malloc<gpc_vertex>(
result->contour[c].vertex,
result->contour[c].num_vertices * sizeof(gpc_vertex),
const_cast<char *>("vertex creation"));
v = result->contour[c].num_vertices - 1;
for (vtx = poly->proxy->v[LEFT]; vtx; vtx = nv) {
nv = vtx->next;
result->contour[c].vertex[v].x = vtx->x;
result->contour[c].vertex[v].y = vtx->y;
gpc_free<vertex_node>(vtx);
v--;
}
c++;
}
gpc_free<polygon_node>(poly);
}
} else {
for (poly = out_poly; poly; poly = npoly) {
npoly = poly->next;
gpc_free<polygon_node>(poly);
}
}
// Tidy up
reset_it(&it);
reset_lmt(&lmt);
gpc_free<edge_node>(c_heap);
gpc_free<edge_node>(s_heap);
gpc_free<double>(sbt);
} // NOLINT
void gpc_free_tristrip(gpc_tristrip *t) {
int s = 0;
for (s = 0; s < t->num_strips; s++) {
gpc_free<gpc_vertex>(t->strip[s].vertex);
}
gpc_free<gpc_vertex_list>(t->strip);
t->num_strips = 0;
}
void gpc_polygon_to_tristrip(gpc_polygon *s, gpc_tristrip *t) {
gpc_polygon c;
c.num_contours = 0;
c.hole = NULL;
c.contour = NULL;
gpc_tristrip_clip(GPC_DIFF, s, &c, t);
}
// gpc_tristrip_clip
void gpc_tristrip_clip(gpc_op op, gpc_polygon *subj, gpc_polygon *clip,
gpc_tristrip *result) {
sb_tree *sbtree = NULL;
it_node *it = NULL;
it_node *intersect = NULL;
edge_node *edge = NULL;
edge_node *prev_edge = NULL;
edge_node *next_edge = NULL;
edge_node *succ_edge = NULL;
edge_node *e0 = NULL;
edge_node *e1 = NULL;
edge_node *aet = NULL;
edge_node *c_heap = NULL;
edge_node *s_heap = NULL;
edge_node *cf = NULL;
lmt_node *lmt = NULL;
lmt_node *local_min = NULL;
polygon_node *tlist = NULL;
polygon_node *tn = NULL;
polygon_node *tnn = NULL;
polygon_node *p = NULL;
polygon_node *q = NULL;
vertex_node *lt = NULL;
vertex_node *ltn = NULL;
vertex_node *rt = NULL;
vertex_node *rtn = NULL;
h_state horiz[2];
vertex_type cft = NUL;
int in[2];
int exists[2];
int parity[2] = {LEFT, LEFT};
int s = 0;
int v = 0;
int contributing = 0;
int search = 0;
int scanbeam = 0;
int sbt_entries = 0;
int vclass = 0;
int bl = 0;
int br = 0;
int tl = 0;
int tr = 0;
double *sbt = NULL;
double xb = 0.0;
double px = 0.0;
double nx = 0.0;
double yb = 0.0;
double yt = 0.0;
double dy = 0.0;
double ix = 0.0;
double iy = 0.0;
/* Test for trivial NULL result cases */
if (((subj->num_contours == 0) && (clip->num_contours == 0)) ||
((subj->num_contours == 0) && ((op == GPC_INT) || (op == GPC_DIFF))) ||
((clip->num_contours == 0) && (op == GPC_INT))) {
result->num_strips = 0;
result->strip = NULL;
return;
}
/* Identify potentialy contributing contours */
if (((op == GPC_INT) || (op == GPC_DIFF)) && (subj->num_contours > 0) &&
(clip->num_contours > 0)) {
minimax_test(subj, clip, op);
}
/* Build LMT */
if (subj->num_contours > 0) {
s_heap = build_lmt(&lmt, &sbtree, &sbt_entries, subj, SUBJ, op);
}
if (clip->num_contours > 0) {
c_heap = build_lmt(&lmt, &sbtree, &sbt_entries, clip, CLIP, op);
}
/* Return a NULL result if no contours contribute */
if (lmt == NULL) {
result->num_strips = 0;
result->strip = NULL;
reset_lmt(&lmt);
gpc_free<edge_node>(s_heap);
gpc_free<edge_node>(c_heap);
return;
}
/* Build scanbeam table from scanbeam tree */
gpc_malloc<double>(sbt, sbt_entries * sizeof(double),
const_cast<char *>("sbt creation"));
build_sbt(&scanbeam, sbt, sbtree);
scanbeam = 0;
free_sbtree(&sbtree);
/* Invert clip polygon for difference operation */
if (op == GPC_DIFF) {
parity[CLIP] = RIGHT;
}
local_min = lmt;
// Process each scanbeam
while (scanbeam < sbt_entries) {
/* Set yb and yt to the bottom and top of the scanbeam */
yb = sbt[scanbeam++];
if (scanbeam < sbt_entries) {
yt = sbt[scanbeam];
dy = yt - yb;
}
/* === SCANBEAM BOUNDARY PROCESSING ================================ */
/* If LMT node corresponding to yb exists */
if (local_min) {
if (local_min->y == yb) {
/* Add edges starting at this local minimum to the AET */
for (edge = local_min->first_bound; edge; edge = edge->next_bound) {
add_edge_to_aet(&aet, edge, NULL);
}
local_min = local_min->next;
}
}
/* Set dummy previous x value */
/* Create bundles within AET */
px = -DBL_MAX;
e0 = aet;
e1 = aet;
/* Set up bundle fields of first edge */
aet->bundle[ABOVE][aet->type] = (aet->top.y != yb);
aet->bundle[ABOVE][!aet->type] = 0;
aet->bstate[ABOVE] = UNBUNDLED;
for (next_edge = aet->next; next_edge; next_edge = next_edge->next) {
/* Set up bundle fields of next edge */
next_edge->bundle[ABOVE][next_edge->type] = (next_edge->top.y != yb);
next_edge->bundle[ABOVE][!next_edge->type] = 0;
next_edge->bstate[ABOVE] = UNBUNDLED;
/* Bundle edges above the scanbeam boundary if they coincide */
if (next_edge->bundle[ABOVE][next_edge->type]) {
if (gpc_eq(e0->xb, next_edge->xb) && gpc_eq(e0->dx, next_edge->dx) &&
(e0->top.y != yb)) {
next_edge->bundle[ABOVE][next_edge->type] ^=
e0->bundle[ABOVE][next_edge->type];
next_edge->bundle[ABOVE][!next_edge->type] =
e0->bundle[ABOVE][!next_edge->type];
next_edge->bstate[ABOVE] = BUNDLE_HEAD;
e0->bundle[ABOVE][CLIP] = 0;
e0->bundle[ABOVE][SUBJ] = 0;
e0->bstate[ABOVE] = BUNDLE_TAIL;
}
e0 = next_edge;
}
}
horiz[CLIP] = NH;
horiz[SUBJ] = NH;
/* Process each edge at this scanbeam boundary */
for (edge = aet; edge; edge = edge->next) {
exists[CLIP] =
edge->bundle[ABOVE][CLIP] + (edge->bundle[BELOW][CLIP] << 1);
exists[SUBJ] =
edge->bundle[ABOVE][SUBJ] + (edge->bundle[BELOW][SUBJ] << 1);
if (exists[CLIP] || exists[SUBJ]) {
/* Set bundle side */
edge->bside[CLIP] = parity[CLIP];
edge->bside[SUBJ] = parity[SUBJ];
/* Determine contributing status and quadrant occupancies */
switch (op) {
case GPC_DIFF:
case GPC_INT:
contributing = (exists[CLIP] && (parity[SUBJ] || horiz[SUBJ])) ||
(exists[SUBJ] && (parity[CLIP] || horiz[CLIP])) ||
(exists[CLIP] && exists[SUBJ] &&
(parity[CLIP] == parity[SUBJ]));
br = (parity[CLIP]) && (parity[SUBJ]);
bl = (parity[CLIP] ^ edge->bundle[ABOVE][CLIP]) &&
(parity[SUBJ] ^ edge->bundle[ABOVE][SUBJ]);
tr = (parity[CLIP] ^ (horiz[CLIP] != NH)) &&
(parity[SUBJ] ^ (horiz[SUBJ] != NH));
tl = (parity[CLIP] ^ (horiz[CLIP] != NH) ^
edge->bundle[BELOW][CLIP]) &&
(parity[SUBJ] ^ (horiz[SUBJ] != NH) ^
edge->bundle[BELOW][SUBJ]);
break;
case GPC_XOR:
contributing = exists[CLIP] || exists[SUBJ];
br = (parity[CLIP]) ^ (parity[SUBJ]);
bl = (parity[CLIP] ^ edge->bundle[ABOVE][CLIP]) ^
(parity[SUBJ] ^ edge->bundle[ABOVE][SUBJ]);
tr = (parity[CLIP] ^ (horiz[CLIP] != NH)) ^
(parity[SUBJ] ^ (horiz[SUBJ] != NH));
tl = (parity[CLIP] ^ (horiz[CLIP] != NH) ^
edge->bundle[BELOW][CLIP]) ^
(parity[SUBJ] ^ (horiz[SUBJ] != NH) ^
edge->bundle[BELOW][SUBJ]);
break;
case GPC_UNION:
contributing = (exists[CLIP] && (!parity[SUBJ] || horiz[SUBJ])) ||
(exists[SUBJ] && (!parity[CLIP] || horiz[CLIP])) ||
(exists[CLIP] && exists[SUBJ] &&
(parity[CLIP] == parity[SUBJ]));
br = (parity[CLIP]) || (parity[SUBJ]);
bl = (parity[CLIP] ^ edge->bundle[ABOVE][CLIP]) ||
(parity[SUBJ] ^ edge->bundle[ABOVE][SUBJ]);
tr = (parity[CLIP] ^ (horiz[CLIP] != NH)) ||
(parity[SUBJ] ^ (horiz[SUBJ] != NH));
tl = (parity[CLIP] ^ (horiz[CLIP] != NH) ^
edge->bundle[BELOW][CLIP]) ||
(parity[SUBJ] ^ (horiz[SUBJ] != NH) ^
edge->bundle[BELOW][SUBJ]);
break;
}
// Update parity
parity[CLIP] ^= edge->bundle[ABOVE][CLIP];
parity[SUBJ] ^= edge->bundle[ABOVE][SUBJ];
/* Update horizontal state */
if (exists[CLIP]) {
horiz[CLIP] = next_h_state[horiz[CLIP]]
[((exists[CLIP] - 1) << 1) + parity[CLIP]];
}
if (exists[SUBJ]) {
horiz[SUBJ] = next_h_state[horiz[SUBJ]]
[((exists[SUBJ] - 1) << 1) + parity[SUBJ]];
}
vclass = tr + (tl << 1) + (br << 2) + (bl << 3);
if (contributing) {
xb = edge->xb;
switch (vclass) {
case EMN:
new_tristrip(&tlist, edge, xb, yb);
cf = edge;
break;
case ERI:
edge->outp[ABOVE] = cf->outp[ABOVE];
if (xb != cf->xb) {
gpc_vertex_create(edge, ABOVE, RIGHT, xb, yb);
}
cf = NULL;
break;
case ELI:
gpc_vertex_create(edge, BELOW, LEFT, xb, yb);
edge->outp[ABOVE] = NULL;
cf = edge;
break;
case EMX:
if (xb != cf->xb) {
gpc_vertex_create(edge, BELOW, RIGHT, xb, yb);
}
edge->outp[ABOVE] = NULL;
cf = NULL;
break;
case IMN:
if (cft == LED) {
if (cf->bot.y != yb) {
gpc_vertex_create(cf, BELOW, LEFT, cf->xb, yb);
}
new_tristrip(&tlist, cf, cf->xb, yb);
}
edge->outp[ABOVE] = cf->outp[ABOVE];
gpc_vertex_create(edge, ABOVE, RIGHT, xb, yb);
break;
case ILI:
new_tristrip(&tlist, edge, xb, yb);
cf = edge;
cft = ILI;
break;
case IRI:
if (cft == LED) {
if (cf->bot.y != yb) {
gpc_vertex_create(cf, BELOW, LEFT, cf->xb, yb);
}
new_tristrip(&tlist, cf, cf->xb, yb);
}
gpc_vertex_create(edge, BELOW, RIGHT, xb, yb);
edge->outp[ABOVE] = NULL;
break;
case IMX:
gpc_vertex_create(edge, BELOW, LEFT, xb, yb);
edge->outp[ABOVE] = NULL;
cft = IMX;
break;
case IMM:
gpc_vertex_create(edge, BELOW, LEFT, xb, yb);
edge->outp[ABOVE] = cf->outp[ABOVE];
if (xb != cf->xb) {
gpc_vertex_create(cf, ABOVE, RIGHT, xb, yb);
}
cf = edge;
break;
case EMM:
gpc_vertex_create(edge, BELOW, RIGHT, xb, yb);
edge->outp[ABOVE] = NULL;
new_tristrip(&tlist, edge, xb, yb);
cf = edge;
break;
case LED:
if (edge->bot.y == yb) {
gpc_vertex_create(edge, BELOW, LEFT, xb, yb);
}
edge->outp[ABOVE] = edge->outp[BELOW];
cf = edge;
cft = LED;
break;
case RED:
edge->outp[ABOVE] = cf->outp[ABOVE];
if (cft == LED) {
if (cf->bot.y == yb) {
gpc_vertex_create(edge, BELOW, RIGHT, xb, yb);
} else {
if (edge->bot.y == yb) {
gpc_vertex_create(cf, BELOW, LEFT, cf->xb, yb);
gpc_vertex_create(edge, BELOW, RIGHT, xb, yb);
}
}
} else {
gpc_vertex_create(edge, BELOW, RIGHT, xb, yb);
gpc_vertex_create(edge, ABOVE, RIGHT, xb, yb);
}
cf = NULL;
break;
default:
break;
} /* End of switch */
} /* End of contributing conditional */
} /* End of edge exists conditional */
} // End of AET loop
/* Delete terminating edges from the AET, otherwise compute xt */
for (edge = aet; edge; edge = edge->next) {
if (edge->top.y == yb) {
prev_edge = edge->prev;
next_edge = edge->next;
if (prev_edge) {
prev_edge->next = next_edge;
} else {
aet = next_edge;
}
if (next_edge) {
next_edge->prev = prev_edge;
}
/* Copy bundle head state to the adjacent tail edge if required */
if ((edge->bstate[BELOW] == BUNDLE_HEAD) && prev_edge) {
if (prev_edge->bstate[BELOW] == BUNDLE_TAIL) {
prev_edge->outp[BELOW] = edge->outp[BELOW];
prev_edge->bstate[BELOW] = UNBUNDLED;
if (prev_edge->prev) {
if (prev_edge->prev->bstate[BELOW] == BUNDLE_TAIL) {
prev_edge->bstate[BELOW] = BUNDLE_HEAD;
}
}
}
}
} else {
if (edge->top.y == yt) {
edge->xt = edge->top.x;
} else {
edge->xt = edge->bot.x + edge->dx * (yt - edge->bot.y);
}
}
}
if (scanbeam < sbt_entries) {
/* === SCANBEAM INTERIOR PROCESSING ============================== */
build_intersection_table(&it, aet, dy);
/* Process each node in the intersection table */
for (intersect = it; intersect; intersect = intersect->next) {
e0 = intersect->ie[0];
e1 = intersect->ie[1];
/* Only generate output for contributing intersections */
if ((e0->bundle[ABOVE][CLIP] || e0->bundle[ABOVE][SUBJ]) &&
(e1->bundle[ABOVE][CLIP] || e1->bundle[ABOVE][SUBJ])) {
p = e0->outp[ABOVE];
q = e1->outp[ABOVE];
ix = intersect->point.x;
iy = intersect->point.y + yb;
in[CLIP] = (e0->bundle[ABOVE][CLIP] && !e0->bside[CLIP]) ||
(e1->bundle[ABOVE][CLIP] && e1->bside[CLIP]) ||
(!e0->bundle[ABOVE][CLIP] && !e1->bundle[ABOVE][CLIP] &&
e0->bside[CLIP] && e1->bside[CLIP]);
in[SUBJ] = (e0->bundle[ABOVE][SUBJ] && !e0->bside[SUBJ]) ||
(e1->bundle[ABOVE][SUBJ] && e1->bside[SUBJ]) ||
(!e0->bundle[ABOVE][SUBJ] && !e1->bundle[ABOVE][SUBJ] &&
e0->bside[SUBJ] && e1->bside[SUBJ]);
switch (op) { // Determine quadrant occupancies
case GPC_DIFF:
case GPC_INT:
tr = (in[CLIP]) && (in[SUBJ]);
tl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP]) &&
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ]);
br = (in[CLIP] ^ e0->bundle[ABOVE][CLIP]) &&
(in[SUBJ] ^ e0->bundle[ABOVE][SUBJ]);
bl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP] ^
e0->bundle[ABOVE][CLIP]) &&
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ] ^
e0->bundle[ABOVE][SUBJ]);
break;
case GPC_XOR:
tr = (in[CLIP]) ^ (in[SUBJ]);
tl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP]) ^
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ]);
br = (in[CLIP] ^ e0->bundle[ABOVE][CLIP]) ^
(in[SUBJ] ^ e0->bundle[ABOVE][SUBJ]);
bl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP] ^
e0->bundle[ABOVE][CLIP]) ^
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ] ^
e0->bundle[ABOVE][SUBJ]);
break;
case GPC_UNION:
tr = (in[CLIP]) || (in[SUBJ]);
tl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP]) ||
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ]);
br = (in[CLIP] ^ e0->bundle[ABOVE][CLIP]) ||
(in[SUBJ] ^ e0->bundle[ABOVE][SUBJ]);
bl = (in[CLIP] ^ e1->bundle[ABOVE][CLIP] ^
e0->bundle[ABOVE][CLIP]) ||
(in[SUBJ] ^ e1->bundle[ABOVE][SUBJ] ^
e0->bundle[ABOVE][SUBJ]);
break;
}
vclass = tr + (tl << 1) + (br << 2) + (bl << 3);
switch (vclass) {
case EMN:
new_tristrip(&tlist, e1, ix, iy);
e0->outp[ABOVE] = e1->outp[ABOVE];
break;
case ERI:
if (p) {
gpc_p_edge(prev_edge, e0, ABOVE);
gpc_vertex_create(prev_edge, ABOVE, LEFT, px, iy);
gpc_vertex_create(e0, ABOVE, RIGHT, ix, iy);
e1->outp[ABOVE] = e0->outp[ABOVE];
e0->outp[ABOVE] = NULL;
}
break;
case ELI:
if (q) {
gpc_n_edge(next_edge, e1, ABOVE);
gpc_vertex_create(e1, ABOVE, LEFT, ix, iy);
gpc_vertex_create(next_edge, ABOVE, RIGHT, nx, iy);
e0->outp[ABOVE] = e1->outp[ABOVE];
e1->outp[ABOVE] = NULL;
}
break;
case EMX:
if (p && q) {
gpc_vertex_create(e0, ABOVE, LEFT, ix, iy);
e0->outp[ABOVE] = NULL;
e1->outp[ABOVE] = NULL;
}
break;
case IMN:
gpc_p_edge(prev_edge, e0, ABOVE);
gpc_vertex_create(prev_edge, ABOVE, LEFT, px, iy);
gpc_n_edge(next_edge, e1, ABOVE);
gpc_vertex_create(next_edge, ABOVE, RIGHT, nx, iy);
new_tristrip(&tlist, prev_edge, px, iy);
e1->outp[ABOVE] = prev_edge->outp[ABOVE];
gpc_vertex_create(e1, ABOVE, RIGHT, ix, iy);
new_tristrip(&tlist, e0, ix, iy);
next_edge->outp[ABOVE] = e0->outp[ABOVE];
gpc_vertex_create(next_edge, ABOVE, RIGHT, nx, iy);
break;
case ILI:
if (p) {
gpc_vertex_create(e0, ABOVE, LEFT, ix, iy);
gpc_n_edge(next_edge, e1, ABOVE);
gpc_vertex_create(next_edge, ABOVE, RIGHT, nx, iy);
e1->outp[ABOVE] = e0->outp[ABOVE];
e0->outp[ABOVE] = NULL;
}
break;
case IRI:
if (q) {
gpc_vertex_create(e1, ABOVE, RIGHT, ix, iy);
gpc_p_edge(prev_edge, e0, ABOVE);
gpc_vertex_create(prev_edge, ABOVE, LEFT, px, iy);
e0->outp[ABOVE] = e1->outp[ABOVE];
e1->outp[ABOVE] = NULL;
}
break;
case IMX:
if (p && q) {
gpc_vertex_create(e0, ABOVE, RIGHT, ix, iy);
gpc_vertex_create(e1, ABOVE, LEFT, ix, iy);
e0->outp[ABOVE] = NULL;
e1->outp[ABOVE] = NULL;
gpc_p_edge(prev_edge, e0, ABOVE);
gpc_vertex_create(prev_edge, ABOVE, LEFT, px, iy);
new_tristrip(&tlist, prev_edge, px, iy);
gpc_n_edge(next_edge, e1, ABOVE);
gpc_vertex_create(next_edge, ABOVE, RIGHT, nx, iy);
next_edge->outp[ABOVE] = prev_edge->outp[ABOVE];
gpc_vertex_create(next_edge, ABOVE, RIGHT, nx, iy);
}
break;
case IMM:
if (p && q) {
gpc_vertex_create(e0, ABOVE, RIGHT, ix, iy);
gpc_vertex_create(e1, ABOVE, LEFT, ix, iy);
gpc_p_edge(prev_edge, e0, ABOVE);
gpc_vertex_create(prev_edge, ABOVE, LEFT, px, iy);
new_tristrip(&tlist, prev_edge, px, iy);
gpc_n_edge(next_edge, e1, ABOVE);
gpc_vertex_create(next_edge, ABOVE, RIGHT, nx, iy);
e1->outp[ABOVE] = prev_edge->outp[ABOVE];
gpc_vertex_create(e1, ABOVE, RIGHT, ix, iy);
new_tristrip(&tlist, e0, ix, iy);
next_edge->outp[ABOVE] = e0->outp[ABOVE];
gpc_vertex_create(next_edge, ABOVE, RIGHT, nx, iy);
}
break;
case EMM:
if (p && q) {
gpc_vertex_create(e0, ABOVE, LEFT, ix, iy);
new_tristrip(&tlist, e1, ix, iy);
e0->outp[ABOVE] = e1->outp[ABOVE];
}
break;
default:
break;
} /* End of switch */
} /* End of contributing intersection conditional */
// Swap bundle sides in response to edge crossing
if (e0->bundle[ABOVE][CLIP]) {
e1->bside[CLIP] = !e1->bside[CLIP];
}
if (e1->bundle[ABOVE][CLIP]) {
e0->bside[CLIP] = !e0->bside[CLIP];
}
if (e0->bundle[ABOVE][SUBJ]) {
e1->bside[SUBJ] = !e1->bside[SUBJ];
}
if (e1->bundle[ABOVE][SUBJ]) {
e0->bside[SUBJ] = !e0->bside[SUBJ];
}
/* Swap e0 and e1 bundles in the AET */
prev_edge = e0->prev;
next_edge = e1->next;
if (e1->next) {
e1->next->prev = e0;
}
if (e0->bstate[ABOVE] == BUNDLE_HEAD) {
search = 1;
while (search) {
prev_edge = prev_edge->prev;
if (prev_edge) {
if (prev_edge->bundle[ABOVE][CLIP] ||
prev_edge->bundle[ABOVE][SUBJ] ||
(prev_edge->bstate[ABOVE] == BUNDLE_HEAD)) {
search = 0;
}
} else {
search = 0;
}
}
}
if (!prev_edge) {
e1->next = aet;
aet = e0->next;
} else {
e1->next = prev_edge->next;
prev_edge->next = e0->next;
}
e0->next->prev = prev_edge;
e1->next->prev = e1;
e0->next = next_edge;
} /* End of IT loop*/
/* Prepare for next scanbeam */
for (edge = aet; edge; edge = next_edge) {
next_edge = edge->next;
succ_edge = edge->succ;
if ((edge->top.y == yt) && succ_edge) {
/* Replace AET edge by its successor */
succ_edge->outp[BELOW] = edge->outp[ABOVE];
succ_edge->bstate[BELOW] = edge->bstate[ABOVE];
succ_edge->bundle[BELOW][CLIP] = edge->bundle[ABOVE][CLIP];
succ_edge->bundle[BELOW][SUBJ] = edge->bundle[ABOVE][SUBJ];
prev_edge = edge->prev;
if (prev_edge) {
prev_edge->next = succ_edge;
} else {
aet = succ_edge;
}
if (next_edge) {
next_edge->prev = succ_edge;
}
succ_edge->prev = prev_edge;
succ_edge->next = next_edge;
} else {
/* Update this edge */
edge->outp[BELOW] = edge->outp[ABOVE];
edge->bstate[BELOW] = edge->bstate[ABOVE];
edge->bundle[BELOW][CLIP] = edge->bundle[ABOVE][CLIP];
edge->bundle[BELOW][SUBJ] = edge->bundle[ABOVE][SUBJ];
edge->xb = edge->xt;
}
edge->outp[ABOVE] = NULL;
}
}
} /* === END OF SCANBEAM PROCESSING ================================== */
// Generate result tristrip from tlist
result->strip = NULL;
result->num_strips = count_tristrips(tlist);
if (result->num_strips > 0) {
gpc_malloc<gpc_vertex_list>(result->strip,
result->num_strips * sizeof(gpc_vertex_list),
const_cast<char *>("tristrip list creation"));
s = 0;
for (tn = tlist; tn; tn = tnn) {
tnn = tn->next;
if (tn->active > 2) {
/* Valid tristrip: copy the vertices and free the heap */
result->strip[s].num_vertices = tn->active;
gpc_malloc<gpc_vertex>(result->strip[s].vertex,
tn->active * sizeof(gpc_vertex),
const_cast<char *>("tristrip creation"));
v = 0;
if (0) {
lt = tn->v[RIGHT];
rt = tn->v[LEFT];
} else {
lt = tn->v[LEFT];
rt = tn->v[RIGHT];
}
while (lt || rt) {
if (lt) {
ltn = lt->next;
result->strip[s].vertex[v].x = lt->x;
result->strip[s].vertex[v].y = lt->y;
v++;
gpc_free<vertex_node>(lt);
lt = ltn;
}
if (rt) {
rtn = rt->next;
result->strip[s].vertex[v].x = rt->x;
result->strip[s].vertex[v].y = rt->y;
v++;
gpc_free<vertex_node>(rt);
rt = rtn;
}
}
s++;
} else {
/* Invalid tristrip: just free the heap */
for (lt = tn->v[LEFT]; lt; lt = ltn) {
ltn = lt->next;
gpc_free<vertex_node>(lt);
}
for (rt = tn->v[RIGHT]; rt; rt = rtn) {
rtn = rt->next;
gpc_free<vertex_node>(rt);
}
}
gpc_free<polygon_node>(tn);
}
}
// Tidy up
reset_it(&it);
reset_lmt(&lmt);
gpc_free<edge_node>(c_heap);
gpc_free<edge_node>(s_heap);
gpc_free<double>(sbt);
} // NOLINT
} // namespace gpc
/* vim: set expandtab ts=4 sw=4 sts=4 tw=100: */
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/***************************************************************************
*
* Copyright (c) 2015 Baidu.com, Inc. All Rights Reserved
*
**************************************************************************/
/**
* @file include/gpc.h
* @author huhan02(com@baidu.com)
* @date 2015/12/18 13:52:10
* @brief
*
* @modified by sunyipeng
* @email sunyipeng@baidu.com
* @date 2018/6/12
**/
#ifndef PADDLE_FLUID_OPERATORS_DETECTION_GPC_H_ // GPC_H_
#define PADDLE_FLUID_OPERATORS_DETECTION_GPC_H_ // GPC_H_
#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
namespace gpc {
typedef enum { // Set operation type
GPC_DIFF, // Difference
GPC_INT, // Intersection
GPC_XOR, // Exclusive or
GPC_UNION // Union
} gpc_op;
typedef struct { // Polygon vertex structure
double x; // Vertex x component
double y; // vertex y component
} gpc_vertex;
typedef struct { // Vertex list structure
int num_vertices; // Number of vertices in list
gpc_vertex *vertex; // Vertex array pointer
} gpc_vertex_list;
typedef struct { // Polygon set structure
int num_contours; // Number of contours in polygon
int *hole; // Hole external contour flags
gpc_vertex_list *contour; // Contour array pointer
} gpc_polygon;
typedef struct { // Tristrip set structure
int num_strips; // Number of tristrips
gpc_vertex_list *strip; // Tristrip array pointer
} gpc_tristrip;
typedef enum { LEFT, RIGHT } gpc_left_right;
typedef enum { ABOVE, BELOW } gpc_above_below;
typedef enum { CLIP, SUBJ } gpc_clip_subj;
typedef enum { /* Edge intersection classes */
NUL, /* Empty non-intersection */
EMX, /* External maximum */
ELI, /* External left intermediate */
TED, /* Top edge */
ERI, /* External right intermediate */
RED, /* Right edge */
IMM, /* Internal maximum and minimum */
IMN, /* Internal minimum */
EMN, /* External minimum */
EMM, /* External maximum and minimum */
LED, /* Left edge */
ILI, /* Internal left intermediate */
BED, /* Bottom edge */
IRI, /* Internal right intermediate */
IMX, /* Internal maximum */
FUL /* Full non-intersection */
} vertex_type;
typedef enum { /* Horizontal edge states */
NH, /* No horizontal edge */
BH, /* Bottom horizontal edge */
TH /* Top horizontal edge */
} h_state;
typedef enum { /* Edge bundle state */
UNBUNDLED, /* Isolated edge not within a bundle */
BUNDLE_HEAD, /* Bundle head node */
BUNDLE_TAIL /* Passive bundle tail node */
} bundle_state;
typedef struct v_shape { /* Internal vertex list datatype */
double x; /* X coordinate component */
double y; /* Y coordinate component */
struct v_shape *next; /* Pointer to next vertex in list */
} vertex_node;
typedef struct p_shape { /* Internal contour / tristrip type */
int active; /* Active flag / vertex count */
int hole; /* Hole / external contour flag */
vertex_node *v[2]; /* Left and right vertex list ptrs */
struct p_shape *next; /* Pointer to next polygon contour */
struct p_shape *proxy; /* Pointer to actual structure used */
} polygon_node;
typedef struct edge_shape {
gpc_vertex vertex; /* Piggy-backed contour vertex data */
gpc_vertex bot; /* Edge lower (x, y) coordinate */
gpc_vertex top; /* Edge upper (x, y) coordinate */
double xb; /* Scanbeam bottom x coordinate */
double xt; /* Scanbeam top x coordinate */
double dx; /* Change in x for a unit y increase */
int type; /* Clip / subject edge flag */
int bundle[2][2]; /* Bundle edge flags */
int bside[2]; /* Bundle left / right indicators */
bundle_state bstate[2]; /* Edge bundle state */
polygon_node *outp[2]; /* Output polygon / tristrip pointer */
struct edge_shape *prev; /* Previous edge in the AET */
struct edge_shape *next; /* Next edge in the AET */
struct edge_shape *pred; /* Edge connected at the lower end */
struct edge_shape *succ; /* Edge connected at the upper end */
struct edge_shape *next_bound; /* Pointer to next bound in LMT */
} edge_node;
inline bool gpc_eq(float a, float b) { return (fabs(a - b) <= 1e-6); }
inline bool gpc_prev_index(float a, float b) { return (fabs(a - b) <= 1e-6); }
inline int gpc_prev_index(int i, int n) { return ((i - 1 + n) % n); }
inline int gpc_next_index(int i, int n) { return ((i + 1) % n); }
inline int gpc_optimal(gpc_vertex *v, int i, int n) {
return (v[(i + 1) % n].y != v[i].y || v[(i - 1 + n) % n].y != v[i].y);
}
inline int gpc_fwd_min(edge_node *v, int i, int n) {
return (v[(i + 1) % n].vertex.y > v[i].vertex.y &&
v[(i - 1 + n) % n].vertex.y >= v[i].vertex.y);
}
inline int gpc_not_fmax(edge_node *v, int i, int n) {
return (v[(i + 1) % n].vertex.y > v[i].vertex.y);
}
inline int gpc_rev_min(edge_node *v, int i, int n) {
return (v[(i + 1) % n].vertex.y >= v[i].vertex.y &&
v[(i - 1 + n) % n].vertex.y > v[i].vertex.y);
}
inline int gpc_not_rmax(edge_node *v, int i, int n) {
return (v[(i - 1 + n) % n].vertex.y > v[i].vertex.y);
}
// inline void gpc_p_edge(edge_node *d, edge_node *e, int p, double i, double j)
// {
inline void gpc_p_edge(edge_node *d, edge_node *e, int p) {
d = e;
do {
d = d->prev;
} while (!d->outp[p]);
// i = d->bot.x + d->dx * (j - d->bot.y);
}
// inline void gpc_n_edge(edge_node *d, edge_node *e, int p, double i, double j)
// {
inline void gpc_n_edge(edge_node *d, edge_node *e, int p) {
d = e;
do {
d = d->next;
} while (!d->outp[p]);
// i = d->bot.x + d->dx * (j - d->bot.y);
}
template <typename T>
void gpc_malloc(T *&p, int b, char *s) {
if (b > 0) {
p = (T *)malloc(b);
if (!p) {
fprintf(stderr, "gpc malloc failure: %s\n", s);
exit(0);
}
} else {
p = NULL;
}
}
template <typename T>
void gpc_free(T *&p) {
if (p) {
free(p);
p = NULL;
}
}
/*
===========================================================================
Public Function Prototypes
===========================================================================
*/
void add_vertex(vertex_node **t, double x, double y);
void gpc_vertex_create(edge_node *e, int p, int s, double x, double y);
/*
void gpc_read_polygon(FILE *infile_ptr, int read_hole_flags,
gpc_polygon *polygon);
void gpc_write_polygon(FILE *outfile_ptr, int write_hole_flags,
gpc_polygon *polygon);
*/
void gpc_add_contour(gpc_polygon *polygon, gpc_vertex_list *contour, int hole);
void gpc_polygon_clip(gpc_op set_operation, gpc_polygon *subject_polygon,
gpc_polygon *clip_polygon, gpc_polygon *result_polygon);
void gpc_tristrip_clip(gpc_op set_operation, gpc_polygon *subject_polygon,
gpc_polygon *clip_polygon,
gpc_tristrip *result_tristrip);
void gpc_polygon_to_tristrip(gpc_polygon *polygon, gpc_tristrip *tristrip);
void gpc_free_polygon(gpc_polygon *polygon);
void gpc_free_tristrip(gpc_tristrip *tristrip);
} // namespace gpc
#endif // PADDLE_FLUID_OPERATORS_DETECTION_GPC_H_
/* vim: set expandtab ts=4 sw=4 sts=4 tw=100: */
...@@ -9,10 +9,11 @@ http://www.apache.org/licenses/LICENSE-2.0 ...@@ -9,10 +9,11 @@ http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS, distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/poly_util.h"
namespace paddle { namespace paddle {
namespace operators { namespace operators {
...@@ -20,9 +21,6 @@ namespace operators { ...@@ -20,9 +21,6 @@ namespace operators {
using Tensor = framework::Tensor; using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor; using LoDTensor = framework::LoDTensor;
constexpr int64_t kOutputDim = 6;
constexpr int64_t kBBoxSize = 4;
class MultiClassNMSOp : public framework::OperatorWithKernel { class MultiClassNMSOp : public framework::OperatorWithKernel {
public: public:
using framework::OperatorWithKernel::OperatorWithKernel; using framework::OperatorWithKernel::OperatorWithKernel;
...@@ -42,10 +40,15 @@ class MultiClassNMSOp : public framework::OperatorWithKernel { ...@@ -42,10 +40,15 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
"The rank of Input(BBoxes) must be 3."); "The rank of Input(BBoxes) must be 3.");
PADDLE_ENFORCE_EQ(score_dims.size(), 3, PADDLE_ENFORCE_EQ(score_dims.size(), 3,
"The rank of Input(Scores) must be 3."); "The rank of Input(Scores) must be 3.");
PADDLE_ENFORCE_EQ(box_dims[2], 4, PADDLE_ENFORCE(box_dims[2] == 4 || box_dims[2] == 8 || box_dims[2] == 16 ||
"The 2nd dimension of Input(BBoxes) must be 4, " box_dims[2] == 24 || box_dims[2] == 32,
"The 2nd dimension of Input(BBoxes) must be 4 or 8, "
"represents the layout of coordinate " "represents the layout of coordinate "
"[xmin, ymin, xmax, ymax]"); "[xmin, ymin, xmax, ymax] or "
"4 points: [x1, y1, x2, y2, x3, y3, x4, y4] or "
"8 points: [xi, yi] i= 1,2,...,8 or "
"12 points: [xi, yi] i= 1,2,...,12 or "
"16 points: [xi, yi] i= 1,2,...,16");
PADDLE_ENFORCE_EQ(box_dims[1], score_dims[2], PADDLE_ENFORCE_EQ(box_dims[1], score_dims[2],
"The 1st dimensiong of Input(BBoxes) must be equal to " "The 1st dimensiong of Input(BBoxes) must be equal to "
"3rd dimension of Input(Scores), which represents the " "3rd dimension of Input(Scores), which represents the "
...@@ -53,7 +56,7 @@ class MultiClassNMSOp : public framework::OperatorWithKernel { ...@@ -53,7 +56,7 @@ class MultiClassNMSOp : public framework::OperatorWithKernel {
// Here the box_dims[0] is not the real dimension of output. // Here the box_dims[0] is not the real dimension of output.
// It will be rewritten in the computing kernel. // It will be rewritten in the computing kernel.
ctx->SetOutputDim("Out", {box_dims[1], 6}); ctx->SetOutputDim("Out", {box_dims[1], box_dims[2] + 2});
} }
protected: protected:
...@@ -128,6 +131,21 @@ static inline T JaccardOverlap(const T* box1, const T* box2, ...@@ -128,6 +131,21 @@ static inline T JaccardOverlap(const T* box1, const T* box2,
} }
} }
template <class T>
T PolyIoU(const T* box1, const T* box2, const size_t box_size,
const bool normalized) {
T bbox1_area = PolyArea<T>(box1, box_size, normalized);
T bbox2_area = PolyArea<T>(box2, box_size, normalized);
T inter_area = PolyOverlapArea<T>(box1, box2, box_size, normalized);
if (bbox1_area == 0 || bbox2_area == 0 || inter_area == 0) {
// If coordinate values are is invalid
// if area size <= 0, return 0.
return T(0.);
} else {
return inter_area / (bbox1_area + bbox2_area - inter_area);
}
}
template <typename T> template <typename T>
class MultiClassNMSKernel : public framework::OpKernel<T> { class MultiClassNMSKernel : public framework::OpKernel<T> {
public: public:
...@@ -137,6 +155,8 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -137,6 +155,8 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
// The total boxes for each instance. // The total boxes for each instance.
int64_t num_boxes = bbox.dims()[0]; int64_t num_boxes = bbox.dims()[0];
// 4: [xmin ymin xmax ymax] // 4: [xmin ymin xmax ymax]
// 8: [x1 y1 x2 y2 x3 y3 x4 y4]
// 16, 24, or 32: [x1 y1 x2 y2 ... xn yn], n = 8, 12 or 16
int64_t box_size = bbox.dims()[1]; int64_t box_size = bbox.dims()[1];
std::vector<T> scores_data(num_boxes); std::vector<T> scores_data(num_boxes);
...@@ -154,8 +174,19 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -154,8 +174,19 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
for (size_t k = 0; k < selected_indices->size(); ++k) { for (size_t k = 0; k < selected_indices->size(); ++k) {
if (keep) { if (keep) {
const int kept_idx = (*selected_indices)[k]; const int kept_idx = (*selected_indices)[k];
T overlap = JaccardOverlap<T>(bbox_data + idx * box_size, T overlap = T(0.);
// 4: [xmin ymin xmax ymax]
if (box_size == 4) {
overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
bbox_data + kept_idx * box_size, true); bbox_data + kept_idx * box_size, true);
}
// 8: [x1 y1 x2 y2 x3 y3 x4 y4] or 16, 24, 32
if (box_size == 8 || box_size == 16 || box_size == 24 ||
box_size == 32) {
overlap =
PolyIoU<T>(bbox_data + idx * box_size,
bbox_data + kept_idx * box_size, box_size, true);
}
keep = overlap <= adaptive_threshold; keep = overlap <= adaptive_threshold;
} else { } else {
break; break;
...@@ -228,7 +259,9 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -228,7 +259,9 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
void MultiClassOutput(const Tensor& scores, const Tensor& bboxes, void MultiClassOutput(const Tensor& scores, const Tensor& bboxes,
const std::map<int, std::vector<int>>& selected_indices, const std::map<int, std::vector<int>>& selected_indices,
Tensor* outs) const { Tensor* outs) const {
int predict_dim = scores.dims()[1]; int64_t predict_dim = scores.dims()[1];
int64_t box_size = bboxes.dims()[1];
int64_t out_dim = bboxes.dims()[1] + 2;
auto* scores_data = scores.data<T>(); auto* scores_data = scores.data<T>();
auto* bboxes_data = bboxes.data<T>(); auto* bboxes_data = bboxes.data<T>();
auto* odata = outs->data<T>(); auto* odata = outs->data<T>();
...@@ -240,11 +273,11 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -240,11 +273,11 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
const std::vector<int>& indices = it.second; const std::vector<int>& indices = it.second;
for (size_t j = 0; j < indices.size(); ++j) { for (size_t j = 0; j < indices.size(); ++j) {
int idx = indices[j]; int idx = indices[j];
const T* bdata = bboxes_data + idx * kBBoxSize; const T* bdata = bboxes_data + idx * box_size;
odata[count * kOutputDim] = label; // label odata[count * out_dim] = label; // label
odata[count * kOutputDim + 1] = sdata[idx]; // score odata[count * out_dim + 1] = sdata[idx]; // score
// xmin, ymin, xmax, ymax // xmin, ymin, xmax, ymax or multi-points coordinates
std::memcpy(odata + count * kOutputDim + 2, bdata, 4 * sizeof(T)); std::memcpy(odata + count * out_dim + 2, bdata, box_size * sizeof(T));
count++; count++;
} }
} }
...@@ -261,6 +294,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -261,6 +294,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
int64_t class_num = score_dims[1]; int64_t class_num = score_dims[1];
int64_t predict_dim = score_dims[2]; int64_t predict_dim = score_dims[2];
int64_t box_dim = boxes->dims()[2]; int64_t box_dim = boxes->dims()[2];
int64_t out_dim = boxes->dims()[2] + 2;
std::vector<std::map<int, std::vector<int>>> all_indices; std::vector<std::map<int, std::vector<int>>> all_indices;
std::vector<size_t> batch_starts = {0}; std::vector<size_t> batch_starts = {0};
...@@ -283,7 +317,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> { ...@@ -283,7 +317,7 @@ class MultiClassNMSKernel : public framework::OpKernel<T> {
T* od = outs->mutable_data<T>({1}, ctx.GetPlace()); T* od = outs->mutable_data<T>({1}, ctx.GetPlace());
od[0] = -1; od[0] = -1;
} else { } else {
outs->mutable_data<T>({num_kept, kOutputDim}, ctx.GetPlace()); outs->mutable_data<T>({num_kept, out_dim}, ctx.GetPlace());
for (int64_t i = 0; i < batch_size; ++i) { for (int64_t i = 0; i < batch_size; ++i) {
Tensor ins_score = scores->Slice(i, i + 1); Tensor ins_score = scores->Slice(i, i + 1);
ins_score.Resize({class_num, predict_dim}); ins_score.Resize({class_num, predict_dim});
...@@ -311,10 +345,11 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -311,10 +345,11 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
public: public:
void Make() override { void Make() override {
AddInput("BBoxes", AddInput("BBoxes",
"(Tensor) A 3-D Tensor with shape [N, M, 4] represents the " "(Tensor) A 3-D Tensor with shape "
"[N, M, 4 or 8 16 24 32] represents the "
"predicted locations of M bounding bboxes, N is the batch size. " "predicted locations of M bounding bboxes, N is the batch size. "
"Each bounding box has four coordinate values and the layout is " "Each bounding box has four coordinate values and the layout is "
"[xmin, ymin, xmax, ymax]."); "[xmin, ymin, xmax, ymax], when box size equals to 4.");
AddInput("Scores", AddInput("Scores",
"(Tensor) A 3-D Tensor with shape [N, C, M] represents the " "(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
"predicted confidence predictions. N is the batch size, C is the " "predicted confidence predictions. N is the batch size, C is the "
...@@ -351,8 +386,12 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker { ...@@ -351,8 +386,12 @@ class MultiClassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput("Out", AddOutput("Out",
"(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the " "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
"detections. Each row has 6 values: " "detections. Each row has 6 values: "
"[label, confidence, xmin, ymin, xmax, ymax], No is the total " "[label, confidence, xmin, ymin, xmax, ymax] or "
"number of detections in this mini-batch. For each instance, " "(LoDTensor) A 2-D LoDTensor with shape [No, 10] represents the "
"detections. Each row has 10 values: "
"[label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the "
"total number of detections in this mini-batch."
"For each instance, "
"the offsets in first dimension are called LoD, the number of " "the offsets in first dimension are called LoD, the number of "
"offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is " "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
"no detected bbox."); "no detected bbox.");
......
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef POLY_UTIL_CC_
#define POLY_UTIL_CC_
#include "paddle/fluid/operators/detection/poly_util.h"
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using gpc::gpc_polygon_clip;
using gpc::gpc_free_polygon;
template <class T>
void Array2PointVec(const T*& box, const size_t box_size,
std::vector<Point_<T>>& vec) {
size_t pts_num = box_size / 2;
vec.resize(pts_num);
for (size_t i = 0; i < pts_num; i++) {
vec.at(i).x = box[2 * i];
vec.at(i).y = box[2 * i + 1];
}
}
template <class T>
void Array2Poly(const T*& box, const size_t box_size, gpc::gpc_polygon& poly) {
size_t pts_num = box_size / 2;
poly.num_contours = 1;
poly.hole = (int*)malloc(sizeof(int));
poly.hole[0] = 0;
poly.contour = (gpc::gpc_vertex_list*)malloc(sizeof(gpc::gpc_vertex_list));
poly.contour->num_vertices = pts_num;
poly.contour->vertex =
(gpc::gpc_vertex*)malloc(sizeof(gpc::gpc_vertex) * pts_num);
for (size_t i = 0; i < pts_num; ++i) {
poly.contour->vertex[i].x = box[2 * i];
poly.contour->vertex[i].y = box[2 * i + 1];
}
}
template <class T>
void PointVec2Poly(const std::vector<Point_<T>>& vec, gpc::gpc_polygon& poly) {
int pts_num = vec.size();
poly.num_contours = 1;
poly.hole = (int*)malloc(sizeof(int));
poly.hole[0] = 0;
poly.contour = (gpc::gpc_vertex_list*)malloc(sizeof(gpc::gpc_vertex_list));
poly.contour->num_vertices = pts_num;
poly.contour->vertex =
(gpc::gpc_vertex*)malloc(sizeof(gpc::gpc_vertex) * pts_num);
for (size_t i = 0; i < pts_num; ++i) {
poly.contour->vertex[i].x = vec[i].x;
poly.contour->vertex[i].y = vec[i].y;
}
}
template <class T>
void Poly2PointVec(const gpc::gpc_vertex_list& contour,
std::vector<Point_<T>>& vec) {
int pts_num = contour.num_vertices;
vec.resize(pts_num);
for (int i = 0; i < pts_num; i++) {
vec.at(i).x = contour.vertex[i].x;
vec.at(i).y = contour.vertex[i].y;
}
}
template <class T>
T GetContourArea(std::vector<Point_<T>>& vec) {
size_t pts_num = vec.size();
if (pts_num < 3) return T(0.);
T area = T(0.);
for (size_t i = 0; i < pts_num; ++i) {
area += vec[i].x * vec[(i + 1) % pts_num].y -
vec[i].y * vec[(i + 1) % pts_num].x;
}
return std::fabs(area / 2.0);
}
template <class T>
T PolyArea(const T* box, const size_t box_size, const bool normalized) {
// If coordinate values are is invalid
// if area size <= 0, return 0.
std::vector<Point_<T>> vec;
Array2PointVec<T>(box, box_size, vec);
return GetContourArea<T>(vec);
}
template <class T>
T PolyOverlapArea(const T* box1, const T* box2, const size_t box_size,
const bool normalized) {
gpc::gpc_polygon poly1;
gpc::gpc_polygon poly2;
Array2Poly<T>(box1, box_size, poly1);
Array2Poly<T>(box2, box_size, poly2);
gpc::gpc_polygon respoly;
gpc::gpc_op op = gpc::GPC_INT;
gpc::gpc_polygon_clip(op, &poly2, &poly1, &respoly);
T inter_area = T(0.);
int contour_num = respoly.num_contours;
for (int i = 0; i < contour_num; ++i) {
std::vector<Point_<T>> resvec;
Poly2PointVec<T>(respoly.contour[i], resvec);
// inter_area += std::fabs(cv::contourArea(resvec)) + 0.5f *
// (cv::arcLength(resvec, true));
inter_area += GetContourArea<T>(resvec);
}
gpc::gpc_free_polygon(&poly1);
gpc::gpc_free_polygon(&poly2);
gpc::gpc_free_polygon(&respoly);
return inter_area;
}
} // namespace operators
} // namespace paddle
#endif
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifndef POLY_UTIL_H_
#define POLY_UTIL_H_
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detection/gpc.h"
namespace paddle {
namespace operators {
template <class T>
class Point_ {
public:
// default constructor
Point_() {}
Point_(T _x, T _y) {}
Point_(const Point_& pt) {}
Point_& operator=(const Point_& pt);
// conversion to another data type
// template<typename _T> operator Point_<_T>() const;
// conversion to the old-style C structures
// operator Vec<T, 2>() const;
// checks whether the point is inside the specified rectangle
// bool inside(const Rect_<T>& r) const;
T x; //!< x coordinate of the point
T y; //!< y coordinate of the point
};
template <class T>
void Array2PointVec(const T*& box, const size_t box_size,
std::vector<Point_<T>>& vec);
template <class T>
void Array2Poly(const T*& box, const size_t box_size, gpc::gpc_polygon& poly);
template <class T>
void PointVec2Poly(const std::vector<Point_<T>>& vec, gpc::gpc_polygon& poly);
template <class T>
void Poly2PointVec(const gpc::gpc_vertex_list& contour,
std::vector<Point_<T>>& vec);
template <class T>
T GetContourArea(std::vector<Point_<T>>& vec);
template <class T>
T PolyArea(const T* box, const size_t box_size, const bool normalized);
template <class T>
T PolyOverlapArea(const T* box1, const T* box2, const size_t box_size,
const bool normalized);
} // namespace operators
} // namespace paddle
#include "paddle/fluid/operators/detection/poly_util.cc"
#endif // POLY_UTIL_H_
...@@ -41,9 +41,9 @@ class PolygonBoxTransformCPUKernel : public framework::OpKernel<T> { ...@@ -41,9 +41,9 @@ class PolygonBoxTransformCPUKernel : public framework::OpKernel<T> {
for (int id_w = 0; id_w < width; ++id_w) { for (int id_w = 0; id_w < width; ++id_w) {
id = id_n * height * width + width * id_h + id_w; id = id_n * height * width + width * id_h + id_w;
if (id_n % 2 == 0) { if (id_n % 2 == 0) {
out_data[id] = id_w - in_data[id]; out_data[id] = id_w * 4 - in_data[id];
} else { } else {
out_data[id] = id_h - in_data[id]; out_data[id] = id_h * 4 - in_data[id];
} }
} }
} }
......
...@@ -32,9 +32,9 @@ __global__ void PolygonBoxTransformKernel(const int n, const int h, const int w, ...@@ -32,9 +32,9 @@ __global__ void PolygonBoxTransformKernel(const int n, const int h, const int w,
if (id_n < n && id_h < h && id_w < w) { if (id_n < n && id_h < h && id_w < w) {
int id = id_n * h * w + w * id_h + id_w; int id = id_n * h * w + w * id_h + id_w;
if (id_n % 2 == 0) { if (id_n % 2 == 0) {
output[id] = id_w - input[id]; output[id] = id_w * 4 - input[id];
} else { } else {
output[id] = id_h - input[id]; output[id] = id_h * 4 - input[id];
} }
} }
} }
......
...@@ -76,5 +76,5 @@ cc_test(concat_test SRCS concat_test.cc DEPS concat) ...@@ -76,5 +76,5 @@ cc_test(concat_test SRCS concat_test.cc DEPS concat)
cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info) cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
cc_library(jit_kernel cc_library(jit_kernel
SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_lstm.cc SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_lstm.cc
DEPS cpu_info cblas activation_functions) DEPS cpu_info cblas)
cc_test(jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel) cc_test(jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel)
...@@ -27,13 +27,6 @@ limitations under the License. */ ...@@ -27,13 +27,6 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
namespace math { namespace math {
#ifdef __AVX__
namespace detail {
__m256 Exp(__m256 a);
} // namespace detail
#endif
namespace jitkernel { namespace jitkernel {
namespace jit = platform::jit; namespace jit = platform::jit;
...@@ -69,37 +62,186 @@ FOR_EACH_ISA(MKL_FLOAT, kGT16); ...@@ -69,37 +62,186 @@ FOR_EACH_ISA(MKL_FLOAT, kGT16);
FOR_EACH_ISA_BLOCK(MKL_DOUBLE); FOR_EACH_ISA_BLOCK(MKL_DOUBLE);
#endif #endif
#define INTRI8_FLOAT(isa) \ namespace detail {
#ifdef __AVX__
#define ALIGN32 __attribute__((aligned(32)))
#define _PS256_CONST(Name, Val) \
static const float _ps256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
Val, Val, Val, Val}
#define _PI256_CONST(Name, Val) \
static const int _pi256_##Name[8] ALIGN32 = {Val, Val, Val, Val, \
Val, Val, Val, Val}
_PI256_CONST(0x7f, 0x7f);
_PS256_CONST(one, 1.f);
_PS256_CONST(0p5, 0.5f);
_PS256_CONST(exp_hi, 88.3762626647949f);
_PS256_CONST(exp_lo, -88.3762626647949f);
_PS256_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS256_CONST(cephes_exp_C1, 0.693359375);
_PS256_CONST(cephes_exp_C2, -2.12194440e-4);
_PS256_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS256_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS256_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS256_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS256_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS256_CONST(cephes_exp_p5, 5.0000001201E-1);
typedef union imm_xmm_union {
__m256i imm;
__m128i xmm[2];
} imm_xmm_union;
#define COPY_IMM_TO_XMM(imm_, xmm0_, xmm1_) \
{ \
imm_xmm_union u ALIGN32; \
u.imm = imm_; \
xmm0_ = u.xmm[0]; \
xmm1_ = u.xmm[1]; \
}
#define COPY_XMM_TO_IMM(xmm0_, xmm1_, imm_) \
{ \
imm_xmm_union u ALIGN32; \
u.xmm[0] = xmm0_; \
u.xmm[1] = xmm1_; \
imm_ = u.imm; \
}
#define AVX2_BITOP_USING_SSE2(fn) \
static inline __m256i avx2_mm256_##fn(__m256i x, int y) { \
/* use SSE2 to perform the bitop AVX2 */ \
__m128i x1, x2; \
__m256i ret; \
COPY_IMM_TO_XMM(x, x1, x2); \
x1 = _mm_##fn(x1, y); \
x2 = _mm_##fn(x2, y); \
COPY_XMM_TO_IMM(x1, x2, ret); \
return ret; \
}
#define AVX2_INTOP_USING_SSE2(fn) \
static inline __m256i avx2_mm256_add_epi32(__m256i x, __m256i y) { \
/* use SSE2 to perform the AVX2 integer operation */ \
__m128i x1, x2; \
__m128i y1, y2; \
__m256i ret; \
COPY_IMM_TO_XMM(x, x1, x2); \
COPY_IMM_TO_XMM(y, y1, y2); \
x1 = _mm_##fn(x1, y1); \
x2 = _mm_##fn(x2, y2); \
COPY_XMM_TO_IMM(x1, x2, ret); \
return ret; \
}
AVX2_BITOP_USING_SSE2(slli_epi32);
AVX2_INTOP_USING_SSE2(add_epi32);
#define AVXEXP_BASE \
__m256 tmp = _mm256_setzero_ps(), fx; \
__m256 one = *reinterpret_cast<const __m256*>(_ps256_one); \
__m256i imm0; \
x = _mm256_min_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_hi)); \
x = _mm256_max_ps(x, *reinterpret_cast<const __m256*>(_ps256_exp_lo)); \
/* express exp(x) as exp(g + n*log(2)) */ \
fx = _mm256_mul_ps(x, \
*reinterpret_cast<const __m256*>(_ps256_cephes_LOG2EF)); \
fx = _mm256_add_ps(fx, *reinterpret_cast<const __m256*>(_ps256_0p5)); \
tmp = _mm256_floor_ps(fx); \
/* if greater, substract 1 */ \
__m256 mask = _mm256_cmp_ps(tmp, fx, _CMP_GT_OS); \
mask = _mm256_and_ps(mask, one); \
fx = _mm256_sub_ps(tmp, mask); \
tmp = _mm256_mul_ps(fx, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_C1)); \
__m256 z = _mm256_mul_ps( \
fx, *reinterpret_cast<const __m256*>(_ps256_cephes_exp_C2)); \
x = _mm256_sub_ps(x, tmp); \
x = _mm256_sub_ps(x, z); \
z = _mm256_mul_ps(x, x); \
__m256 y = *reinterpret_cast<const __m256*>(_ps256_cephes_exp_p0); \
y = _mm256_mul_ps(y, x); \
y = _mm256_add_ps(y, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_p1)); \
y = _mm256_mul_ps(y, x); \
y = _mm256_add_ps(y, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_p2)); \
y = _mm256_mul_ps(y, x); \
y = _mm256_add_ps(y, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_p3)); \
y = _mm256_mul_ps(y, x); \
y = _mm256_add_ps(y, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_p4)); \
y = _mm256_mul_ps(y, x); \
y = _mm256_add_ps(y, \
*reinterpret_cast<const __m256*>(_ps256_cephes_exp_p5)); \
y = _mm256_mul_ps(y, z); \
y = _mm256_add_ps(y, x); \
y = _mm256_add_ps(y, one); \
/* build 2^n */ \
imm0 = _mm256_cvttps_epi32(fx)
__m256 ExpAVX(__m256 x) {
AVXEXP_BASE;
// two AVX2 instructions using SSE2
imm0 = avx2_mm256_add_epi32(imm0,
*reinterpret_cast<const __m256i*>(_pi256_0x7f));
imm0 = avx2_mm256_slli_epi32(imm0, 23);
__m256 pow2n = _mm256_castsi256_ps(imm0);
y = _mm256_mul_ps(y, pow2n);
return y;
}
#endif
#ifdef __AVX2__
__m256 ExpAVX2(__m256 x) {
AVXEXP_BASE;
// two AVX2 instructions
imm0 = _mm256_add_epi32(imm0, *reinterpret_cast<const __m256i*>(_pi256_0x7f));
imm0 = _mm256_slli_epi32(imm0, 23);
__m256 pow2n = _mm256_castsi256_ps(imm0);
y = _mm256_mul_ps(y, pow2n);
return y;
}
#endif
} // namespace detail
#define INTRI8_FLOAT(isa, expisa) \
template <> \ template <> \
void VExpKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \ void VExpKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
const { \ const { \
__m256 tmp = _mm256_loadu_ps(x); \ __m256 tmp = _mm256_loadu_ps(x); \
_mm256_storeu_ps(y, detail::Exp(tmp)); \ _mm256_storeu_ps(y, expisa(tmp)); \
} }
#define INTRI16_FLOAT(isa) \ #define INTRI16_FLOAT(isa, expisa) \
template <> \ template <> \
void VExpKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \ void VExpKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
const { \ const { \
__m256 tmp0 = _mm256_loadu_ps(x); \ __m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \ __m256 tmp1 = _mm256_loadu_ps(x + 8); \
tmp0 = detail::Exp(tmp0); \ tmp0 = expisa(tmp0); \
tmp1 = detail::Exp(tmp1); \ tmp1 = expisa(tmp1); \
_mm256_storeu_ps(y, tmp0); \ _mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \ _mm256_storeu_ps(y + 8, tmp1); \
} }
#ifdef __AVX__ #ifdef __AVX__
INTRI8_FLOAT(jit::avx); INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx); INTRI16_FLOAT(jit::avx, detail::ExpAVX);
#endif #endif
#ifdef __AVX2__ #ifdef __AVX2__
INTRI8_FLOAT(jit::avx2); INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2); INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
#endif #endif
#ifdef __AVX512F__ #ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f); INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f); INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
#endif #endif
// TODO(TJ): eq16 test and complete avx512 // TODO(TJ): eq16 test and complete avx512
...@@ -135,26 +277,27 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> { ...@@ -135,26 +277,27 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
std::shared_ptr<const VExpKernel<T>> vexp_; std::shared_ptr<const VExpKernel<T>> vexp_;
}; };
#define INTRI_SIGMOID(tmp, min, max) \ #define INTRI_SIGMOID(tmp, min, max, expisa) \
tmp = _mm256_max_ps(tmp, min); \ tmp = _mm256_max_ps(tmp, min); \
tmp = _mm256_min_ps(tmp, max); \ tmp = _mm256_min_ps(tmp, max); \
tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \ tmp = _mm256_sub_ps(_mm256_set1_ps(0.0f), tmp); \
tmp = detail::Exp(tmp); \ tmp = expisa(tmp); \
tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \ tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp) tmp = _mm256_div_ps(_mm256_set1_ps(1.0f), tmp)
#define INTRI8_FLOAT(isa) \ #define INTRI8_FLOAT(isa, expisa) \
template <> \ template <> \
void VSigmoidKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \ void VSigmoidKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
const { \ const { \
/* TODO(TJ): try to use static const*/ \
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \ __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \ __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp = _mm256_loadu_ps(x); \ __m256 tmp = _mm256_loadu_ps(x); \
INTRI_SIGMOID(tmp, min, max); \ INTRI_SIGMOID(tmp, min, max, expisa); \
_mm256_storeu_ps(y, tmp); \ _mm256_storeu_ps(y, tmp); \
} }
#define INTRI16_FLOAT(isa) \ #define INTRI16_FLOAT(isa, expisa) \
template <> \ template <> \
void VSigmoidKernelImpl<float, isa, kEQ16>::Compute(const float* x, \ void VSigmoidKernelImpl<float, isa, kEQ16>::Compute(const float* x, \
float* y) const { \ float* y) const { \
...@@ -162,13 +305,13 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> { ...@@ -162,13 +305,13 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \ __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp0 = _mm256_loadu_ps(x); \ __m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \ __m256 tmp1 = _mm256_loadu_ps(x + 8); \
INTRI_SIGMOID(tmp0, min, max); \ INTRI_SIGMOID(tmp0, min, max, expisa); \
INTRI_SIGMOID(tmp1, min, max); \ INTRI_SIGMOID(tmp1, min, max, expisa); \
_mm256_storeu_ps(y, tmp0); \ _mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \ _mm256_storeu_ps(y + 8, tmp1); \
} }
#define INTRI_GT8LT16_FLOAT(isa) \ #define INTRI_GT8LT16_FLOAT(isa, expisa) \
template <> \ template <> \
VSigmoidKernelImpl<float, isa, kGT8LT16>::VSigmoidKernelImpl(int d) \ VSigmoidKernelImpl<float, isa, kGT8LT16>::VSigmoidKernelImpl(int d) \
: VSigmoidKernel<float>() { \ : VSigmoidKernel<float>() { \
...@@ -184,7 +327,7 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> { ...@@ -184,7 +327,7 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
__m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \ __m256 max = _mm256_set1_ps(SIGMOID_THRESHOLD_MAX); \
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \ __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
__m256 tmp = _mm256_loadu_ps(x); \ __m256 tmp = _mm256_loadu_ps(x); \
INTRI_SIGMOID(tmp, min, max); \ INTRI_SIGMOID(tmp, min, max, expisa); \
_mm256_storeu_ps(y, tmp); \ _mm256_storeu_ps(y, tmp); \
const float min_ = SIGMOID_THRESHOLD_MIN; \ const float min_ = SIGMOID_THRESHOLD_MIN; \
const float max_ = SIGMOID_THRESHOLD_MAX; \ const float max_ = SIGMOID_THRESHOLD_MAX; \
...@@ -198,7 +341,7 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> { ...@@ -198,7 +341,7 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
} \ } \
} }
#define INTRI_GT16_FLOAT(isa) \ #define INTRI_GT16_FLOAT(isa, expisa) \
template <> \ template <> \
VSigmoidKernelImpl<float, isa, kGT16>::VSigmoidKernelImpl(int d) \ VSigmoidKernelImpl<float, isa, kGT16>::VSigmoidKernelImpl(int d) \
: VSigmoidKernel<float>() { \ : VSigmoidKernel<float>() { \
...@@ -215,7 +358,7 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> { ...@@ -215,7 +358,7 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
__m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \ __m256 min = _mm256_set1_ps(SIGMOID_THRESHOLD_MIN); \
for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \ for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \
__m256 tmp = _mm256_loadu_ps(x + i); \ __m256 tmp = _mm256_loadu_ps(x + i); \
INTRI_SIGMOID(tmp, min, max); \ INTRI_SIGMOID(tmp, min, max, expisa); \
_mm256_storeu_ps(y + i, tmp); \ _mm256_storeu_ps(y + i, tmp); \
} \ } \
const float min_ = SIGMOID_THRESHOLD_MIN; \ const float min_ = SIGMOID_THRESHOLD_MIN; \
...@@ -231,22 +374,20 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> { ...@@ -231,22 +374,20 @@ class VSigmoidKernelImpl : public VSigmoidKernel<T> {
} }
#ifdef __AVX__ #ifdef __AVX__
INTRI8_FLOAT(jit::avx); INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx); INTRI16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT8LT16_FLOAT(jit::avx); INTRI_GT8LT16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT16_FLOAT(jit::avx); INTRI_GT16_FLOAT(jit::avx, detail::ExpAVX);
#endif #endif
#ifdef __AVX2__ #ifdef __AVX2__
INTRI8_FLOAT(jit::avx2); INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2); INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
// INTRI_GT8LT16_FLOAT(jit::avx2); // maybe use avx at gt8lt16 and gt16
// INTRI_GT16_FLOAT(jit::avx2);
#endif #endif
#ifdef __AVX512F__ #ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f); INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f); INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
// INTRI_GT8LT16_FLOAT(jit::avx512f); // maybe use avx2 at gt8lt16 and gt16
// INTRI_GT16_FLOAT(jit::avx512f);
#endif #endif
#undef INTRI8_FLOAT #undef INTRI8_FLOAT
...@@ -280,36 +421,36 @@ class VTanhKernelImpl : public VTanhKernel<T> { ...@@ -280,36 +421,36 @@ class VTanhKernelImpl : public VTanhKernel<T> {
std::shared_ptr<const VAddBiasKernel<T>> vaddbias_; std::shared_ptr<const VAddBiasKernel<T>> vaddbias_;
}; };
#define INTRI_VTANH(tmp) \ #define INTRI_VTANH(tmp, expisa) \
tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), tmp); \ tmp = _mm256_mul_ps(_mm256_set1_ps(-2.0f), tmp); \
tmp = _mm256_min_ps(tmp, _mm256_set1_ps(EXP_MAX_INPUT)); \ tmp = _mm256_min_ps(tmp, _mm256_set1_ps(EXP_MAX_INPUT)); \
tmp = detail::Exp(tmp); \ tmp = expisa(tmp); \
tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \ tmp = _mm256_add_ps(_mm256_set1_ps(1.0f), tmp); \
tmp = _mm256_div_ps(_mm256_set1_ps(2.0f), tmp); \ tmp = _mm256_div_ps(_mm256_set1_ps(2.0f), tmp); \
tmp = _mm256_sub_ps(tmp, _mm256_set1_ps(1.0f)) tmp = _mm256_sub_ps(tmp, _mm256_set1_ps(1.0f))
#define INTRI8_FLOAT(isa) \ #define INTRI8_FLOAT(isa, expisa) \
template <> \ template <> \
void VTanhKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \ void VTanhKernelImpl<float, isa, kEQ8>::Compute(const float* x, float* y) \
const { \ const { \
__m256 tmp = _mm256_loadu_ps(x); \ __m256 tmp = _mm256_loadu_ps(x); \
INTRI_VTANH(tmp); \ INTRI_VTANH(tmp, expisa); \
_mm256_storeu_ps(y, tmp); \ _mm256_storeu_ps(y, tmp); \
} }
#define INTRI16_FLOAT(isa) \ #define INTRI16_FLOAT(isa, expisa) \
template <> \ template <> \
void VTanhKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \ void VTanhKernelImpl<float, isa, kEQ16>::Compute(const float* x, float* y) \
const { \ const { \
__m256 tmp0 = _mm256_loadu_ps(x); \ __m256 tmp0 = _mm256_loadu_ps(x); \
__m256 tmp1 = _mm256_loadu_ps(x + 8); \ __m256 tmp1 = _mm256_loadu_ps(x + 8); \
INTRI_VTANH(tmp0); \ INTRI_VTANH(tmp0, expisa); \
INTRI_VTANH(tmp1); \ INTRI_VTANH(tmp1, expisa); \
_mm256_storeu_ps(y, tmp0); \ _mm256_storeu_ps(y, tmp0); \
_mm256_storeu_ps(y + 8, tmp1); \ _mm256_storeu_ps(y + 8, tmp1); \
} }
#define INTRI_GT8LT16_FLOAT(isa) \ #define INTRI_GT8LT16_FLOAT(isa, expisa) \
template <> \ template <> \
VTanhKernelImpl<float, isa, kGT8LT16>::VTanhKernelImpl(int d) \ VTanhKernelImpl<float, isa, kGT8LT16>::VTanhKernelImpl(int d) \
: VTanhKernel<float>() { \ : VTanhKernel<float>() { \
...@@ -327,7 +468,7 @@ class VTanhKernelImpl : public VTanhKernel<T> { ...@@ -327,7 +468,7 @@ class VTanhKernelImpl : public VTanhKernel<T> {
void VTanhKernelImpl<float, isa, kGT8LT16>::Compute(const float* x, \ void VTanhKernelImpl<float, isa, kGT8LT16>::Compute(const float* x, \
float* y) const { \ float* y) const { \
__m256 tmp = _mm256_loadu_ps(x); \ __m256 tmp = _mm256_loadu_ps(x); \
INTRI_VTANH(tmp); \ INTRI_VTANH(tmp, expisa); \
_mm256_storeu_ps(y, tmp); \ _mm256_storeu_ps(y, tmp); \
x += AVX_FLOAT_BLOCK; \ x += AVX_FLOAT_BLOCK; \
y += AVX_FLOAT_BLOCK; \ y += AVX_FLOAT_BLOCK; \
...@@ -337,7 +478,7 @@ class VTanhKernelImpl : public VTanhKernel<T> { ...@@ -337,7 +478,7 @@ class VTanhKernelImpl : public VTanhKernel<T> {
vaddbias_->Compute(-1.f, y, y); \ vaddbias_->Compute(-1.f, y, y); \
} }
#define INTRI_GT16_FLOAT(isa) \ #define INTRI_GT16_FLOAT(isa, expisa) \
template <> \ template <> \
VTanhKernelImpl<float, isa, kGT16>::VTanhKernelImpl(int d) \ VTanhKernelImpl<float, isa, kGT16>::VTanhKernelImpl(int d) \
: VTanhKernel<float>() { \ : VTanhKernel<float>() { \
...@@ -356,7 +497,7 @@ class VTanhKernelImpl : public VTanhKernel<T> { ...@@ -356,7 +497,7 @@ class VTanhKernelImpl : public VTanhKernel<T> {
const { \ const { \
for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \ for (int i = 0; i < this->end_; i += AVX_FLOAT_BLOCK) { \
__m256 tmp = _mm256_loadu_ps(x + i); \ __m256 tmp = _mm256_loadu_ps(x + i); \
INTRI_VTANH(tmp); \ INTRI_VTANH(tmp, expisa); \
_mm256_storeu_ps(y + i, tmp); \ _mm256_storeu_ps(y + i, tmp); \
} \ } \
x += this->end_; \ x += this->end_; \
...@@ -368,19 +509,19 @@ class VTanhKernelImpl : public VTanhKernel<T> { ...@@ -368,19 +509,19 @@ class VTanhKernelImpl : public VTanhKernel<T> {
} }
#ifdef __AVX__ #ifdef __AVX__
INTRI8_FLOAT(jit::avx); INTRI8_FLOAT(jit::avx, detail::ExpAVX);
INTRI16_FLOAT(jit::avx); INTRI16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT8LT16_FLOAT(jit::avx); INTRI_GT8LT16_FLOAT(jit::avx, detail::ExpAVX);
INTRI_GT16_FLOAT(jit::avx); INTRI_GT16_FLOAT(jit::avx, detail::ExpAVX);
#endif #endif
#ifdef __AVX2__ #ifdef __AVX2__
INTRI8_FLOAT(jit::avx2); INTRI8_FLOAT(jit::avx2, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx2); INTRI16_FLOAT(jit::avx2, detail::ExpAVX2);
// maybe use avx at gt8lt16 and gt16 // maybe use avx at gt8lt16 and gt16
#endif #endif
#ifdef __AVX512F__ #ifdef __AVX512F__
INTRI8_FLOAT(jit::avx512f); INTRI8_FLOAT(jit::avx512f, detail::ExpAVX2);
INTRI16_FLOAT(jit::avx512f); INTRI16_FLOAT(jit::avx512f, detail::ExpAVX2);
// maybe use avx at gt8lt16 and gt16 // maybe use avx at gt8lt16 and gt16
#endif #endif
......
...@@ -25,13 +25,18 @@ limitations under the License. */ ...@@ -25,13 +25,18 @@ limitations under the License. */
namespace paddle { namespace paddle {
namespace operators { namespace operators {
namespace math { namespace math {
#ifdef __AVX__ namespace jitkernel {
namespace detail { namespace detail {
__m256 Exp(__m256 a); #ifdef __AVX__
} // namespace detail __m256 ExpAVX(__m256 x);
#endif #endif
namespace jitkernel { #ifdef __AVX2__
__m256 ExpAVX2(__m256 x);
#endif
} // namespace detail
namespace jit = platform::jit; namespace jit = platform::jit;
#ifdef __AVX__ #ifdef __AVX__
...@@ -43,43 +48,72 @@ class AVXAct { ...@@ -43,43 +48,72 @@ class AVXAct {
virtual __m256 Compute(__m256 x) const = 0; virtual __m256 Compute(__m256 x) const = 0;
}; };
template <act_type type> template <act_type type, jit::cpu_isa_t isa>
class AVXActImpl : public AVXAct { class AVXActImpl : public AVXAct {
public: public:
__m256 Compute(__m256 x) const override { PADDLE_THROW("Unkown type!"); } __m256 Compute(__m256 x) const override { PADDLE_THROW("Unkown type!"); }
}; };
template <> #define AVX_SIGMOID(isa, expisa) \
__m256 AVXActImpl<kSigmoid>::Compute(__m256 x) const { template <> \
__m256 ones = _mm256_set1_ps(1.0f); __m256 AVXActImpl<kSigmoid, isa>::Compute(__m256 x) const { \
x = _mm256_max_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MIN)); __m256 ones = _mm256_set1_ps(1.0f); \
x = _mm256_min_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MAX)); x = _mm256_max_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MIN)); \
x = _mm256_sub_ps(_mm256_set1_ps(0.0f), x); x = _mm256_min_ps(x, _mm256_set1_ps(SIGMOID_THRESHOLD_MAX)); \
x = detail::Exp(x); x = _mm256_sub_ps(_mm256_set1_ps(0.0f), x); \
x = _mm256_add_ps(ones, x); x = expisa(x); \
return _mm256_div_ps(ones, x); x = _mm256_add_ps(ones, x); \
} return _mm256_div_ps(ones, x); \
}
template <> #define AVX_TANH(isa, expisa) \
__m256 AVXActImpl<kTanh>::Compute(__m256 x) const { template <> \
__m256 ones = _mm256_set1_ps(1.0f); __m256 AVXActImpl<kTanh, isa>::Compute(__m256 x) const { \
x = _mm256_mul_ps(_mm256_set1_ps(-2.0f), x); __m256 ones = _mm256_set1_ps(1.0f); \
x = _mm256_min_ps(x, _mm256_set1_ps(EXP_MAX_INPUT)); x = _mm256_mul_ps(_mm256_set1_ps(-2.0f), x); \
x = detail::Exp(x); x = _mm256_min_ps(x, _mm256_set1_ps(EXP_MAX_INPUT)); \
x = _mm256_add_ps(ones, x); x = expisa(x); \
x = _mm256_div_ps(_mm256_set1_ps(2.0f), x); x = _mm256_add_ps(ones, x); \
return _mm256_sub_ps(x, ones); x = _mm256_div_ps(_mm256_set1_ps(2.0f), x); \
} return _mm256_sub_ps(x, ones); \
}
template <> #define AVX_RELU(isa) \
__m256 AVXActImpl<kRelu>::Compute(__m256 x) const { template <> \
return _mm256_max_ps(x, _mm256_setzero_ps()); __m256 AVXActImpl<kRelu, isa>::Compute(__m256 x) const { \
} return _mm256_max_ps(x, _mm256_setzero_ps()); \
}
#define AVX_IDENTITY(isa) \
template <> \
__m256 AVXActImpl<kIdentity, isa>::Compute(__m256 x) const { \
return x; \
}
#define FOR_EACH_AVX_ISA(macro_) \
macro_(jit::avx); \
macro_(jit::avx2); \
macro_(jit::avx512f)
FOR_EACH_AVX_ISA(AVX_RELU);
FOR_EACH_AVX_ISA(AVX_IDENTITY);
AVX_SIGMOID(jit::avx, detail::ExpAVX);
AVX_TANH(jit::avx, detail::ExpAVX);
#ifdef __AVX2__
AVX_SIGMOID(jit::avx2, detail::ExpAVX2);
AVX_SIGMOID(jit::avx512f, detail::ExpAVX2);
AVX_TANH(jit::avx2, detail::ExpAVX2);
AVX_TANH(jit::avx512f, detail::ExpAVX2);
#endif
#undef FOR_EACH_AVX_ISA
#undef AVX_IDENTITY
#undef AVX_RELU
#undef AVX_TANH
#undef AVX_SIGMOID
template <>
__m256 AVXActImpl<kIdentity>::Compute(__m256 x) const {
return x;
}
#endif #endif
template <typename T> template <typename T>
...@@ -119,23 +153,6 @@ class LSTMKernelImpl : public LSTMKernel<T> { ...@@ -119,23 +153,6 @@ class LSTMKernelImpl : public LSTMKernel<T> {
act_cell_d_ = GetActKernel<T>(act_cell, d); act_cell_d_ = GetActKernel<T>(act_cell, d);
vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d); vmul_d_ = KernelPool::Instance().template Get<VMulKernel<T>>(d);
vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d); vadd_d_ = KernelPool::Instance().template Get<VAddKernel<T>>(d);
#ifdef __AVX__
auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> {
if (type == "sigmoid") {
return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid>());
} else if (type == "relu") {
return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu>());
} else if (type == "tanh") {
return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh>());
} else if (type == "identity" || type == "") {
return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity>());
}
PADDLE_THROW("Not support type: %s", type);
};
avx_act_gate_ = GetAVXAct(act_gate);
avx_act_cand_ = GetAVXAct(act_cand);
avx_act_cell_ = GetAVXAct(act_cell);
#endif
} }
void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht, const T* wp_data, void ComputeCtHt(T* gates, const T* ct_1, T* ct, T* ht, const T* wp_data,
...@@ -176,6 +193,27 @@ class LSTMKernelImpl : public LSTMKernel<T> { ...@@ -176,6 +193,27 @@ class LSTMKernelImpl : public LSTMKernel<T> {
}; };
#define INTRI8_FLOAT(isa) \ #define INTRI8_FLOAT(isa) \
template <> \
LSTMKernelImpl<float, isa, kEQ8>::LSTMKernelImpl( \
const std::string& act_gate, const std::string& act_cand, \
const std::string& act_cell, int d) \
: LSTMKernel<float>() { \
auto GetAVXAct = [&](const std::string& type) -> std::unique_ptr<AVXAct> { \
if (type == "sigmoid") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kSigmoid, isa>()); \
} else if (type == "relu") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kRelu, isa>()); \
} else if (type == "tanh") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kTanh, isa>()); \
} else if (type == "identity" || type == "") { \
return std::unique_ptr<AVXAct>(new AVXActImpl<kIdentity, isa>()); \
} \
PADDLE_THROW("Not support type: %s", type); \
}; \
avx_act_gate_ = GetAVXAct(act_gate); \
avx_act_cand_ = GetAVXAct(act_cand); \
avx_act_cell_ = GetAVXAct(act_cell); \
} \
template <> \ template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \ void LSTMKernelImpl<float, isa, kEQ8>::ComputeCtHt( \
float* gates, const float* ct_1, float* ct, float* ht, \ float* gates, const float* ct_1, float* ct, float* ht, \
...@@ -195,6 +233,20 @@ class LSTMKernelImpl : public LSTMKernel<T> { ...@@ -195,6 +233,20 @@ class LSTMKernelImpl : public LSTMKernel<T> {
/* H_t = act_cell(C_t) * ogated */ \ /* H_t = act_cell(C_t) * ogated */ \
o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \ o = _mm256_mul_ps(avx_act_cell_->Compute(f), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \ _mm256_storeu_ps(ht, o); \
} \
template <> \
void LSTMKernelImpl<float, isa, kEQ8>::ComputeC1H1( \
float* gates, float* ct, float* ht, const float* wp_data) const { \
__m256 c, i, o; \
c = _mm256_loadu_ps(gates); \
i = _mm256_loadu_ps(gates + 8); \
o = _mm256_loadu_ps(gates + 24); \
/* C_t = igated * cgated*/ \
c = _mm256_mul_ps(avx_act_gate_->Compute(i), avx_act_cand_->Compute(c)); \
_mm256_storeu_ps(ct, c); \
/* H_t = act_cell(C_t) * ogated */ \
o = _mm256_mul_ps(avx_act_cell_->Compute(c), avx_act_gate_->Compute(o)); \
_mm256_storeu_ps(ht, o); \
} }
// TODO(TJ): optimize keq16 // TODO(TJ): optimize keq16
......
...@@ -174,4 +174,4 @@ REGISTER_OP_CPU_KERNEL( ...@@ -174,4 +174,4 @@ REGISTER_OP_CPU_KERNEL(
REGISTER_OP_CPU_KERNEL( REGISTER_OP_CPU_KERNEL(
roi_pool_grad, roi_pool_grad,
ops::CPUROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>, ops::CPUROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::CPUROIPoolOpKernel<paddle::platform::CPUDeviceContext, double>); ops::CPUROIPoolGradOpKernel<paddle::platform::CPUDeviceContext, double>);
...@@ -249,4 +249,4 @@ REGISTER_OP_CUDA_KERNEL( ...@@ -249,4 +249,4 @@ REGISTER_OP_CUDA_KERNEL(
REGISTER_OP_CUDA_KERNEL( REGISTER_OP_CUDA_KERNEL(
roi_pool_grad, roi_pool_grad,
ops::GPUROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, float>, ops::GPUROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, float>,
ops::GPUROIPoolOpKernel<paddle::platform::CUDADeviceContext, double>); ops::GPUROIPoolGradOpKernel<paddle::platform::CUDADeviceContext, double>);
...@@ -355,7 +355,6 @@ def dynamic_lstm(input, ...@@ -355,7 +355,6 @@ def dynamic_lstm(input,
c_0(Variable): The initial cell state is an optional input, default is zero. c_0(Variable): The initial cell state is an optional input, default is zero.
This is a tensor with shape (N x D), where N is the This is a tensor with shape (N x D), where N is the
batch size. `h_0` and `c_0` can be NULL but only at the same time. batch size. `h_0` and `c_0` can be NULL but only at the same time.
param_attr(ParamAttr|None): The parameter attribute for the learnable param_attr(ParamAttr|None): The parameter attribute for the learnable
hidden-hidden weights. hidden-hidden weights.
...@@ -363,6 +362,11 @@ def dynamic_lstm(input, ...@@ -363,6 +362,11 @@ def dynamic_lstm(input,
W_{fh}, W_{oh}`} W_{fh}, W_{oh}`}
- The shape is (D x 4D), where D is the hidden - The shape is (D x 4D), where D is the hidden
size. size.
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|None): The bias attribute for the learnable bias bias_attr (ParamAttr|None): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden weights, which contains two parts, input-hidden
bias weights and peephole connections weights if bias weights and peephole connections weights if
...@@ -375,6 +379,11 @@ def dynamic_lstm(input, ...@@ -375,6 +379,11 @@ def dynamic_lstm(input,
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \ - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
W_{fc}, W_{oc}`}. W_{fc}, W_{oc}`}.
- The shape is (1 x 7D). - The shape is (1 x 7D).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
use_peepholes (bool): ${use_peepholes_comment} use_peepholes (bool): ${use_peepholes_comment}
is_reverse (bool): ${is_reverse_comment} is_reverse (bool): ${is_reverse_comment}
gate_activation (str): ${gate_activation_comment} gate_activation (str): ${gate_activation_comment}
...@@ -393,11 +402,11 @@ def dynamic_lstm(input, ...@@ -393,11 +402,11 @@ def dynamic_lstm(input,
hidden_dim = 512 hidden_dim = 512
forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4, forward_proj = fluid.layers.fc(input=input_seq, size=hidden_dim * 4,
act=None, bias_attr=None) bias_attr=False)
forward, _ = fluid.layers.dynamic_lstm( forward, _ = fluid.layers.dynamic_lstm(
input=forward_proj, size=hidden_dim * 4, use_peepholes=False) input=forward_proj, size=hidden_dim * 4, use_peepholes=False)
""" """
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstm', **locals()) helper = LayerHelper('lstm', **locals())
size = size // 4 size = size // 4
weight = helper.create_parameter( weight = helper.create_parameter(
...@@ -532,6 +541,11 @@ def dynamic_lstmp(input, ...@@ -532,6 +541,11 @@ def dynamic_lstmp(input,
size. size.
- Projection weight = {:math:`W_{rh}`}. - Projection weight = {:math:`W_{rh}`}.
- The shape of projection weight is (D x P). - The shape of projection weight is (D x P).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr(ParamAttr|None): The bias attribute for the learnable bias bias_attr(ParamAttr|None): The bias attribute for the learnable bias
weights, which contains two parts, input-hidden weights, which contains two parts, input-hidden
bias weights and peephole connections weights if bias weights and peephole connections weights if
...@@ -544,6 +558,11 @@ def dynamic_lstmp(input, ...@@ -544,6 +558,11 @@ def dynamic_lstmp(input,
- Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \ - Biases = { :math:`b_c, b_i, b_f, b_o, W_{ic}, \
W_{fc}, W_{oc}`}. W_{fc}, W_{oc}`}.
- The shape is (1 x 7D). - The shape is (1 x 7D).
If it is set to None or one attribute of ParamAttr,
dynamic_lstm will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
use_peepholes(bool): Whether to enable diagonal/peephole connections, use_peepholes(bool): Whether to enable diagonal/peephole connections,
default `True`. default `True`.
is_reverse(bool): Whether to compute reversed LSTM, default `False`. is_reverse(bool): Whether to compute reversed LSTM, default `False`.
...@@ -588,6 +607,7 @@ def dynamic_lstmp(input, ...@@ -588,6 +607,7 @@ def dynamic_lstmp(input,
proj_activation="tanh") proj_activation="tanh")
""" """
assert bias_attr is not False, "bias_attr should not be False in dynamic_lstmp."
helper = LayerHelper('lstmp', **locals()) helper = LayerHelper('lstmp', **locals())
size = size // 4 size = size // 4
weight = helper.create_parameter( weight = helper.create_parameter(
...@@ -1269,7 +1289,8 @@ def sequence_conv(input, ...@@ -1269,7 +1289,8 @@ def sequence_conv(input,
padding=None, padding=None,
bias_attr=None, bias_attr=None,
param_attr=None, param_attr=None,
act=None): act=None,
name=None):
""" """
This function creates the op for sequence_conv, using the inputs and This function creates the op for sequence_conv, using the inputs and
other convolutional configurations for the filters and stride as given other convolutional configurations for the filters and stride as given
...@@ -1281,9 +1302,19 @@ def sequence_conv(input, ...@@ -1281,9 +1302,19 @@ def sequence_conv(input,
filter_size (int): the filter size (H and W). filter_size (int): the filter size (H and W).
filter_stride (int): stride of the filter. filter_stride (int): stride of the filter.
padding (bool): if True, add paddings. padding (bool): if True, add paddings.
bias_attr (ParamAttr|None): attributes for bias bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of sequence_conv.
param_attr (ParamAttr|None): attributes for parameter If it is set to False, no bias will be added to the output units.
act (str): the activation type If it is set to None or one attribute of ParamAttr, sequence_conv
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of sequence_conv. If it is set to None or one attribute of ParamAttr, sequence_conv
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
Returns: Returns:
Variable: output of sequence_conv Variable: output of sequence_conv
...@@ -1312,7 +1343,7 @@ def sequence_conv(input, ...@@ -1312,7 +1343,7 @@ def sequence_conv(input,
return helper.append_activation(pre_act) return helper.append_activation(pre_act)
def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False): def sequence_softmax(input, use_cudnn=False, name=None):
""" """
This function computes the softmax activation among all time-steps for each This function computes the softmax activation among all time-steps for each
sequence. The dimension of each time-step should be 1. Thus, the shape of sequence. The dimension of each time-step should be 1. Thus, the shape of
...@@ -1332,10 +1363,10 @@ def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False): ...@@ -1332,10 +1363,10 @@ def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
Args: Args:
input (Variable): The input variable which is a LoDTensor. input (Variable): The input variable which is a LoDTensor.
bias_attr (ParamAttr|None): attributes for bias
param_attr (ParamAttr|None): attributes for parameter
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \ use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
library is installed. Default: False library is installed. Default: False.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
Returns: Returns:
Variable: output of sequence_softmax Variable: output of sequence_softmax
...@@ -1359,7 +1390,7 @@ def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False): ...@@ -1359,7 +1390,7 @@ def sequence_softmax(input, param_attr=None, bias_attr=None, use_cudnn=False):
return softmax_out return softmax_out
def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None): def softmax(input, use_cudnn=True, name=None):
""" """
The input of the softmax operator is a tensor of any rank. The output tensor The input of the softmax operator is a tensor of any rank. The output tensor
has the same shape as the input. has the same shape as the input.
...@@ -1386,10 +1417,10 @@ def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None): ...@@ -1386,10 +1417,10 @@ def softmax(input, param_attr=None, bias_attr=None, use_cudnn=True, name=None):
Args: Args:
input (Variable): The input variable. input (Variable): The input variable.
bias_attr (ParamAttr): attributes for bias
param_attr (ParamAttr): attributes for parameter
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \ use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn \
library is installed. library is installed.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
Returns: Returns:
Variable: output of softmax Variable: output of softmax
...@@ -1495,14 +1526,23 @@ def conv2d(input, ...@@ -1495,14 +1526,23 @@ def conv2d(input,
convolution in Alex Krizhevsky's Deep CNN paper: when group=2, convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1 connected to the second half of the input channels. Default: groups=1.
param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True library is installed. Default: True
act (str): Activation type. Default: None act (str): Activation type, if it is set to None, activation is not appended.
Default: None
name (str|None): A name for this layer(optional). If set None, the layer name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically. Default: None
Returns: Returns:
Variable: The tensor variable storing the convolution and \ Variable: The tensor variable storing the convolution and \
...@@ -1520,7 +1560,7 @@ def conv2d(input, ...@@ -1520,7 +1560,7 @@ def conv2d(input,
""" """
num_channels = input.shape[1] num_channels = input.shape[1]
assert param_attr is not False, "param_attr should not be False here."
l_type = 'conv2d' l_type = 'conv2d'
if (num_channels == groups and num_filters % num_channels == 0 and if (num_channels == groups and num_filters % num_channels == 0 and
not use_cudnn): not use_cudnn):
...@@ -1548,7 +1588,8 @@ def conv2d(input, ...@@ -1548,7 +1588,8 @@ def conv2d(input,
filter_shape = [num_filters, int(num_filter_channels)] + filter_size filter_shape = [num_filters, int(num_filter_channels)] + filter_size
def _get_default_param_initializer(): def _get_default_param_initializer():
std = (2.0 / (filter_size[0]**2 * num_channels))**0.5 filter_elem_num = filter_size[0] * filter_size[1] * num_channels
std = (2.0 / filter_elem_num)**0.5
return Normal(0.0, std, 0) return Normal(0.0, std, 0)
filter_param = helper.create_parameter( filter_param = helper.create_parameter(
...@@ -1659,13 +1700,22 @@ def conv3d(input, ...@@ -1659,13 +1700,22 @@ def conv3d(input,
the first half of the filters is only connected to the first half the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1 connected to the second half of the input channels. Default: groups=1
param_attr (ParamAttr): The parameters to the Conv3d Layer. Default: None param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
bias_attr (ParamAttr): Bias parameter for the Conv3d layer. Default: None of conv3d. If it is set to None or one attribute of ParamAttr, conv3d
will create ParamAttr as param_attr. If it is set to None, the parameter
is initialized with :math:`Normal(0.0, std)`, and the :math:`std` is
:math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv3d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True library is installed. Default: True
act (str): Activation type. Default: None act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name (str|None): A name for this layer(optional). If set None, the layer name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically. Default: None.
Returns: Returns:
Variable: The tensor variable storing the convolution and \ Variable: The tensor variable storing the convolution and \
...@@ -1683,7 +1733,7 @@ def conv3d(input, ...@@ -1683,7 +1733,7 @@ def conv3d(input,
""" """
l_type = 'conv3d' l_type = 'conv3d'
assert param_attr is not False, "param_attr should not be False here."
helper = LayerHelper(l_type, **locals()) helper = LayerHelper(l_type, **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -1708,7 +1758,9 @@ def conv3d(input, ...@@ -1708,7 +1758,9 @@ def conv3d(input,
filter_shape = [num_filters, num_filter_channels] + filter_size filter_shape = [num_filters, num_filter_channels] + filter_size
def _get_default_param_initializer(): def _get_default_param_initializer():
std = (2.0 / (filter_size[0]**3 * num_channels))**0.5 filter_elem_num = filter_size[0] * filter_size[1] * filter_size[
2] * num_channels
std = (2.0 / filter_elem_num)**0.5
return Normal(0.0, std, 0) return Normal(0.0, std, 0)
filter_param = helper.create_parameter( filter_param = helper.create_parameter(
...@@ -2180,8 +2232,14 @@ def batch_norm(input, ...@@ -2180,8 +2232,14 @@ def batch_norm(input,
is_test(bool, Default False): Used for training or training. is_test(bool, Default False): Used for training or training.
momentum(float, Default 0.9): momentum(float, Default 0.9):
epsilon(float, Default 1e-05): epsilon(float, Default 1e-05):
param_attr(ParamAttr): The parameter attribute for Parameter `scale`. param_attr(ParamAttr|None): The parameter attribute for Parameter `scale`
bias_attr(ParamAttr): The parameter attribute for Parameter `bias`. of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr(ParamAttr|None): The parameter attribute for the bias of batch_norm.
If it is set to None or one attribute of ParamAttr, batch_norm
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
data_layout(string, default NCHW): NCHW|NHWC data_layout(string, default NCHW): NCHW|NHWC
in_place(bool, Default False): Make the input and output of batch norm reuse memory. in_place(bool, Default False): Make the input and output of batch norm reuse memory.
name(string, Default None): A name for this layer(optional). If set None, the layer name(string, Default None): A name for this layer(optional). If set None, the layer
...@@ -2201,6 +2259,7 @@ def batch_norm(input, ...@@ -2201,6 +2259,7 @@ def batch_norm(input,
hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w') hidden1 = fluid.layers.fc(input=x, size=200, param_attr='fc1.w')
hidden2 = fluid.layers.batch_norm(input=hidden1) hidden2 = fluid.layers.batch_norm(input=hidden1)
""" """
assert bias_attr is not False, "bias_attr should not be False in batch_norm."
helper = LayerHelper('batch_norm', **locals()) helper = LayerHelper('batch_norm', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -2479,15 +2538,22 @@ def conv2d_transpose(input, ...@@ -2479,15 +2538,22 @@ def conv2d_transpose(input,
when group=2, the first half of the filters is only connected to the when group=2, the first half of the filters is only connected to the
first half of the input channels, while the second half of the first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels. filters is only connected to the second half of the input channels.
Default: groups=1 Default: groups = 1.
param_attr(ParamAttr): The parameters to the Conv2d_transpose Layer. param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
Default: None of conv2d_transpose. If it is set to None or one attribute of ParamAttr, conv2d_transpose
bias_attr(ParamAttr): Bias parameter for the Conv2d layer. Default: None will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True library is installed. Default: True.
act(str): Activation type. Default: None act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically. Default: True.
Returns: Returns:
Variable: The tensor variable storing the convolution transpose result. Variable: The tensor variable storing the convolution transpose result.
...@@ -2502,7 +2568,7 @@ def conv2d_transpose(input, ...@@ -2502,7 +2568,7 @@ def conv2d_transpose(input,
data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32') data = fluid.layers.data(name='data', shape=[3, 32, 32], dtype='float32')
conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3) conv2d_transpose = fluid.layers.conv2d_transpose(input=data, num_filters=2, filter_size=3)
""" """
assert param_attr is not False, "param_attr should not be False in conv2d_transpose."
input_channel = input.shape[1] input_channel = input.shape[1]
op_type = 'conv2d_transpose' op_type = 'conv2d_transpose'
...@@ -2538,6 +2604,7 @@ def conv2d_transpose(input, ...@@ -2538,6 +2604,7 @@ def conv2d_transpose(input,
else: else:
filter_size = utils.convert_to_list(filter_size, 2, filter_size = utils.convert_to_list(filter_size, 2,
'conv2d_transpose.filter_size') 'conv2d_transpose.filter_size')
if output_size is None: if output_size is None:
output_size = [] output_size = []
elif isinstance(output_size, list) or isinstance(output_size, int): elif isinstance(output_size, list) or isinstance(output_size, int):
...@@ -2547,6 +2614,7 @@ def conv2d_transpose(input, ...@@ -2547,6 +2614,7 @@ def conv2d_transpose(input,
padding = utils.convert_to_list(padding, 2, 'padding') padding = utils.convert_to_list(padding, 2, 'padding')
groups = 1 if groups is None else groups groups = 1 if groups is None else groups
filter_shape = [input_channel, num_filters // groups] + filter_size filter_shape = [input_channel, num_filters // groups] + filter_size
img_filter = helper.create_parameter( img_filter = helper.create_parameter(
dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) dtype=input.dtype, shape=filter_shape, attr=helper.param_attr)
...@@ -2659,12 +2727,19 @@ def conv3d_transpose(input, ...@@ -2659,12 +2727,19 @@ def conv3d_transpose(input,
first half of the input channels, while the second half of the first half of the input channels, while the second half of the
filters is only connected to the second half of the input channels. filters is only connected to the second half of the input channels.
Default: groups=1 Default: groups=1
param_attr(ParamAttr): The parameters to the Conv3d_transpose Layer. param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
Default: None of conv3d_transpose. If it is set to None or one attribute of ParamAttr, conv3d_transpose
bias_attr(ParamAttr): Bias parameter for the Conv3d layer. Default: None will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv3d_transpose.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv3d_transpose
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn use_cudnn(bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True library is installed. Default: True
act(str): Activation type. Default: None act (str): Activation type, if it is set to None, activation is not appended.
Default: None.
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
...@@ -2681,6 +2756,7 @@ def conv3d_transpose(input, ...@@ -2681,6 +2756,7 @@ def conv3d_transpose(input,
data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32') data = fluid.layers.data(name='data', shape=[3, 12, 32, 32], dtype='float32')
conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3) conv3d_transpose = fluid.layers.conv3d_transpose(input=data, num_filters=2, filter_size=3)
""" """
assert param_attr is not False, "param_attr should not be False in conv3d_transpose."
l_type = "conv3d_transpose" l_type = "conv3d_transpose"
helper = LayerHelper(l_type, **locals()) helper = LayerHelper(l_type, **locals())
if not isinstance(input, Variable): if not isinstance(input, Variable):
...@@ -3199,10 +3275,18 @@ def lstm_unit(x_t, ...@@ -3199,10 +3275,18 @@ def lstm_unit(x_t,
cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
shape M x S, M for batch size and S for size of lstm unit. shape M x S, M for batch size and S for size of lstm unit.
forget_bias (float): The forget bias of lstm unit. forget_bias (float): The forget bias of lstm unit.
param_attr (ParamAttr): The attributes of parameter weights, used to set param_attr(ParamAttr|None): The parameter attribute for the learnable
initializer, name etc. hidden-hidden weights.
bias_attr (ParamAttr): The attributes of bias weights, if not False, If it is set to None or one attribute of ParamAttr,
bias weights will be created and be set to default value. lstm_unit will create ParamAttr as param_attr.
If the Initializer of the param_attr is not set, the
parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|None): The bias attribute for the learnable bias
weights. If it is set to False, no bias will be added
to the output units. If it is set to None or one attribute of ParamAttr,
lstm_unit will create ParamAttr as bias_attr.
If the Initializer of the bias_attr is not set,
the bias is initialized zero. Default: None.
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
...@@ -4116,7 +4200,8 @@ def nce(input, ...@@ -4116,7 +4200,8 @@ def nce(input,
sample_weight=None, sample_weight=None,
param_attr=None, param_attr=None,
bias_attr=None, bias_attr=None,
num_neg_samples=None): num_neg_samples=None,
name=None):
""" """
${comment} ${comment}
...@@ -4127,9 +4212,18 @@ def nce(input, ...@@ -4127,9 +4212,18 @@ def nce(input,
sample_weight (Variable|None): A Variable of shape [batch_size, 1] sample_weight (Variable|None): A Variable of shape [batch_size, 1]
storing a weight for each sample. The default weight for each storing a weight for each sample. The default weight for each
sample is 1.0. sample is 1.0.
param_attr (ParamAttr|None): attributes for parameter param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
bias_attr (ParamAttr|None): attributes for bias of nce. If it is set to None or one attribute of ParamAttr, nce
will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with Xavier. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of nce.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, nce
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
num_neg_samples (int): ${num_neg_samples_comment} num_neg_samples (int): ${num_neg_samples_comment}
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
Returns: Returns:
Variable: The output nce loss. Variable: The output nce loss.
...@@ -4162,19 +4256,28 @@ def nce(input, ...@@ -4162,19 +4256,28 @@ def nce(input,
""" """
helper = LayerHelper('nce', **locals()) helper = LayerHelper('nce', **locals())
assert isinstance(input, Variable) assert isinstance(input, Variable)
dim = input.shape[1]
assert isinstance(label, Variable) assert isinstance(label, Variable)
dim = input.shape[1]
num_true_class = label.shape[1] num_true_class = label.shape[1]
w = helper.create_parameter( w = helper.create_parameter(
attr=helper.param_attr, attr=helper.param_attr,
shape=[num_total_classes, dim], shape=[num_total_classes, dim],
is_bias=False, is_bias=False,
dtype=input.dtype) dtype=input.dtype)
inputs = {
'Input': input,
'Label': label,
'Weight': w,
'SampleWeight': sample_weight if sample_weight is not None else []
}
if helper.bias_attr:
b = helper.create_parameter( b = helper.create_parameter(
attr=helper.bias_attr, attr=helper.bias_attr,
shape=[num_total_classes, 1], shape=[num_total_classes, 1],
is_bias=True, is_bias=True,
dtype=input.dtype) dtype=input.dtype)
inputs['Bias'] = b
cost = helper.create_tmp_variable(dtype=input.dtype) cost = helper.create_tmp_variable(dtype=input.dtype)
sample_logits = helper.create_tmp_variable(dtype=input.dtype) sample_logits = helper.create_tmp_variable(dtype=input.dtype)
sample_labels = helper.create_tmp_variable(dtype=label.dtype) sample_labels = helper.create_tmp_variable(dtype=label.dtype)
...@@ -4191,13 +4294,7 @@ def nce(input, ...@@ -4191,13 +4294,7 @@ def nce(input,
helper.append_op( helper.append_op(
type='nce', type='nce',
inputs={ inputs=inputs,
'Input': input,
'Label': label,
'Weight': w,
'Bias': b,
'SampleWeight': sample_weight if sample_weight is not None else []
},
outputs={ outputs={
'Cost': cost, 'Cost': cost,
'SampleLogits': sample_logits, 'SampleLogits': sample_logits,
...@@ -4207,7 +4304,12 @@ def nce(input, ...@@ -4207,7 +4304,12 @@ def nce(input,
return cost / (num_neg_samples + 1) return cost / (num_neg_samples + 1)
def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None): def hsigmoid(input,
label,
num_classes,
param_attr=None,
bias_attr=None,
name=None):
""" """
The hierarchical sigmoid operator is used to accelerate the training The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a process of language model. This operator organizes the classes into a
...@@ -4228,11 +4330,17 @@ def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None): ...@@ -4228,11 +4330,17 @@ def hsigmoid(input, label, num_classes, param_attr=None, bias_attr=None):
label (Variable): The tensor variable contains labels of training data. label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N \\times 1]`. It's a tensor with shape is :math:`[N \\times 1]`.
num_classes: (int), The number of classes, must not be less than 2. num_classes: (int), The number of classes, must not be less than 2.
param_attr (ParamAttr|list of ParamAttr, default None): The parameter param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
attribute for learnable parameters/weights of this layer. of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
bias_attr (ParamAttr|list of ParamAttr, default None): The parameter will create ParamAttr as param_attr. If the Initializer of the param_attr
attribute for the bias of this layer. If it is set to False, no is not set, the parameter is initialized with Xavier. Default: None.
bias will be applied. bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of hsigmoid.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, hsigmoid
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None.
Returns: Returns:
Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1] Out: (Tensor) The cost of hierarchical sigmoid operator. the shape is [N, 1]
......
...@@ -64,23 +64,33 @@ def simple_img_conv_pool(input, ...@@ -64,23 +64,33 @@ def simple_img_conv_pool(input,
average-pooling. Default :math:`max`. average-pooling. Default :math:`max`.
global_pooling (bool): Whether to use the global pooling. If global_pooling = true, global_pooling (bool): Whether to use the global pooling. If global_pooling = true,
pool_size and pool_padding while be ignored. Default False pool_size and pool_padding while be ignored. Default False
conv_stride (int|list|tuple): The stride size of the Conv2d Layer. If stride is a conv_stride (int|list|tuple): The stride size of the conv2d Layer. If stride is a
list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise, list or tuple, it must contain two integers, (conv_stride_H, conv_stride_W). Otherwise,
the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1. the conv_stride_H = conv_stride_W = conv_stride. Default: conv_stride = 1.
conv_padding (int|list|tuple): The padding size of the Conv2d Layer. If padding is conv_padding (int|list|tuple): The padding size of the conv2d Layer. If padding is
a list or tuple, it must contain two integers, (conv_padding_H, conv_padding_W). a list or tuple, it must contain two integers, (conv_padding_H, conv_padding_W).
Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0. Otherwise, the conv_padding_H = conv_padding_W = conv_padding. Default: conv_padding = 0.
conv_dilation (int|list|tuple): The dilation size of the Conv2d Layer. If dilation is conv_dilation (int|list|tuple): The dilation size of the conv2d Layer. If dilation is
a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W). a list or tuple, it must contain two integers, (conv_dilation_H, conv_dilation_W).
Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1. Otherwise, the conv_dilation_H = conv_dilation_W = conv_dilation. Default: conv_dilation = 1.
conv_groups (int): The groups number of the Conv2d Layer. According to grouped conv_groups (int): The groups number of the conv2d Layer. According to grouped
convolution in Alex Krizhevsky's Deep CNN paper: when group=2, convolution in Alex Krizhevsky's Deep CNN paper: when group=2,
the first half of the filters is only connected to the first half the first half of the filters is only connected to the first half
of the input channels, while the second half of the filters is only of the input channels, while the second half of the filters is only
connected to the second half of the input channels. Default: groups=1 connected to the second half of the input channels. Default: groups=1.
param_attr (ParamAttr): The parameters to the Conv2d Layer. Default: None param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
bias_attr (ParamAttr): Bias parameter for the Conv2d layer. Default: None of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
act (str): Activation type for Conv2d. Default: None will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`.
Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as bias_attr. If the Initializer of the bias_attr
is not set, the bias is initialized zero. Default: None.
act (str): Activation type for conv2d, if it is set to None, activation is not
appended. Default: None.
use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
library is installed. Default: True library is installed. Default: True
......
...@@ -237,6 +237,7 @@ class L1DecayRegularizer(WeightDecayRegularizer): ...@@ -237,6 +237,7 @@ class L1DecayRegularizer(WeightDecayRegularizer):
'Ids': idx}, 'Ids': idx},
outputs={'Out': decay}, outputs={'Out': decay},
attrs={'is_sparse': True}) attrs={'is_sparse': True})
param = decay
# Append sign op # Append sign op
block.append_op( block.append_op(
......
...@@ -37,7 +37,7 @@ def PolygonBoxRestore(input): ...@@ -37,7 +37,7 @@ def PolygonBoxRestore(input):
indexes = indexes.repeat( indexes = indexes.repeat(
[batch_size], axis=0) # [batch_size, geo_channels/2, 2, h, w] [batch_size], axis=0) # [batch_size, geo_channels/2, 2, h, w]
return indexes.reshape( return indexes.reshape(
input.shape) - input # [batch_size, geo_channels, h, w] input.shape) * 4 - input # [batch_size, geo_channels, h, w]
class TestPolygonBoxRestoreOp(OpTest): class TestPolygonBoxRestoreOp(OpTest):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册