Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
20667e1e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
20667e1e
编写于
11月 06, 2017
作者:
Y
Yang Yang(Tony)
提交者:
GitHub
11月 06, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add fill_constant_batch_size_like_op to Static RNN's h_boot (#5332)
上级
70154597
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
159 addition
and
65 deletion
+159
-65
paddle/operators/fill_constant_batch_size_like_op.cc
paddle/operators/fill_constant_batch_size_like_op.cc
+19
-12
python/paddle/v2/framework/layers.py
python/paddle/v2/framework/layers.py
+28
-8
python/paddle/v2/framework/tests/test_fill_constant_batch_size_like_op.py
.../framework/tests/test_fill_constant_batch_size_like_op.py
+8
-3
python/paddle/v2/framework/tests/test_recurrent_op.py
python/paddle/v2/framework/tests/test_recurrent_op.py
+104
-42
未找到文件。
paddle/operators/fill_constant_batch_size_like_op.cc
浏览文件 @
20667e1e
...
...
@@ -34,15 +34,18 @@ class FillConstantBatchSizeLikeOp : public framework::OperatorWithKernel {
std
::
vector
<
int64_t
>
shape_int64
(
shape
.
size
(),
0
);
std
::
transform
(
shape
.
begin
(),
shape
.
end
(),
shape_int64
.
begin
(),
[](
int
a
)
{
return
static_cast
<
int64_t
>
(
a
);
});
auto
dims
=
framework
::
make_ddim
(
shape_int64
);
auto
output_dim
=
framework
::
make_ddim
(
shape_int64
);
int
dim_idx
=
ctx
->
Attrs
().
Get
<
int
>
(
"dim_idx"
);
PADDLE_ENFORCE_GE
(
dim_idx
,
0
);
PADDLE_ENFORCE_GT
(
static_cast
<
int
>
(
shape
.
size
()),
dim_idx
);
PADDLE_ENFORCE_GT
(
ctx
->
GetInputDim
(
"Input"
).
size
(),
dim_idx
);
int
input_dim_idx
=
ctx
->
Attrs
().
Get
<
int
>
(
"input_dim_idx"
);
PADDLE_ENFORCE_GE
(
input_dim_idx
,
0
);
PADDLE_ENFORCE_GT
(
ctx
->
GetInputDim
(
"Input"
).
size
(),
input_dim_idx
);
dims
[
dim_idx
]
=
ctx
->
GetInputDim
(
"Input"
)[
dim_idx
];
ctx
->
SetOutputDim
(
"Out"
,
dims
);
int
output_dim_idx
=
ctx
->
Attrs
().
Get
<
int
>
(
"output_dim_idx"
);
PADDLE_ENFORCE_GE
(
output_dim_idx
,
0
);
PADDLE_ENFORCE_GT
(
static_cast
<
int
>
(
shape
.
size
()),
output_dim_idx
);
output_dim
[
output_dim_idx
]
=
ctx
->
GetInputDim
(
"Input"
)[
input_dim_idx
];
ctx
->
SetOutputDim
(
"Out"
,
output_dim
);
}
protected:
...
...
@@ -69,8 +72,11 @@ class FillConstantBatchSizeLikeOpMaker
"(Tensor) Tensor of specified shape will be filled "
"with the specified value"
);
AddAttr
<
std
::
vector
<
int
>>
(
"shape"
,
"(vector<int>) The shape of the output"
);
AddAttr
<
int
>
(
"dim_idx"
,
"(int, default 0) The index of batch size dimension"
)
AddAttr
<
int
>
(
"input_dim_idx"
,
"(int, default 0) the index of input's batch size dimension"
)
.
SetDefault
(
0
);
AddAttr
<
int
>
(
"output_dim_idx"
,
"(int, default 0) the index of output's batch size dimension"
)
.
SetDefault
(
0
);
AddAttr
<
float
>
(
"value"
,
"(float, default 0) The value to be filled"
)
.
SetDefault
(
0.0
f
);
...
...
@@ -86,8 +92,9 @@ Fill up a variable with specified constant value.
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
_WITHOUT_GRADIENT
(
fill_constant_batch_size_like
,
REGISTER_OP
ERATOR
(
fill_constant_batch_size_like
,
ops
::
FillConstantBatchSizeLikeOp
,
paddle
::
framework
::
EmptyGradOpMaker
,
ops
::
FillConstantBatchSizeLikeOpMaker
);
REGISTER_OP_CPU_KERNEL
(
fill_constant_batch_size_like
,
...
...
python/paddle/v2/framework/layers.py
浏览文件 @
20667e1e
...
...
@@ -581,25 +581,45 @@ class StaticRNN(object):
if
self
.
status
!=
StaticRNN
.
IN_RNN_BLOCK
:
raise
ValueError
(
"You must invoke {0} in rnn block"
.
format
(
method
))
def
memory
(
self
,
init
=
None
,
shape
=
None
,
dtype
=
None
,
init_value
=
0
):
def
memory
(
self
,
init
=
None
,
shape
=
None
,
batch_ref
=
None
,
init_value
=
0.0
,
init_batch_dim_idx
=
0
,
ref_batch_dim_idx
=
1
):
'''
:param init: boot memory, if not set, a shape, batch_ref must be provided
:param shape: shape of the boot memory
:param batch_ref: batch size reference variable
:param init_value: the init value of boot memory
:param init_batch_dim_idx: the index of batch size in init's dimension
:param ref_batch_dim_idx: the index of batch size in batch_ref's dimension
:return: boot memory
'''
self
.
_assert_in_rnn_block_
(
'memory'
)
if
init
is
None
:
if
shape
is
None
or
dtype
is
None
:
if
shape
is
None
or
batch_ref
is
None
:
raise
ValueError
(
"if init is None, memory at least need shape and
dtype
"
)
"if init is None, memory at least need shape and
batch_ref
"
)
parent_block
=
self
.
parent_block
()
var_name
=
unique_name
(
"@"
.
join
([
self
.
helper
.
name
,
"memory_boot"
]))
boot_var
=
parent_block
.
create_var
(
name
=
var_name
,
shape
=
shape
,
dtype
=
dtype
,
persistable
=
False
)
name
=
var_name
,
shape
=
shape
,
dtype
=
batch_ref
.
data_type
,
persistable
=
False
)
parent_block
.
append_op
(
type
=
"fill_constant"
,
inputs
=
{},
type
=
"fill_constant
_batch_size_like
"
,
inputs
=
{
'Input'
:
[
batch_ref
]
},
outputs
=
{
'Out'
:
[
boot_var
]},
attrs
=
{
'value'
:
init_value
,
'shape'
:
[
40
]
+
list
(
boot_var
.
shape
[
1
:]),
'data_type'
:
boot_var
.
data_type
'shape'
:
boot_var
.
shape
,
'data_type'
:
boot_var
.
data_type
,
'input_dim_idx'
:
ref_batch_dim_idx
,
'output_dim_idx'
:
init_batch_dim_idx
})
return
self
.
memory
(
init
=
boot_var
)
...
...
python/paddle/v2/framework/tests/test_fill_constant_batch_size_like_op.py
浏览文件 @
20667e1e
...
...
@@ -21,9 +21,14 @@ class TestFillConstantBatchSizeLikeWhenSecondDimIsBatchSize(OpTest):
def
setUp
(
self
):
self
.
op_type
=
"fill_constant_batch_size_like"
self
.
inputs
=
{
'Input'
:
np
.
random
.
random
((
219
,
232
)).
astype
(
"float32"
)}
self
.
attrs
=
{
'value'
:
3.5
,
'shape'
:
[
132
,
-
1
,
7
],
'dim_idx'
:
1
}
out
=
np
.
random
.
random
((
132
,
232
,
7
)).
astype
(
"float32"
)
self
.
attrs
=
{
'value'
:
3.5
,
'shape'
:
[
132
,
-
1
,
7
],
'input_dim_idx'
:
0
,
'output_dim_idx'
:
1
}
out
=
np
.
random
.
random
((
132
,
219
,
7
)).
astype
(
"float32"
)
out
.
fill
(
3.5
)
self
.
outputs
=
{
'Out'
:
out
}
...
...
python/paddle/v2/framework/tests/test_recurrent_op.py
浏览文件 @
20667e1e
import
unittest
import
logging
from
op_test
import
get_numeric_gradient
from
paddle.v2.framework.layers
import
*
import
paddle.v2.framework.layers
as
layers
from
paddle.v2.framework.framework
import
Program
from
paddle.v2.framework.executor
import
Executor
from
paddle.v2.framework.backward
import
append_backward_ops
...
...
@@ -16,8 +13,8 @@ class PyRNNBase(object):
self
.
x
=
np
.
ones
(
shape
=
input_shape
).
astype
(
"float32"
)
self
.
y
=
np
.
zeros
(
shape
=
output_shape
).
astype
(
"float32"
)
def
step
(
self
):
pass
def
step
(
self
,
step_id
,
x
):
raise
NotImplementedError
def
forward
(
self
):
for
step_id
in
range
(
self
.
x
.
shape
[
0
]):
...
...
@@ -116,30 +113,30 @@ class RecurrentOpTest1(unittest.TestCase):
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
py_rnn
=
PySimpleRNN1
(
self
.
input_shape
,
self
.
output_shape
)
self
.
output
=
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
self
.
output
=
layers
.
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
def
create_rnn_op
(
self
):
x
=
data
(
x
=
layers
.
data
(
shape
=
[
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'x'
,
append_batch_size
=
False
,
**
self
.
p_info
)
x
.
stop_gradient
=
False
h_boot
=
data
(
h_boot
=
layers
.
data
(
shape
=
[
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot'
,
**
self
.
p_info
)
h_boot
.
stop_gradient
=
False
rnn
=
StaticRNN
(
main_program
=
self
.
main_program
)
rnn
=
layers
.
StaticRNN
(
main_program
=
self
.
main_program
)
with
rnn
.
step
():
h_pre
=
rnn
.
memory
(
init
=
h_boot
)
x_t
=
rnn
.
step_input
(
x
)
h
=
scale
(
x
=
elementwise_add
(
h
=
layers
.
scale
(
x
=
layers
.
elementwise_add
(
x
=
h_pre
,
y
=
x_t
,
**
self
.
p_info
),
scale
=
self
.
py_rnn
.
scale
,
**
self
.
p_info
)
...
...
@@ -249,41 +246,41 @@ class RecurrentOpTest2(RecurrentOpTest1):
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
py_rnn
=
PySimpleRNN2
(
self
.
input_shape
,
self
.
output_shape
)
self
.
output
=
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
self
.
output
=
layers
.
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
def
create_rnn_op
(
self
):
x
=
data
(
x
=
layers
.
data
(
shape
=
[
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'x'
,
append_batch_size
=
False
,
**
self
.
p_info
)
x
.
stop_gradient
=
False
h_boot
=
data
(
h_boot
=
layers
.
data
(
shape
=
[
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot'
,
**
self
.
p_info
)
h_boot
.
stop_gradient
=
False
rnn
=
StaticRNN
(
main_program
=
self
.
main_program
)
rnn
=
layers
.
StaticRNN
(
main_program
=
self
.
main_program
)
with
rnn
.
step
():
h_pre
=
rnn
.
memory
(
init
=
h_boot
)
x_t
=
rnn
.
step_input
(
x
)
temp_l
=
fc
(
input
=
x_t
,
temp_l
=
layers
.
fc
(
input
=
x_t
,
size
=
self
.
input_dim
,
param_attr
=
{
'name'
:
'W'
},
bias_attr
=
False
,
**
self
.
p_info
)
temp_r
=
fc
(
input
=
h_pre
,
temp_r
=
layers
.
fc
(
input
=
h_pre
,
size
=
self
.
input_dim
,
param_attr
=
{
'name'
:
'U'
},
bias_attr
=
False
,
**
self
.
p_info
)
h
=
sigmoid
(
x
=
elementwise_add
(
h
=
layers
.
sigmoid
(
x
=
layers
.
elementwise_add
(
x
=
temp_l
,
y
=
temp_r
,
**
self
.
p_info
),
**
self
.
p_info
)
...
...
@@ -293,7 +290,7 @@ class RecurrentOpTest2(RecurrentOpTest1):
return
rnn
()
class
RecurrentOp
Test3
(
RecurrentOpTest1
):
class
RecurrentOp
MultipleMemoryTest
(
RecurrentOpTest1
):
'''
Test RNNOp with two memories
equation:
...
...
@@ -310,8 +307,8 @@ class RecurrentOpTest3(RecurrentOpTest1):
class
PySimpleRNN3
(
PyRNNBase
):
def
__init__
(
self
,
input_shape
,
output_shape
):
super
(
RecurrentOp
Test3
.
PySimpleRNN3
,
self
).
__init__
(
input_shape
,
output_shape
)
super
(
RecurrentOp
MultipleMemoryTest
.
PySimpleRNN3
,
self
).
__init__
(
input_shape
,
output_shape
)
seq_len
,
batch_size
,
input_dim
=
input_shape
self
.
h_boot1
=
np
.
random
.
normal
(
size
=
(
batch_size
,
...
...
@@ -345,27 +342,27 @@ class RecurrentOpTest3(RecurrentOpTest1):
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
py_rnn
=
RecurrentOp
Test3
.
PySimpleRNN3
(
self
.
input_shape
,
self
.
output_shape
)
self
.
py_rnn
=
RecurrentOp
MultipleMemoryTest
.
PySimpleRNN3
(
self
.
input_shape
,
self
.
output_shape
)
self
.
output
=
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
self
.
output
=
layers
.
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
def
create_rnn_op
(
self
):
x
=
data
(
x
=
layers
.
data
(
shape
=
[
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'x'
,
append_batch_size
=
False
,
**
self
.
p_info
)
x
.
stop_gradient
=
False
h_boot1
=
data
(
h_boot1
=
layers
.
data
(
shape
=
[
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot1'
,
append_batch_size
=
False
,
**
self
.
p_info
)
h_boot1
.
stop_gradient
=
False
h_boot2
=
data
(
h_boot2
=
layers
.
data
(
shape
=
[
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'h_boot2'
,
...
...
@@ -373,15 +370,15 @@ class RecurrentOpTest3(RecurrentOpTest1):
**
self
.
p_info
)
h_boot2
.
stop_gradient
=
False
rnn
=
StaticRNN
(
main_program
=
self
.
main_program
)
rnn
=
layers
.
StaticRNN
(
main_program
=
self
.
main_program
)
with
rnn
.
step
():
h_pre1
=
rnn
.
memory
(
init
=
h_boot1
)
h_pre2
=
rnn
.
memory
(
init
=
h_boot2
)
x_t
=
rnn
.
step_input
(
x
)
mem1
=
scale
(
x
=
h_pre1
,
scale
=
1.0
,
**
self
.
p_info
)
mem2
=
scale
(
x
=
h_pre2
,
scale
=
1.0
,
**
self
.
p_info
)
out
=
sums
(
input
=
[
mem1
,
x_t
,
mem2
],
**
self
.
p_info
)
mem1
=
layers
.
scale
(
x
=
h_pre1
,
scale
=
1.0
,
**
self
.
p_info
)
mem2
=
layers
.
scale
(
x
=
h_pre2
,
scale
=
1.0
,
**
self
.
p_info
)
out
=
layers
.
sums
(
input
=
[
mem1
,
x_t
,
mem2
],
**
self
.
p_info
)
rnn
.
update_memory
(
h_pre1
,
mem1
)
rnn
.
update_memory
(
h_pre2
,
mem2
)
...
...
@@ -390,5 +387,70 @@ class RecurrentOpTest3(RecurrentOpTest1):
return
rnn
()
class
RecurrentOpNoMemBootTest
(
RecurrentOpTest1
):
'''
Test RNNOp with two memories
equation:
mem = x + mem_pre
y = mem
vars:
- x
memories:
- mem
outputs:
- y
'''
class
PySimpleRNN4
(
PyRNNBase
):
def
__init__
(
self
,
input_shape
,
output_shape
):
super
(
RecurrentOpNoMemBootTest
.
PySimpleRNN4
,
self
).
__init__
(
input_shape
,
output_shape
)
men_dim
=
input_shape
self
.
mems
=
np
.
zeros
(
shape
=
men_dim
).
astype
(
"float32"
)
def
step
(
self
,
step_id
,
x
):
if
step_id
==
0
:
pre_mem
=
np
.
zeros_like
(
x
)
else
:
pre_mem
=
self
.
mems
[
step_id
-
1
]
self
.
mems
[
step_id
]
=
pre_mem
+
x
self
.
y
[
step_id
]
=
self
.
mems
[
step_id
]
input_dim
=
1
batch_size
=
1
sent_len
=
2
def
setUp
(
self
):
self
.
setup_program
()
self
.
data_field
=
{
"x"
}
self
.
input_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
output_shape
=
(
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
)
self
.
py_rnn
=
RecurrentOpNoMemBootTest
.
PySimpleRNN4
(
self
.
input_shape
,
self
.
output_shape
)
self
.
output
=
layers
.
mean
(
x
=
self
.
create_rnn_op
(),
**
self
.
p_info
)
print
self
.
main_program
def
create_rnn_op
(
self
):
x
=
layers
.
data
(
shape
=
[
self
.
sent_len
,
self
.
batch_size
,
self
.
input_dim
],
data_type
=
'float32'
,
name
=
'x'
,
append_batch_size
=
False
,
**
self
.
p_info
)
x
.
stop_gradient
=
False
rnn
=
layers
.
StaticRNN
(
main_program
=
self
.
main_program
)
with
rnn
.
step
():
mem_pre
=
rnn
.
memory
(
shape
=
[
-
1
,
self
.
input_dim
],
batch_ref
=
x
)
x_t
=
rnn
.
step_input
(
x
)
mem
=
layers
.
elementwise_add
(
x
=
mem_pre
,
y
=
x_t
,
**
self
.
p_info
)
rnn
.
update_memory
(
mem_pre
,
mem
)
rnn
.
output
(
mem
)
return
rnn
()
if
__name__
==
'__main__'
:
unittest
.
main
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录