diff --git a/python/paddle/v2/fluid/layers/io.py b/python/paddle/v2/fluid/layers/io.py index f4c5907f48b46ee5d9bcaba48370e5baf036c615..56c3f7b7b7f174338bb56bc5785423ca634650a6 100644 --- a/python/paddle/v2/fluid/layers/io.py +++ b/python/paddle/v2/fluid/layers/io.py @@ -12,20 +12,9 @@ def data(name, type=core.VarDesc.VarType.LOD_TENSOR, stop_gradient=True): """ - Data Layer. + **Data Layer** - Args: - name: The name/alias of the function - shape: Tuple declaring the shape. - append_batch_size: Whether or not to append the data as a batch. - dtype: The type of data : float32, float_16, int etc - type: The output type. By default it is LOD_TENSOR. - lod_level(int): The LoD Level. 0 means the input data is not a sequence. - main_program: Name of the main program that calls this - startup_program: Name of the startup program - stop_gradient: A boolean that mentions whether gradient should flow. - - This function takes in input and based on whether data has + This function takes in the input and based on whether data has to be returned back as a minibatch, it creates the global variable using the helper functions. The global variables can be accessed by all the following operations and layers in the graph. @@ -33,6 +22,24 @@ def data(name, All the input variables of this function are passed in as local variables to the LayerHelper constructor. + Args: + name(str): The name/alias of the function + shape(list): Tuple declaring the shape. + append_batch_size(bool): Whether or not to append the data as a batch. + dtype(int|float): The type of data : float32, float_16, int etc + type(VarType): The output type. By default it is LOD_TENSOR. + lod_level(int): The LoD Level. 0 means the input data is not a sequence. + main_program(Program): Name of the main program that calls this + startup_program(Program): Name of the startup program + stop_gradient(bool): A boolean that mentions whether gradient should flow. + + Returns: + Variable: The global variable that gives access to the data. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name='x', shape=[784], dtype='float32') """ helper = LayerHelper('data', **locals()) shape = list(shape)