diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index a772125df64aaf2eafe6cb9e022f62cc29043eb7..83fe9af768964003130d02b7d913ad1c2102dd1d 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -22,7 +22,7 @@ - id: clang-format-with-version-check name: clang-format description: Format files with ClangFormat. - entry: ./.clang_format.hook -i + entry: bash ./.clang_format.hook -i language: system files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto)$ - repo: https://github.com/PaddlePaddle/pre-commit-golang diff --git a/Dockerfile b/Dockerfile index 98f61ba586a681e53b435d592c8e43b1cc964139..136db772cc6a24b8084120fa6bab666bc1eda78e 100644 --- a/Dockerfile +++ b/Dockerfile @@ -10,13 +10,11 @@ RUN /bin/bash -c 'if [[ -n ${UBUNTU_MIRROR} ]]; then sed -i 's#http://archive.ub ARG WITH_GPU ARG WITH_AVX ARG WITH_DOC -ARG WITH_STYLE_CHECK ENV WOBOQ OFF -ENV WITH_GPU=${WITH_GPU:-OFF} +ENV WITH_GPU=${WITH_GPU:-ON} ENV WITH_AVX=${WITH_AVX:-ON} ENV WITH_DOC=${WITH_DOC:-OFF} -ENV WITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF} ENV HOME /root # Add bash enhancements diff --git a/Dockerfile.android b/Dockerfile.android index aa95abb3661a3d959155be28707bd5311f6ad070..6013215d9da280cebe7450911304b4b292972652 100644 --- a/Dockerfile.android +++ b/Dockerfile.android @@ -47,8 +47,8 @@ RUN mkdir /opt/android-ndk-tmp && \ wget -q https://dl.google.com/android/repository/android-ndk-r14b-linux-x86_64.zip && \ unzip -q android-ndk-r14b-linux-x86_64.zip && \ mv android-ndk-r14b ${ANDROID_NDK_HOME} && \ - ${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm --platform=android-21 --install-dir=${ANDROID_ARM_STANDALONE_TOOLCHAIN} && \ - ${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm64 --platform=android-21 --install-dir=${ANDROID_ARM64_STANDALONE_TOOLCHAIN} && \ + ${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm --platform=android-23 --install-dir=${ANDROID_ARM_STANDALONE_TOOLCHAIN} && \ + ${ANDROID_NDK_HOME}/build/tools/make-standalone-toolchain.sh --arch=arm64 --platform=android-23 --install-dir=${ANDROID_ARM64_STANDALONE_TOOLCHAIN} && \ rm -rf /opt/android-ndk-tmp && \ rm -rf ${ANDROID_NDK_HOME} diff --git a/cmake/external/mkldnn.cmake b/cmake/external/mkldnn.cmake index 25c6b4ef52d3f8ebff1572ae8d348be7c577c08c..9686df00219001769d074ee815d9cc8db0258496 100644 --- a/cmake/external/mkldnn.cmake +++ b/cmake/external/mkldnn.cmake @@ -51,7 +51,7 @@ ExternalProject_Add( ${EXTERNAL_PROJECT_LOG_ARGS} DEPENDS ${MKLDNN_DEPENDS} GIT_REPOSITORY "https://github.com/01org/mkl-dnn.git" - GIT_TAG "v0.9" + GIT_TAG "v0.10" PREFIX ${MKLDNN_SOURCES_DIR} UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLDNN_INSTALL_DIR} diff --git a/cmake/external/mklml.cmake b/cmake/external/mklml.cmake index e9fd3d4bedc983ae7c544cf289dc841cf22f9de4..74f3279831357c21038df133df0f5a432a6dfd20 100644 --- a/cmake/external/mklml.cmake +++ b/cmake/external/mklml.cmake @@ -28,7 +28,7 @@ INCLUDE(ExternalProject) SET(MKLML_PROJECT "extern_mklml") SET(MKLML_VER "mklml_lnx_2018.0.20170720") -SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.9/${MKLML_VER}.tgz") +SET(MKLML_URL "https://github.com/01org/mkl-dnn/releases/download/v0.10/${MKLML_VER}.tgz") SET(MKLML_SOURCE_DIR "${THIRD_PARTY_PATH}/mklml") SET(MKLML_DOWNLOAD_DIR "${MKLML_SOURCE_DIR}/src/${MKLML_PROJECT}") SET(MKLML_DST_DIR "mklml") @@ -54,7 +54,8 @@ ExternalProject_Add( ${EXTERNAL_PROJECT_LOG_ARGS} PREFIX ${MKLML_SOURCE_DIR} DOWNLOAD_DIR ${MKLML_DOWNLOAD_DIR} - DOWNLOAD_COMMAND wget --no-check-certificate -qO- ${MKLML_URL} | tar xz -C ${MKLML_DOWNLOAD_DIR} + DOWNLOAD_COMMAND wget --no-check-certificate ${MKLML_URL} -c -q -O ${MKLML_VER}.tgz + && tar zxf ${MKLML_VER}.tgz DOWNLOAD_NO_PROGRESS 1 UPDATE_COMMAND "" CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=${MKLML_INSTALL_ROOT} diff --git a/doc/about/index_cn.md b/doc/about/index_cn.md deleted file mode 100644 index 3bf030004d4de8c6f3cb773c6e78c09f40878c5f..0000000000000000000000000000000000000000 --- a/doc/about/index_cn.md +++ /dev/null @@ -1,11 +0,0 @@ -关于PaddlePaddle -================ - -PaddlePaddle是一个最早由百度科学家和工程师共同研发的并行分布式深度学习平台,兼备易用性、高效性、灵活性和可扩展性,目前已被百度内部多个产品线广泛使用。 -PaddlePaddle目前已经开放源码, 但是远未完善,我们希望能在这个基础上不断的改进、扩展和延伸。 -同时我们希望广大开发者积极提供反馈和贡献源代码,建立一个活跃的开源社区。 - -致谢 --------- - -在此,特别感谢PaddlePaddle的[所有贡献者](https://github.com/PaddlePaddle/Paddle/graphs/contributors)。 diff --git a/doc/about/index_en.rst b/doc/about/index_en.rst deleted file mode 100644 index 065c430cdea802ed3c9f487cd00255b85a5598a5..0000000000000000000000000000000000000000 --- a/doc/about/index_en.rst +++ /dev/null @@ -1,14 +0,0 @@ -ABOUT -======= - -PaddlPaddle is an easy-to-use, efficient, flexible and scalable deep learning platform, -which is originally developed by Baidu scientists and engineers for the purpose of applying deep learning to many products at Baidu. - -PaddlePaddle is now open source but far from complete, which is intended to be built upon, improved, scaled, and extended. -We hope to build an active open source community both by providing feedback and by actively contributing to the source code. - - -Credits --------- - -We owe many thanks to `all contributors and developers `_ of PaddlePaddle! diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index a4a843c610feb2b378c22c4b4097cd238ccd61ab..1329b77bb44f52c66a703740715b890c47234e72 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -257,6 +257,11 @@ seq_concat .. autoclass:: paddle.v2.layer.seq_concat :noindex: +seq_slice +--------- +.. autoclass:: paddle.v2.layer.seq_slice + :noindex: + kmax_sequence_score ------------------- .. autoclass:: paddle.v2.layer.kmax_sequence_score @@ -414,9 +419,14 @@ multi_binary_label_cross_entropy_cost .. autoclass:: paddle.v2.layer.multi_binary_label_cross_entropy_cost :noindex: -huber_cost ----------- -.. autoclass:: paddle.v2.layer.huber_cost +huber_regression_cost +------------------------- +.. autoclass:: paddle.v2.layer.huber_regression_cost + :noindex: + +huber_classification_cost +------------------------- +.. autoclass:: paddle.v2.layer.huber_classification_cost :noindex: lambda_cost diff --git a/doc/design/cluster_train/README.md b/doc/design/cluster_train/README.md index 74961f80050c6b2723889b51416a2e8048174b00..177a5f5d54bd924fab34795219ce1f7b270c8e25 100644 --- a/doc/design/cluster_train/README.md +++ b/doc/design/cluster_train/README.md @@ -54,17 +54,18 @@ The life cycle of a single task is illustrated below: 1. When a new pass of training starts, all tasks will be placed in the todo queue. -1. The master server will dispatch few tasks to each trainer at a time, puts them in the pending queue and waits for completion. -1. The trainer will work on its tasks and tell the master server once a task is completed. The master server will dispatch a new task to that trainer. -1. If a task timeout. the master server will move it back to the todo queue. The timeout count will increase by one. If the timeout count is above a threshold, the task is likely to cause a trainer to crash, so it will be discarded. +1. Upon trainer requests for new task, the master server will dispatch a task from todo queue to it, put the task in the pending queue and wait for completion. +1. The trainer will work on its task and tell the master server once the task is completed and ask for new task. The master server will dispatch a new task to that trainer. +1. If a task fails for any reason in trainer, or takes longer than a specific period of time, the master server will move the task back to the todo queue. The timeout count for that task will increase by one. If the timeout count is above a threshold, the task is likely to cause a trainer to crash, then it will be discarded. 1. The master server will move completed task to the done queue. When the todo queue is empty, the master server will start a new pass by moving all tasks in the done queue to todo queue and reset the timeout counter of all tasks to zero. ### Trainer Process The trainer process will: -- Receive tasks from the master. -- Work on the tasks: calculate and upload gradient to parameter servers, and update local model by downloading new parameters from parameter servers. +- Request tasks from the master. +- Work on the tasks +- Upload gradient to parameter servers, and update local model by downloading new parameters from parameter servers. ### Parameter Server Process @@ -119,8 +120,8 @@ When the master is started by the Kubernetes, it executes the following steps at 1. Grabs a unique *master* lock in etcd, which prevents concurrent master instantiations. 1. Recovers the task queues from etcd if they already exist, otherwise, the master will create them. -1. Watches the trainer prefix keys `/trainer/` on etcd to find the live trainers. -1. Starts dispatching the tasks to the trainers, and updates task queue using an etcd transaction to ensure lock is held during the update. +1. Write its ip address to */master/addr* so that trainers can discover it. +1. Listens to trainers' request of task, dispatch one upon request, and updates task queue using an etcd transaction to ensure lock is held during the update. When the master server process is dead for any reason, Kubernetes will restart it. It will be online again with all states recovered from etcd in few minutes. @@ -128,13 +129,11 @@ When the master server process is dead for any reason, Kubernetes will restart i When the trainer is started by the Kubernetes, it executes the following steps at startup: -1. Watches the available parameter server prefix keys `/ps/` on etcd and waits until the count of parameter servers reaches the desired count. -1. Generates a unique ID, and sets key `/trainer/` with its contact address as value. The key will be deleted when the lease expires, so the master will be aware of the trainer being online and offline. -1. Waits for tasks from the master to start training. +1. Watches the available parameter server prefix keys `/ps/` on etcd and waits until the count of parameter servers reaches the desired count */ps_desired*. +1. Finds and watches */master/addr* to get master's address. +1. Requests for tasks from the master to start training. -If trainer's etcd lease expires, it will try set key `/trainer/` again so that the master server can discover the trainer again. - -When a trainer fails, Kuberentes would try to restart it. The recovered trainer would fetch tasks from the TODO queue and go on training. +When a trainer fails, Kuberentes would try to restart it. The recovered trainer would fetch tasks from master and go on training. ### Parameter Server Process diff --git a/doc/design/cluster_train/src/paddle-etcd.graffle b/doc/design/cluster_train/src/paddle-etcd.graffle index 56681ae5bbe11849116d621b066a6317e003e4ca..f973dc9b9dbf72e9bc31e2d32822916cd281f8d9 100644 Binary files a/doc/design/cluster_train/src/paddle-etcd.graffle and b/doc/design/cluster_train/src/paddle-etcd.graffle differ diff --git a/doc/design/cluster_train/src/paddle-etcd.png b/doc/design/cluster_train/src/paddle-etcd.png index 4f9c9762b3a8c089dd5e9b2c07cb9dfc78296a21..57981ceb4b94f0f7d6dfa63f3d28c0402bf9cc31 100644 Binary files a/doc/design/cluster_train/src/paddle-etcd.png and b/doc/design/cluster_train/src/paddle-etcd.png differ diff --git a/doc/getstarted/build_and_install/index_cn.rst b/doc/getstarted/build_and_install/index_cn.rst index a24df6c518fad84a48061ecb34ee46cb312a4995..dd9923697ab85825557aa89a08870bece7c76673 100644 --- a/doc/getstarted/build_and_install/index_cn.rst +++ b/doc/getstarted/build_and_install/index_cn.rst @@ -6,14 +6,12 @@ 安装流程 ++++++++ -PaddlePaddle提供数个预编译的二进制来进行安装,包括Docker镜像,ubuntu的deb安装包等。我们推荐使用Docker镜像来部署环境,同时欢迎贡献更多的安装包。 +PaddlePaddle提供Docker镜像来部署环境。 .. toctree:: :maxdepth: 1 docker_install_cn.rst - ubuntu_install_cn.rst - 编译流程 diff --git a/doc/getstarted/build_and_install/index_en.rst b/doc/getstarted/build_and_install/index_en.rst index 1bfd4f75c0b9b82d61d28a30f03181f7be159f24..8a53588e0439df8f4d5fd529b7a20262c67d4e58 100644 --- a/doc/getstarted/build_and_install/index_en.rst +++ b/doc/getstarted/build_and_install/index_en.rst @@ -8,14 +8,13 @@ Install PaddlePaddle :maxdepth: 1 docker_install_en.rst - ubuntu_install_en.rst Build from Source ----------------- .. warning:: - Please use :code:`deb` package or :code:`docker` image to install paddle. The building guide is used for hacking or contributing PaddlePaddle source code. + Please use :code:`docker` image to install paddle. The building guide is used for hacking or contributing PaddlePaddle source code. .. toctree:: :maxdepth: 1 diff --git a/doc/getstarted/build_and_install/ubuntu_install_cn.rst b/doc/getstarted/build_and_install/ubuntu_install_cn.rst deleted file mode 100644 index 9e39ccb00f5d5655c30148900a3d76a22aacfc01..0000000000000000000000000000000000000000 --- a/doc/getstarted/build_and_install/ubuntu_install_cn.rst +++ /dev/null @@ -1,71 +0,0 @@ -Ubuntu部署PaddlePaddle -=================================== - -PaddlePaddle提供了ubuntu 14.04 deb安装包。 - -安装 ------- - -安装包的下载地址是\: https://github.com/PaddlePaddle/Paddle/releases - -它包含四个版本\: - -* cpu版本: 支持主流x86处理器平台, 使用了avx指令集。 - -* cpu-noavx版本:支持主流x86处理器平台,没有使用avx指令集。 - -* gpu版本:支持主流x86处理器平台,支持nvidia cuda平台,使用了avx指令集。 - -* gpu-noavx版本:支持主流x86处理器平台,支持nvidia cuda平台,没有使用avx指令集。 - -下载完相关安装包后,执行: - -.. code-block:: shell - - sudo apt-get install gdebi - gdebi paddle-*-cpu.deb - -或者: - -.. code-block:: shell - - dpkg -i paddle-*-cpu.deb - apt-get install -f - - -在 :code:`dpkg -i` 的时候如果报一些依赖未找到的错误是正常的, -在 :code:`apt-get install -f` 里会继续安装 PaddlePaddle。 - -安装完成后,可以使用命令 :code:`paddle version` 查看安装后的paddle 版本: - -.. code-block:: shell - - PaddlePaddle 0.8.0b1, compiled with - with_avx: ON - with_gpu: OFF - with_double: OFF - with_python: ON - with_rdma: OFF - with_timer: OFF - with_predict_sdk: - - -可能遇到的问题 --------------- - -libcudart.so/libcudnn.so找不到 -++++++++++++++++++++++++++++++ - -安装完成后,运行 :code:`paddle train` 报错\: - -.. code-block:: shell - - 0831 12:36:04.151525 1085 hl_dso_loader.cc:70] Check failed: nullptr != *dso_handle For Gpu version of PaddlePaddle, it couldn't find CUDA library: libcudart.so Please make sure you already specify its path.Note: for training data on Cpu using Gpu version of PaddlePaddle,you must specify libcudart.so via LD_LIBRARY_PATH. - -原因是未设置cuda运行时环境变量。 如果使用GPU版本的PaddlePaddle,请安装CUDA 7.5 和CUDNN 5到本地环境中,并设置: - -.. code-block:: shell - - export LD_LIBRARY_PATH=/usr/local/cuda/lib64:/usr/local/cuda/lib:$LD_LIBRARY_PATH - export PATH=/usr/local/cuda/bin:$PATH - diff --git a/doc/getstarted/build_and_install/ubuntu_install_en.rst b/doc/getstarted/build_and_install/ubuntu_install_en.rst deleted file mode 100644 index ea8042085bf458be96e71017d229d88ad867695b..0000000000000000000000000000000000000000 --- a/doc/getstarted/build_and_install/ubuntu_install_en.rst +++ /dev/null @@ -1,25 +0,0 @@ -Debian Package installation guide -================================= - -PaddlePaddle supports :code:`deb` pacakge. The installation of this :code:`deb` package is tested in ubuntu 14.04, but it should be support other debian based linux, too. - -There are four versions of debian package, :code:`cpu`, :code:`gpu`, :code:`cpu-noavx`, :code:`gpu-noavx`. And :code:`noavx` version is used to support CPU which does not contain :code:`AVX` instructions. The download url of :code:`deb` package is \: https://github.com/baidu/Paddle/releases/ - - -After downloading PaddlePaddle deb packages, you can use :code:`gdebi` install. - -.. code-block:: bash - - gdebi paddle-*.deb - -If :code:`gdebi` is not installed, you can use :code:`sudo apt-get install gdebi` to install it. - -Or you can use following commands to install PaddlePaddle. - -.. code-block:: bash - - dpkg -i paddle-*.deb - apt-get install -f - -And if you use GPU version deb package, you need to install CUDA toolkit and cuDNN, and set related environment variables(such as LD_LIBRARY_PATH) first. It is normal when `dpkg -i` get errors. `apt-get install -f` will continue install paddle, and install dependences. - diff --git a/doc/howto/dev/build_cn.md b/doc/howto/dev/build_cn.md new file mode 100644 index 0000000000000000000000000000000000000000..0b911f7b7509da4a147c65954acb7e7c38f489da --- /dev/null +++ b/doc/howto/dev/build_cn.md @@ -0,0 +1,124 @@ +# 编译PaddlePaddle和运行单元测试 + +## 需要的软硬件 + +为了开发PaddlePaddle,我们需要 + +1. 一台电脑,可以装的是 Linux, BSD, Windows 或者 MacOS 操作系统,以及 +1. Docker。 + +不需要依赖其他任何软件了。即便是 Python 和 GCC 都不需要,因为我们会把所有编译工具都安装进一个 Docker image 里。 + +## 总体流程 + +1. 获取源码 + + ```bash + git clone https://github.com/paddlepaddle/paddle + ``` + +2. 安装开发工具到 Docker image 里 + + ```bash + cd paddle; docker build -t paddle:dev . + ``` + + 请注意这个命令结尾处的 `.`;它表示 `docker build` 应该读取当前目录下的 [`Dockerfile`文件](https://github.com/PaddlePaddle/Paddle/blob/develop/Dockerfile),按照其内容创建一个名为 `paddle:dev` 的 Docker image,并且把各种开发工具安装进去。 + +3. 编译 + + 以下命令启动一个 Docker container 来执行 `paddle:dev` 这个 Docker image,同时把当前目录(源码树根目录)映射为 container 里的 `/paddle` 目录,并且运行 `Dockerfile` 描述的默认入口程序 [`build.sh`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh)。这个脚本调用 `cmake` 和 `make` 来编译 `/paddle` 里的源码,结果输出到 `/paddle/build`,也就是本地的源码树根目录里的 `build` 子目录。 + + ```bash + docker run --rm -v $PWD:/paddle paddle:dev + ``` + + 上述命令编译出一个 CUDA-enabled 版本。如果我们只需要编译一个只支持 CPU 的版本,可以用 + + ```bash + docker run --rm -e WITH_GPU=OFF -v $PWD:/paddle paddle:dev + ``` + +4. 运行单元测试 + + 用本机的第一个 GPU 来运行包括 GPU 单元测试在内的所有单元测试: + + ```bash + NV_GPU=0 nvidia-docker run --rm -v $PWD:/paddle paddle:dev bash -c "cd /paddle/build; ctest" + ``` + + 如果编译的时候我们用了 `WITH_GPU=OFF` 选项,那么编译过程只会产生 CPU-based 单元测试,那么我们也就不需要 nvidia-docker 来运行单元测试了。我们只需要: + + ```bash + docker run --rm -v $PWD:/paddle paddle:dev bash -c "cd /paddle/build; ctest" + ``` + + 有时候我们只想运行一个特定的单元测试,比如 `memory_test`,我们可以 + + ```bash + nvidia-docker run --rm -v $PWD:/paddle paddle:dev bash -c "cd /paddle/build; ctest -V -R memory_test" + ``` + +5. 清理 + + 有时候我们会希望清理掉已经下载的第三方依赖以及已经编译的二进制文件。此时只需要: + + ```bash + rm -rf build + ``` + +## 为什么要 Docker 呀? + +- 什么是 Docker? + + 如果您没有听说 Docker,可以把它想象为一个类似 virtualenv 的系统,但是虚拟的不仅仅是 Python 的运行环境。 + +- Docker 还是虚拟机? + + 有人用虚拟机来类比 Docker。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。 + +- 为什么用 Docker? + + 把工具和配置都安装在一个 Docker image 里可以标准化编译环境。这样如果遇到问题,其他人可以复现问题以便帮助。 + + 另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。 + +- 我可以选择不用Docker吗? + + 当然可以。大家可以用把开发工具安装进入 Docker image 一样的方式,把这些工具安装到本机。这篇文档介绍基于 Docker 的开发流程,是因为这个流程比其他方法都更简便。 + +- 学习 Docker 有多难? + + 理解 Docker 并不难,大概花十分钟看一下[这篇文章](https://zhuanlan.zhihu.com/p/19902938)。这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。 + +- 我可以用 IDE 吗? + + 当然可以,因为源码就在本机上。IDE 默认调用 make 之类的程序来编译源码,我们只需要配置 IDE 来调用 Docker 命令编译源码即可。 + + 很多 PaddlePaddle 开发者使用 Emacs。他们在自己的 `~/.emacs` 配置文件里加两行 + + ```emacs + (global-set-key "\C-cc" 'compile) + (setq compile-command + "docker run --rm -it -v $(git rev-parse --show-toplevel):/paddle paddle:dev") + ``` + + 就可以按 `Ctrl-C` 和 `c` 键来启动编译了。 + +- 可以并行编译吗? + + 是的。我们的 Docker image 运行一个 [Bash 脚本](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh)。这个脚本调用 `make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。 + +## 可能碰到的问题 + +- Docker 需要 sudo + + 如果用自己的电脑开发,自然也就有管理员权限(sudo)了。如果用公用的电脑开发,需要请管理员安装和配置好 Docker。此外,PaddlePaddle 项目在努力开始支持其他不需要 sudo 的集装箱技术,比如 rkt。 + +- 在 Windows/MacOS 上编译很慢 + + Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考[这个issue](https://github.com/PaddlePaddle/Paddle/issues/627)。 + +- 磁盘不够 + + 本文中的例子里,`docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。`docker build` 命令有时候会产生一些中间结果,是没有名字的 images,也会占用磁盘。可以参考[这篇文章](https://zaiste.net/posts/removing_docker_containers/)来清理这些内容。 diff --git a/doc/howto/dev/build_en.md b/doc/howto/dev/build_en.md new file mode 100644 index 0000000000000000000000000000000000000000..d0048e3714a5861a503736879d6c0870e5906c95 --- /dev/null +++ b/doc/howto/dev/build_en.md @@ -0,0 +1,124 @@ +# Build PaddlePaddle from Source Code and Run Unit Test + +## What Developers Need + +To contribute to PaddlePaddle, you need + +1. A computer -- Linux, BSD, Windows, MacOS, and +1. Docker. + +Nothing else. Not even Python and GCC, because you can install all build tools into a Docker image. We run all the tools by running this image. + +## General Process + +1. Retrieve source code. + + ```bash + git clone https://github.com/paddlepaddle/paddle + ``` + +2. Install build tools into a Docker image. + + ```bash + cd paddle; docker build -t paddle:dev . + ``` + + Please be aware of the `.` at the end of the command, which refers to the [`./Dockerfile` file](https://github.com/PaddlePaddle/Paddle/blob/develop/Dockerfile). `docker build` follows instructions in this file to create a Docker image named `paddle:dev`, and installs building tools into it. + +3. Build from source. + + This following command starts a Docker container that executes the Docker image `paddle:dev`, mapping the current directory to `/paddle/` in the container, and runs the default entry-point [`build.sh`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh) as specified in the Dockefile. `build.sh` invokes `cmake` and `make` to build PaddlePaddle source code, which had been mapped to `/paddle`, and writes outputs to `/paddle/build`, which maps to `build` in the current source directory on the computer. + + ```bash + docker run -v $PWD:/paddle paddle:dev + ``` + + Above command builds a CUDA-enabled version. If we want to build a CPU-only version, we can type + + ```bash + docker run -e WITH_GPU=OFF -v $PWD:/paddle paddle:dev + ``` + +4. Run unit tests. + + To run all unit tests using the first GPU of a node: + + ```bash + NV_GPU=0 nvidia-docker run -v $PWD:/paddle paddle:dev bash -c "cd /paddle/build; ctest" + ``` + + If we used `WITH_GPU=OFF` at build time, it generates only CPU-based unit tests, and we don't need nvidia-docker to run them. We can just run + + ```bash + docker run -v $PWD:/paddle paddle:dev bash -c "cd /paddle/build; ctest" + ``` + + Sometimes we want to run a specific unit test, say `memory_test`, we can run + + ```bash + nvidia-docker run -v $PWD:/paddle paddle:dev bash -c "cd /paddle/build; ctest -V -R memory_test" + ``` + +5. Clean Build. + + Sometimes, we might want to clean all thirt-party dependents and built binaries. To do so, just + + ```bash + rm -rf build + ``` + +## Docker, Or Not? + +- What is Docker? + + If you haven't heard of it, consider it something like Python's virtualenv. + +- Docker or virtual machine? + + Some people compare Docker with VMs, but Docker doesn't virtualize any hardware nor running a guest OS, which means there is no compromise on the performance. + +- Why Docker? + + Using a Docker image of build tools standardizes the building environment, which makes it easier for others to reproduce your problems and to help. + + Also, some build tools don't run on Windows or Mac or BSD, but Docker runs almost everywhere, so developers can use whatever computer they want. + +- Can I choose not to use Docker? + + Sure, you don't have to install build tools into a Docker image; instead, you can install them in your local computer. This document exists because Docker would make the development way easier. + +- How difficult is it to learn Docker? + + It takes you ten minutes to read [an introductory article](https://docs.docker.com/get-started) and saves you more than one hour to install all required build tools, configure them, especially when new versions of PaddlePaddle require some new tools. Not even to mention the time saved when other people trying to reproduce the issue you have. + +- Can I use my favorite IDE? + + Yes, of course. The source code resides on your local computer, and you can edit it using whatever editor you like. + + Many PaddlePaddle developers are using Emacs. They add the following few lines into their `~/.emacs` configure file: + + ```emacs + (global-set-key "\C-cc" 'compile) + (setq compile-command + "docker run --rm -it -v $(git rev-parse --show-toplevel):/paddle paddle:dev") + ``` + + so they could type `Ctrl-C` and `c` to build PaddlePaddle from source. + +- Does Docker do parallel building? + + Our building Docker image runs a [Bash script](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh), which calls `make -j$(nproc)` to starts as many processes as the number of your CPU cores. + +## Some Gotchas + +- Docker requires sudo + + An owner of a computer has the administrative privilege, a.k.a., sudo, and Docker requires this privilege to work properly. If you use a shared computer for development, please ask the administrator to install and configure Docker. We will do our best to support rkt, another container technology that doesn't require sudo. + +- Docker on Windows/MacOS builds slowly + + On Windows and MacOS, Docker containers run in a Linux VM. You might want to give this VM some more memory and CPUs so to make the building efficient. Please refer to [this issue](https://github.com/PaddlePaddle/Paddle/issues/627) for details. + +- Not enough disk space + + Examples in this article uses option `--rm` with the `docker run` command. This option ensures that stopped containers do not exist on hard disks. We can use `docker ps -a` to list all containers, including stopped. Sometimes `docker build` generates some intermediate dangling images, which also take disk space. To clean them, please refer to [this article](https://zaiste.net/posts/removing_docker_containers/). diff --git a/doc/howto/dev/new_op_cn.md b/doc/howto/dev/new_op_cn.md new file mode 100644 index 0000000000000000000000000000000000000000..7f8da2da5a0d42ff065265c5d173d0e6167dc08a --- /dev/null +++ b/doc/howto/dev/new_op_cn.md @@ -0,0 +1,324 @@ +# 如何写新的Operator + + - [概念简介](#概念简介) + - [实现C++类](#实现C++类) + - [定义ProtoMaker类](#定义ProtoMaker类) + - [定义Operator类](#定义Operator类) + - [定义OpKernel类](#定义OpKernel类) + - [注册Operator](#注册Operator) + - [编译](#编译) + - [绑定Python](#绑定Python) + - [实现单元测试](#实现单元测试) + - [前向Operator单测](#前向Operator单测) + - [反向Operator单测](#反向Operator单测) + - [编译和执行](#编译和执行) + + +## 概念简介 + +简单介绍需要用到基类,详细介绍请参考设计文档。 + +- `framework::OperatorBase`: Operator(简写,Op)基类。 +- `framework::OpKernel`: Op计算函数的基类,称作Kernel。 +- `framework::OperatorWithKernel`:继承自OperatorBase,Op有计算函数,称作有Kernel。 +- `class OpProtoAndCheckerMaker`:描述该Op的输入、输出、属性、注释,主要用于Python API接口生成 + +依据是否包含kernel,将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自`OperatorBase`,后者继承自`OperatorWithKernel`。本教程主要介绍带Kernel的Op如何写,简单总结Op需要包含的内容如下: + + + 内容 | 定义位置 +-------------- | :---------------------- +OpProtoMake定义 | `.cc`文件,Backward Op不需要定义OpProtoMake +Op定义 | `.cc`文件 +Kernel实现 | CPU、GPU共享Kernel在`.h`文件,否则,CPU可以在`.cc`文件,GPU可在`.cu`文件。 +注册Op | Op注册在`.cc`文件;Kernel注册CPU在`.cc`文件,GPU在`.cu`文件 + + +下面以矩阵乘操作,即[MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc)为例来介绍如何写带Kernel的Operator。 + + +## 实现C++类 + + +### 1. 定义ProtoMaker类 + +矩阵乘的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。首先定义`ProtoMaker`来描述该Op的输入、输出及注释: + +``` +class MulOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The first input of mul op"); + AddInput("Y", "The second input of mul op"); + AddOutput("Out", "The output of mul op"); + AddComment(R"DOC( +Two Element Mul Operator. +The equation is: Out = X * Y +)DOC"); + } +}; +``` + +[`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43)继承自`framework::OpProtoAndCheckerMaker`,构造函数包括2个: + + - `framework::OpProto` : 前者存储Op的输入输出和参数属性,将用于Python API接口的生成。 + - `framework::OpAttrChecker` :后者用于检查参数属性的合法性。 + +构造函数里通过`AddInput`添加输入参数,通过`AddOutput`添加输出参数,通过`AddComment`添加该Op的注释,这些函数会将对应内容添加到`OpProto`中。 + +在`MulOp`中添加两个输入`X`和`Y`,添加了一个输出`Out`,并解释了各自含义,该命名尽可能的规范。 + + +再举个[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)的例子: + +``` +template +class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input tensor of scale operator.").NotInGradient(); + AddOutput("Out", "The output tensor of scale operator.").NotInGradient(); + AddComment(R"DOC(Scale operator +The equation is: Out = scale*X +)DOC"); + AddAttr("scale", "scale of scale operator.").SetDefault(1.0); + } +}; +``` + + 在这个例子里,两处不同: + + - `AddInput("X","...").NotInGradient()` : 表示`X`这个输入不参与`ScaleOp`对应的梯度Op计算之中。 + - `AddAttr("scale", "...").SetDefault(1.0);` : 增加`scale`系数,作为参数属性,并且设置默认值为1.0。 + + +### 2. 定义Operator类 + + +```c++ +class MulOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto dim0 = ctx.Input("X")->dims(); + auto dim1 = ctx.Input("Y")->dims(); + PADDLE_ENFORCE_EQ(dim0.size(), 2, + "input X(%s) should be a tensor with 2 dims, a matrix", + ctx.op_.Input("X")); + PADDLE_ENFORCE_EQ(dim1.size(), 2, + "input Y(%s) should be a tensor with 2 dims, a matrix", + ctx.op_.Input("Y")); + PADDLE_ENFORCE_EQ( + dim0[1], dim1[0], + "First matrix's width must be equal with second matrix's height."); + ctx.Output("Out")->Resize({dim0[0], dim1[1]}); + } +}; +``` + +[`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22)继承自`OperatorWithKernel`。`public`成员: + +```c++ +using framework::OperatorWithKernel::OperatorWithKernel; +``` + +这句表示使用基类`OperatorWithKernel`的构造函数,也可写成: + +```c++ +MulOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} +``` + +还需要重写`InferShape`接口。`InferShape`为const函数,不能修改Op的成员变量,参数为`const framework::InferShapeContext &ctx`,通过该参数可获取到输入输出以及属性。它的功能是: + + - 1). 做检查, 尽早报错:检查输入数据维度、类型等是否合法。 + - 2). 设置输出Tensor的形状。 + +通常`OpProtoMaker`和`Op`类的定义写在`.cc`文件中,和要讲到的注册函数一起放在`.cc`中 + +### 3. 定义OpKernel类 + +```C++ +template +class MulKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* X = context.Input("X"); + auto* Y = context.Input("Y"); + auto* Z = context.Output("Out"); + Z->mutable_data(context.GetPlace()); + auto* device_context = + const_cast(context.device_context_); + math::matmul(*X, false, *Y, false, 1, Z, 0, device_context); + } +}; +``` + +`MulKernel`继承自`framework::OpKernel`,带有模板参数: + + - `typename Place`: 表示设备类型,不同设备(CPU、GPU)共享同一个Kernel时,需加该模板参数,不共享则不加,一个不共享的例子是[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 + + - `typename T` : 表示数据类型,如`float`, `double`等。 + +`MulKernel`需要重写`Compute`接口,该接口参数为`const framework::ExecutionContext& context`, `ExecutionContext`相比`InferShapeContext`增加了设备类型,同样可获取到输入输出和属性参数,`Compute`函数里写具体实现时。 + +注意,不同设备(CPU、GPU)共享一个Op定义,是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。`MulOp`的CPU、GPU实现共享同一个`Kernel`,`OpKernel`不共享的例子可以参考[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 + +到此前向Op实现完成,需要在`.cc`文件中注册该op和kernel。反向Op类的定义和Kernel定义与前向Op类似,这里不再重复。但注意,反向Op没有`ProtoMaker`。 + +### 4. 注册Operator + +在`.cc`文件中注册前向、反向Op类,注册CPU Kernel。 + +```c++ +namespace ops = paddle::operators; +REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad); +REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); +REGISTER_OP_CPU_KERNEL(mul_grad, + ops::MulGradKernel); +``` + + - `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`, + - `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。 + - `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulKernel`类。 + +在 `.cu`文件中注册GPU Kernel。 + +```c++ +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); +REGISTER_OP_GPU_KERNEL(mul_grad, + ops::MulGradKernel); +``` + +### 5. 编译 + +在[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt)文件中添加编译。 + +``` +op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function) +``` + +下面命令可以编译: + +``` +make mul_op +``` + +## 绑定Python + +- 绑定Python + + 在 [`paddle/pybind/pybind.cc +`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/pybind.cc)文件中添加该类: + + ``` + USE_OP(mul); + ``` + 如果只实现了CPU版本,则使用`USE_CPU_ONLY_OP`: + + ``` + USE_CPU_ONLY_OP(gather); + ``` + + 使用`USE_OP`告知编译器需要链接该Op的目标文件,具体解释参考[代码注释](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h#L81)。 + + + - 生成库 + + 在 [`paddle/pybind/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt)文件添加类到`DEPS`中,使得该Op可以链接到生成的lib库中。 + + ``` + if(WITH_PYTHON) + cc_library(paddle_pybind SHARED + SRCS pybind.cc + DEPS pybind python backward + mul_op + minus_op) + endif(WITH_PYTHON) + ``` + +## 实现单元测试 + +单测包括对比前向Op不同设备(CPU、GPU)的实现、对比反向OP不同设备(CPU、GPU)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单测](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py)。 + +### 前向Operator单测 + +前向Op单测继承自`unittest.TestCase`,并定义元类`__metaclass__ = OpTestMeta`,具体单测流程在`OpTestMeta`里完成。需在`setUp`函数定义输入输出和属性参数,以及Python对比的输出值。 + +``` +import unittest +import numpy as np +from gradient_checker import GradientChecker, create_op +from op_test_util import OpTestMeta + +class TestMulOp(unittest.TestCase): + __metaclass__ = OpTestMeta + + def setUp(self): + self.type = "mul" + self.inputs = { + 'X': np.random.random((32, 84)).astype("float32"), + 'Y': np.random.random((84, 100)).astype("float32") + } + self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} +``` + 首先需要`import`必要的包,下面详细解释其他值: + + - `self.type = "mul" ` : 定义类型,和注册的类型一致。 + - `self.inputs` : 定义输入,类型为Numpy.array,并初始化。 + - `self.outputs` : 定义输出,并得到Python结算结果。 + + +### 反向Operator单测 + +反向Op单测继承自`GradientChecker`,而`GradientChecker`集成自`unittest.TestCase`,所以反向单测函数需要`test_`开头。 + + ``` + class MulGradOpTest(GradientChecker): + def test_mul(self): + op = create_op("mul") + inputs = { + 'X': np.random.random((32, 84)).astype("float32"), + 'Y': np.random.random((84, 100)).astype("float32") + } + self.compare_grad(op, inputs) + # mul op will enlarge the relative error + self.check_grad( + op, inputs, set(["X", "Y"]), "Out", max_relative_error=0.5) + ``` + + - 调用`create_op("mul")`创建反向Op对应的前向Op。 + - 定义输入`inputs`。 + - 调用`compare_grad`函数对比CPU、GPU计算结果。 + - 调用`check_grad`检查梯度稳定性,这里采用数值法检测梯度正确性。 + - 第一个参数`op` : 前向op。 + - 第二个参数`inputs` : 输入词典,词典的Key和`ProtoMaker`定义保持一致。 + - 第三个参数`set(["X", "Y"])` : 指定对输入变量`X`、`Y`做梯度检测。 + - 第四个参数`"Out"` : 指定前向网络最终的输出目标变量`Out` + + +### 编译和执行 + +单测完成之后,在[`python/paddle/v2/framework/tests/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/CMakeLists.txt)里添加编译: + +``` +py_test(test_mul_op SRCS test_mul_op.py) +``` + +编译时需要打开`WITH_TESTING`, 即 `cmake paddle_dir -DWITH_TESTING=ON`,编译成功之后执行单测命令为: + +``` +make test ARGS="-R test_mul_op -V" +``` +或者: + +``` +ctest -R test_mul_op +``` diff --git a/doc/howto/index_cn.rst b/doc/howto/index_cn.rst index 26449a6365843b526b3ac3111b337d2f17524c9d..0608aa30968b0e8474eef330e4d2cc63c9def97d 100644 --- a/doc/howto/index_cn.rst +++ b/doc/howto/index_cn.rst @@ -19,6 +19,7 @@ .. toctree:: :maxdepth: 1 + dev/build_cn.rst dev/write_docs_cn.rst dev/contribute_to_paddle_cn.md diff --git a/doc/howto/index_en.rst b/doc/howto/index_en.rst index 1fbfcd260b912078f00ed5b720ed607db725c4e2..1b6034be4edffd2cbc822018b733b9a3836ea84a 100644 --- a/doc/howto/index_en.rst +++ b/doc/howto/index_en.rst @@ -18,6 +18,7 @@ Development .. toctree:: :maxdepth: 1 + dev/build_en.rst dev/new_layer_en.rst dev/contribute_to_paddle_en.md diff --git a/doc/index_en.rst b/doc/index_en.rst index 168c7667c61da677905585d6c4b5037ce80b3765..64684b8b9b27e245c6b32ea28809d3bbce22fab9 100644 --- a/doc/index_en.rst +++ b/doc/index_en.rst @@ -7,4 +7,3 @@ PaddlePaddle Documentation getstarted/index_en.rst howto/index_en.rst api/index_en.rst - about/index_en.rst diff --git a/go/master/client.go b/go/master/client.go index 62801b9b7fe85fe27147b12160f48d988623d547..f04cf50ce3cf765a79cbe555d3edb68f3dbb911e 100644 --- a/go/master/client.go +++ b/go/master/client.go @@ -63,13 +63,24 @@ func WithAddr(addr string) func(c *Client) error { // WithEtcd sets the client to use etcd for master discovery. func WithEtcd(endpoints []string, timeout time.Duration) func(*Client) error { return func(c *Client) error { - cli, err := clientv3.New(clientv3.Config{ - Endpoints: endpoints, - DialTimeout: timeout, - }) - if err != nil { + var cli *clientv3.Client + f := func() error { + var err error + cli, err = clientv3.New(clientv3.Config{ + Endpoints: endpoints, + DialTimeout: timeout, + }) return err } + for { + err := f() + if err != nil { + log.Warningln(err) + } else { + break + } + time.Sleep(time.Second) + } ch := make(chan string, 1) a, err := GetKey(cli, DefaultAddrPath, timeout) @@ -101,9 +112,6 @@ func NewClient(opts ...func(*Client) error) (*Client, error) { } } c.ch = make(chan record, c.bufSize) - // FIXME: connection is created asyncrosly in monitorMaster go routine, - // ensure the connection is ready for use before calling c.addClient. - time.Sleep(time.Second) return c, nil } diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt index cf61a243e9df2fd4a580e41f07cb0a22dcc72083..ec866b2907d4623e8a94a249bc9af624071ade97 100644 --- a/paddle/CMakeLists.txt +++ b/paddle/CMakeLists.txt @@ -15,6 +15,7 @@ if(Boost_FOUND) add_subdirectory(platform) add_subdirectory(framework) add_subdirectory(operators) + add_subdirectory(pybind) endif() if(WITH_C_API) diff --git a/paddle/capi/CMakeLists.txt b/paddle/capi/CMakeLists.txt index 11022d17541476c97a2b29be8eb8fecce7e39435..dde99ab3400be4e61bfe119fc272270518acf070 100644 --- a/paddle/capi/CMakeLists.txt +++ b/paddle/capi/CMakeLists.txt @@ -53,7 +53,10 @@ add_custom_target(paddle_capi_whole ALL set_target_properties(paddle_capi_whole PROPERTIES IMPORTED_LOCATION ${CMAKE_CURRENT_BINARY_DIR}/${capi_whole_library}) +set(LINK_FLAGS " -Wl,--retain-symbols-file ${CMAKE_CURRENT_SOURCE_DIR}/export.sym -Wl,--version-script ${CMAKE_CURRENT_SOURCE_DIR}/export.map") +# TODO: merge mkl into paddle_capi_shared add_library(paddle_capi_shared SHARED ${CAPI_SOURCES}) +set_target_properties(paddle_capi_shared PROPERTIES LINK_FLAGS "${LINK_FLAGS}") target_include_directories(paddle_capi_shared PUBLIC ${CMAKE_CURRENT_BINARY_DIR}) link_paddle_exe(paddle_capi_shared) diff --git a/paddle/capi/export.map b/paddle/capi/export.map new file mode 100644 index 0000000000000000000000000000000000000000..8d673f675dd5511f554bff9519a8c078e11868bd --- /dev/null +++ b/paddle/capi/export.map @@ -0,0 +1,6 @@ +{ + global: + paddle_*; + local: + *; +}; diff --git a/paddle/capi/export.sym b/paddle/capi/export.sym new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/paddle/cuda/include/hl_cnn.h b/paddle/cuda/include/hl_cnn.h index 9f84db72da24b0e678520b077f9cba7ffc2d589a..6b56d9ec8d3daae96aaaa04ed79cb637331e2281 100644 --- a/paddle/cuda/include/hl_cnn.h +++ b/paddle/cuda/include/hl_cnn.h @@ -173,6 +173,96 @@ extern void hl_avgpool_backward(const int frameCnt, real* backGrad, const int outStride); +extern void hl_maxpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real* tgtData, + real* maxPoolIdxData, + const int tgtStride); + +extern void hl_maxpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real scaleA, + real scaleB, + real* targetGrad, + real* maxPoolIdxData, + const int outStride); + +extern void hl_avgpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real* tgtData, + const int tgtStride); + +extern void hl_avgpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + int paddingD, + int paddingH, + int paddingW, + real scaleA, + real scaleB, + real* backGrad, + const int outStride); + /** * @brief Bilinear interpolation forward. * @@ -275,4 +365,4 @@ extern void hl_maxout_backward(real* inGrad, size_t featLen, size_t groups); -#endif /* HL_CNN_H_ */ +#endif // HL_CNN_H_ diff --git a/paddle/cuda/include/hl_cpu_gru.cuh b/paddle/cuda/include/hl_cpu_gru.cuh index 732799a28b22ec5a6c99abb3603c34648e9d800b..e4f6bf42c61694e9826a127c9628730cfd43ada7 100644 --- a/paddle/cuda/include/hl_cpu_gru.cuh +++ b/paddle/cuda/include/hl_cpu_gru.cuh @@ -18,14 +18,6 @@ limitations under the License. */ #ifndef __NVCC__ -#include "paddle/math/MathFunctions.h" - -// #ifndef PADDLE_TYPE_DOUBLE -// #define CBLAS_GEMM paddle::gemm -// #else -// #define CBLAS_GEMM paddle::gemm -// #endif - template void hl_naive_gru_forward_reset_output(OpResetOutput opResetOutput, real *gateValue, @@ -210,51 +202,6 @@ inline void forward_final_output(OpFinalOutput opFinalOutput, } } -template -void hl_cpu_gru_forward(OpResetOutput opResetOutput, - OpFinalOutput opFinalOutput, - hl_gru_value value, - int frameSize, - int batchSize, - hl_activation_mode_t active_node, - hl_activation_mode_t active_gate) { - if (value.prevOutValue) { -// CBLAS_GEMM(CblasNoTrans, -// CblasNoTrans, -// batchSize, -// 2 * frameSize, -// frameSize, -// 1, -// value.prevOutValue, -// frameSize, -// value.gateWeight, -// frameSize * 2, -// 1, -// value.gateValue, -// frameSize * 3); - } - - forward_reset_output(opResetOutput, value, frameSize, batchSize, active_gate); - - if (value.prevOutValue) { -// CBLAS_GEMM(CblasNoTrans, -// CblasNoTrans, -// batchSize, -// frameSize, -// frameSize, -// 1, -// value.resetOutputValue, -// frameSize, -// value.stateWeight, -// frameSize, -// 1, -// value.gateValue + frameSize * 2, -// frameSize * 3); - } - - forward_final_output(opFinalOutput, value, frameSize, batchSize, active_node); -} - template void hl_naive_gru_backward_state_grad(OpStateGrad opStateGrad, real *gateValue, @@ -525,86 +472,6 @@ inline void backward_reset_grad(OpResetGrad opResetGrad, } } -template -void hl_cpu_gru_backward(OpStateGrad opStateGrad, - OpResetGrad opResetGrad, - hl_gru_value value, - hl_gru_grad grad, - int frameSize, - int batchSize, - hl_activation_mode_t active_node, - hl_activation_mode_t active_gate) { - backward_state_grad(opStateGrad, value, grad, - frameSize, batchSize, active_node); - - if (value.prevOutValue && grad.prevOutGrad) { -// CBLAS_GEMM(CblasNoTrans, -// CblasTrans, -// batchSize, -// frameSize, -// frameSize, -// 1, -// grad.gateGrad + frameSize * 2, -// frameSize * 3, -// value.stateWeight, -// frameSize, -// 0, -// grad.resetOutputGrad, -// frameSize); - - if (grad.stateWeightGrad) { -// CBLAS_GEMM(CblasTrans, -// CblasNoTrans, -// frameSize, -// frameSize, -// batchSize, -// 1, -// value.resetOutputValue, -// frameSize, -// grad.gateGrad + frameSize * 2, -// frameSize * 3, -// 1, -// grad.stateWeightGrad, -// frameSize); - } - } - - backward_reset_grad(opResetGrad, value, grad, - frameSize, batchSize, active_gate); - - if (grad.prevOutGrad && value.prevOutValue) { -// CBLAS_GEMM(CblasNoTrans, -// CblasTrans, -// batchSize, -// frameSize, -// frameSize * 2, -// 1, -// grad.gateGrad, -// frameSize * 3, -// value.gateWeight, -// frameSize * 2, -// 1, -// grad.prevOutGrad, -// frameSize); - - if (grad.gateWeightGrad) { -// CBLAS_GEMM(CblasTrans, -// CblasNoTrans, -// frameSize, -// frameSize * 2, -// batchSize, -// 1, -// value.prevOutValue, -// frameSize, -// grad.gateGrad, -// frameSize * 3, -// 1, -// grad.gateWeightGrad, -// frameSize * 2); - } - } -} - #endif #endif // HL_CPU_GRU_CUH_ diff --git a/paddle/cuda/include/hl_cuda_cudnn.h b/paddle/cuda/include/hl_cuda_cudnn.h index db18e4912b63ec18dcfff3ef3aaf0c7947e0af18..3f68c62de6d9b3aaadc9180d86159089dc728ea9 100644 --- a/paddle/cuda/include/hl_cuda_cudnn.h +++ b/paddle/cuda/include/hl_cuda_cudnn.h @@ -214,7 +214,8 @@ extern void hl_conv_workspace(hl_tensor_descriptor input, int* convBwdDataAlgo, size_t* bwdDataLimitBytes, int* convBwdFilterAlgo, - size_t* bwdFilterLimitBytes); + size_t* bwdFilterLimitBytes, + bool useDilation); /** * @brief destroy filter descriptor. @@ -242,7 +243,9 @@ extern void hl_create_convolution_descriptor(hl_convolution_descriptor* conv, int padding_height, int padding_width, int stride_height, - int stride_width); + int stride_width, + int dilation_h = 1, + int dilation_w = 1); /** * @brief reset convolution descriptor. @@ -262,7 +265,9 @@ extern void hl_reset_convolution_descriptor(hl_convolution_descriptor conv, int padding_height, int padding_width, int stride_height, - int stride_width); + int stride_width, + int dilation_h = 1, + int dilation_w = 1); /** * @brief destroy convolution descriptor. diff --git a/paddle/cuda/include/hl_matrix.h b/paddle/cuda/include/hl_matrix.h index eb454c59c1e58cf2b4817b4cb3230b9d75e320ac..c7f25109972195fb56b9e96c4b68d952363e6338 100644 --- a/paddle/cuda/include/hl_matrix.h +++ b/paddle/cuda/include/hl_matrix.h @@ -224,4 +224,80 @@ extern void hl_matrix_collect_shared_bias(real* B_d, extern void hl_matrix_rotate( real* mat, real* matRot, int dimM, int dimN, bool clockWise); +/** + * @brief Matrix vol2Col: Convert 3D volume into col matrix + * + * @param[in] matSrc input matrix. + * @param[in] channel channel of matSrc. + * @param[in] depth depth of matSrc. + * @param[in] height height of matSrc. + * @param[in] width width of matSrc. + * @param[in] filterD depth of filter. + * @param[in] filterH height of filter. + * @param[in] filterW width of filter. + * @param[in] strideD stride in the depth. + * @param[in] strideH stride in the height. + * @param[in] strideW stride in the width. + * @param[in] paddingD padding in the depth. + * @param[in] paddingH padding in the height. + * @param[in] paddingW padding in the width. + * @param[out] dataDst output matrix. + * + */ +extern void hl_matrix_vol2Col(const real* dataSrc, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real* dataDst); + +/** + * @brief Matrix col2Vol: Convert col matrix into 3D volume + * + * @param[out] matDst output matrix. + * @param[in] channel channel of matDst. + * @param[in] depth depth of matDst. + * @param[in] height height of matDst. + * @param[in] width width of matDst. + * @param[in] filterD depth of filter. + * @param[in] filterH height of filter. + * @param[in] filterW width of filter. + * @param[in] strideD stride in the depth. + * @param[in] strideH stride in the height. + * @param[in] strideW stride in the width. + * @param[in] paddingD padding in the depth. + * @param[in] paddingH padding in the height. + * @param[in] paddingW padding in the width. + * @param[in] matSrc input matrix. + * @param[in] beta input + * @param[in] alpha input + * + */ +extern void hl_matrix_col2Vol(real* dataDst, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + const real* dataSrc, + real alpha, + real beta); + #endif /* HL_MATRIX_H_ */ diff --git a/paddle/cuda/include/stub/hl_cnn_stub.h b/paddle/cuda/include/stub/hl_cnn_stub.h index 2bbb9fa8dfd5eeac9d55aa67a28ebfbffa2acd46..a76dbf0b6578de0606702ad1af227fbf6e1cd62e 100644 --- a/paddle/cuda/include/stub/hl_cnn_stub.h +++ b/paddle/cuda/include/stub/hl_cnn_stub.h @@ -87,6 +87,96 @@ inline void hl_avgpool_backward(const int frameCnt, real* backGrad, const int outStride) {} +inline void hl_maxpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real* tgtData, + real* maxPoolIdxData, + const int tgtStride) {} + +inline void hl_maxpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real scaleA, + real scaleB, + real* targetGrad, + real* maxPoolIdxData, + const int outStride) {} + +inline void hl_avgpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real* tgtData, + const int tgtStride) {} + +inline void hl_avgpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real scaleA, + real scaleB, + real* backGrad, + const int outStride) {} + inline void hl_bilinear_forward(const real* inData, const size_t inImgH, const size_t inImgW, diff --git a/paddle/cuda/include/stub/hl_cuda_cudnn_stub.h b/paddle/cuda/include/stub/hl_cuda_cudnn_stub.h index abd0d6b09901a7cd124c245e359f9d38f52bda26..3afcc6fa85a4a6a03697663719b6ab685897b68b 100644 --- a/paddle/cuda/include/stub/hl_cuda_cudnn_stub.h +++ b/paddle/cuda/include/stub/hl_cuda_cudnn_stub.h @@ -78,7 +78,9 @@ inline void hl_create_convolution_descriptor(hl_convolution_descriptor* conv, int padding_height, int padding_width, int stride_height, - int stride_width) {} + int stride_width, + int dilation_h, + int dilation_w) {} inline void hl_reset_convolution_descriptor(hl_convolution_descriptor conv, hl_tensor_descriptor image, @@ -86,7 +88,9 @@ inline void hl_reset_convolution_descriptor(hl_convolution_descriptor conv, int padding_height, int padding_width, int stride_height, - int stride_width) {} + int stride_width, + int dilation_h, + int dilation_w) {} inline void hl_destroy_convolution_descriptor(hl_convolution_descriptor conv) {} @@ -99,7 +103,8 @@ inline void hl_conv_workspace(hl_tensor_descriptor input, int* convBwdDataAlgo, size_t* bwdDataLimitBytes, int* convBwdFilterAlgo, - size_t* bwdFilterLimitBytes) {} + size_t* bwdFilterLimitBytes, + bool useDilation) {} inline void hl_convolution_forward(hl_tensor_descriptor input, real* input_data, diff --git a/paddle/cuda/include/stub/hl_matrix_stub.h b/paddle/cuda/include/stub/hl_matrix_stub.h index 127cb7e27983e8ff2c1ff6ef5108b5f8c5bd6ca5..6ac332945c8f09fef23f35680ba5bb1d9ba9f4fd 100644 --- a/paddle/cuda/include/stub/hl_matrix_stub.h +++ b/paddle/cuda/include/stub/hl_matrix_stub.h @@ -99,4 +99,38 @@ inline void hl_matrix_collect_shared_bias(real* B_d, inline void hl_matrix_rotate( real* mat, real* matRot, int dimM, int dimN, bool clockWise) {} +inline void hl_matrix_vol2Col(const real* dataSrc, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real* dataDst) {} + +inline void hl_matrix_col2Vol(real* dataDst, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + const real* dataSrc, + real alpha, + real beta) {} + #endif // HL_MATRIX_STUB_H_ diff --git a/paddle/cuda/src/hl_cuda_cnn.cu b/paddle/cuda/src/hl_cuda_cnn.cu index aac19b1ea566ad69f1f7374e393676c8debd9883..9ba3d142617537c0160f6dccb86ddca43ada15a5 100644 --- a/paddle/cuda/src/hl_cuda_cnn.cu +++ b/paddle/cuda/src/hl_cuda_cnn.cu @@ -353,6 +353,433 @@ void hl_avgpool_backward(const int frameCnt, CHECK_SYNC("hl_avgpool_backward failed"); } +__global__ void KeMaxPool3DForward(const int nthreads, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int ksizeD, + const int ksizeH, + const int ksizeW, + const int strideD, + const int strideH, + const int strideW, + const int padD, + const int padH, + const int padW, + real* tgtData, + real* maxPoolIdxData, + const int tgtStride) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads); + index += blockDim.x * gridDim.x) { + int pw = index % pooledW; + int ph = (index / pooledW) % pooledH; + int pd = (index / pooledW / pooledH) % pooledD; + int c = (index / pooledW / pooledH / pooledD) % channels; + int frameNum = index / pooledW / pooledH / pooledD / channels; + int dstart = pd * strideD - padD; + int hstart = ph * strideH - padH; + int wstart = pw * strideW - padW; + int dend = min(dstart + ksizeD, depth); + int hend = min(hstart + ksizeH, height); + int wend = min(wstart + ksizeW, width); + dstart = max(dstart, 0); + hstart = max(hstart, 0); + wstart = max(wstart, 0); + real maxval = -FLT_MAX; + int maxIdx = -1; + inputData += (frameNum * channels + c) * depth * height * width; + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + if (maxval < inputData[(d * height + h) * width + w]) { + maxval = inputData[(d * height + h) * width + w]; + maxIdx = (d * height + h) * width + w; + } + } + } + } + int tgtIndex = + index % (pooledW * pooledH * pooledD * channels) + frameNum * tgtStride; + tgtData[tgtIndex] = maxval; + maxPoolIdxData[tgtIndex] = maxIdx; + } +} + +void hl_maxpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int padD, + const int padH, + const int padW, + real* tgtData, + real* maxPoolIdxData, + const int tgtStride) { + int num_kernels = pooledD * pooledH * pooledW * channels * frameCnt; + int blocks = (num_kernels + 1024 - 1) / 1024; + dim3 threads(1024, 1); + dim3 grid(blocks, 1); + + KeMaxPool3DForward<<>>(num_kernels, + inputData, + channels, + depth, + height, + width, + pooledD, + pooledH, + pooledW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + padD, + padH, + padW, + tgtData, + maxPoolIdxData, + tgtStride); + CHECK_SYNC("hl_maxpool3D_forward failed"); +} + +__global__ void KeMaxPool3DBackward(const int nthreads, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int padD, + const int padH, + const int padW, + real scaleA, + real scaleB, + real* targetGrad, + real* maxPoolIdxData, + const int outStride) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads); + index += blockDim.x * gridDim.x) { + int offsetW = index % width; + int offsetH = (index / width) % height; + int offsetD = (index / width / height) % depth; + int offsetC = (index / width / height / depth) % channels; + int frameNum = index / width / height / depth / channels; + + int pdstart = + (offsetD + padD < sizeZ) ? 0 : (offsetD + padD - sizeZ) / strideD + 1; + int phstart = + (offsetH + padH < sizeY) ? 0 : (offsetH + padH - sizeY) / strideH + 1; + int pwstart = + (offsetW + padW < sizeX) ? 0 : (offsetW + padW - sizeX) / strideW + 1; + int pdend = min((offsetD + padD) / strideD + 1, pooledD); + int phend = min((offsetH + padH) / strideH + 1, pooledH); + int pwend = min((offsetW + padW) / strideW + 1, pooledW); + + real gradient = 0; + outGrad += ((frameNum * channels + offsetC) * pooledD * pooledH * pooledW); + maxPoolIdxData += + ((frameNum * channels + offsetC) * pooledD * pooledH * pooledW); + for (int pd = pdstart; pd < pdend; ++pd) { + for (int ph = phstart; ph < phend; ++ph) { + for (int pw = pwstart; pw < pwend; ++pw) { + if (((offsetD * height + offsetH) * width + offsetW) == + maxPoolIdxData[(pd * pooledH + ph) * pooledW + pw]) + gradient += outGrad[(pd * pooledH + ph) * pooledW + pw]; + } + } + } + targetGrad[index] = scaleA * gradient + scaleB * targetGrad[index]; + } +} + +void hl_maxpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int outputD, + const int outputH, + const int outputW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real scaleA, + real scaleB, + real* targetGrad, + real* maxPoolIdxData, + const int outStride) { + int num_kernels = depth * height * width * channels * frameCnt; + int blocks = (num_kernels + 1024 - 1) / 1024; + + KeMaxPool3DBackward<<>>(num_kernels, + outGrad, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + scaleA, + scaleB, + targetGrad, + maxPoolIdxData, + outStride); + CHECK_SYNC("hl_maxpool3D_backward"); +} + +__global__ void KeAvgPool3DForward(const int nthreads, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int padD, + const int padH, + const int padW, + real* tgtData, + const int tgtStride) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads); + index += blockDim.x * gridDim.x) { + int pw = index % pooledW; + int ph = (index / pooledW) % pooledH; + int pd = (index / pooledW / pooledH) % pooledD; + int c = (index / pooledW / pooledH / pooledD) % channels; + int frameNum = index / pooledW / pooledH / pooledD / channels; + int dstart = pd * strideD - padD; + int hstart = ph * strideH - padH; + int wstart = pw * strideW - padW; + int dend = min(dstart + sizeZ, depth + padD); + int hend = min(hstart + sizeY, height + padH); + int wend = min(wstart + sizeX, width + padW); + int pool_size = (dend - dstart) * (hend - hstart) * (wend - wstart); + dstart = max(dstart, 0); + hstart = max(hstart, 0); + wstart = max(wstart, 0); + dend = min(dend, depth); + hend = min(hend, height); + wend = min(wend, width); + + real aveval = 0; + inputData += (frameNum * channels + c) * depth * height * width; + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + aveval += inputData[(d * height + h) * width + w]; + } + } + } + int tgtIndex = + index % (pooledW * pooledH * pooledD * channels) + frameNum * tgtStride; + tgtData[tgtIndex] = aveval / pool_size; + } +} + +void hl_avgpool3D_forward(const int frameCnt, + const real* inputData, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int paddingD, + const int paddingH, + const int paddingW, + real* tgtData, + const int tgtStride) { + int num_kernels = pooledD * pooledH * pooledW * channels * frameCnt; + int blocks = (num_kernels + 1024 - 1) / 1024; + KeAvgPool3DForward<<>>(num_kernels, + inputData, + channels, + depth, + height, + width, + pooledD, + pooledH, + pooledW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + tgtData, + tgtStride); + CHECK_SYNC("hl_avgpool3D_forward failed"); +} + +__global__ void KeAvgPool3DBackward(const int nthreads, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int pooledD, + const int pooledH, + const int pooledW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + const int padD, + const int padH, + const int padW, + real scaleA, + real scaleB, + real* tgtGrad, + const int outStride) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < (nthreads); + index += blockDim.x * gridDim.x) { + int offsetW = index % width + padW; + int offsetH = (index / width) % height + padH; + int offsetD = (index / width / height) % depth + padD; + int offsetC = (index / width / height / depth) % channels; + int frameNum = index / width / height / depth / channels; + + int pdstart = (offsetD < sizeZ) ? 0 : (offsetD - sizeZ) / strideD + 1; + int phstart = (offsetH < sizeY) ? 0 : (offsetH - sizeY) / strideH + 1; + int pwstart = (offsetW < sizeX) ? 0 : (offsetW - sizeX) / strideW + 1; + int pdend = min(offsetD / strideD + 1, pooledD); + int phend = min(offsetH / strideH + 1, pooledH); + int pwend = min(offsetW / strideW + 1, pooledW); + + real gradient = 0; + outGrad += (frameNum * channels + offsetC) * pooledD * pooledH * pooledW; + + for (int pd = pdstart; pd < pdend; ++pd) { + for (int ph = phstart; ph < phend; ++ph) { + for (int pw = pwstart; pw < pwend; ++pw) { + // figure out the pooling size + int dstart = pd * strideD - padD; + int hstart = ph * strideH - padH; + int wstart = pw * strideW - padW; + int dend = min(dstart + sizeZ, depth + padD); + int hend = min(hstart + sizeY, height + padH); + int wend = min(wstart + sizeX, width + padW); + int poolsize = (dend - dstart) * (hend - hstart) * (wend - wstart); + gradient += outGrad[(pd * pooledH + ph) * pooledW + pw] / poolsize; + } + } + } + tgtGrad[index] = scaleA * gradient + scaleB * tgtGrad[index]; + } +} + +void hl_avgpool3D_backward(const int frameCnt, + const real* outGrad, + const int channels, + const int depth, + const int height, + const int width, + const int outputD, + const int outputH, + const int outputW, + const int sizeZ, + const int sizeY, + const int sizeX, + const int strideD, + const int strideH, + const int strideW, + int paddingD, + int paddingH, + int paddingW, + real scaleA, + real scaleB, + real* backGrad, + const int outStride) { + int num_kernels = depth * height * width * channels * frameCnt; + int blocks = (num_kernels + 1024 - 1) / 1024; + + KeAvgPool3DBackward<<>>(num_kernels, + outGrad, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + scaleA, + scaleB, + backGrad, + outStride); + CHECK_SYNC("hl_avgpool3D_backward failed"); +} + __global__ void KeBilinearInterpFw(const real* in, const size_t inImgH, const size_t inImgW, diff --git a/paddle/cuda/src/hl_cuda_cudnn.cc b/paddle/cuda/src/hl_cuda_cudnn.cc index 78642a17443b0b4d81defaa46579332ef20c71a1..f38ef692558b908ed65d2c84821bbb7c3b439742 100644 --- a/paddle/cuda/src/hl_cuda_cudnn.cc +++ b/paddle/cuda/src/hl_cuda_cudnn.cc @@ -201,7 +201,8 @@ void hl_conv_workspace(hl_tensor_descriptor input, int* convBwdDataAlgo, size_t* bwdDataLimitBytes, int* convBwdFilterAlgo, - size_t* bwdFilterLimitBytes) { + size_t* bwdFilterLimitBytes, + bool useDilation) { #if CUDNN_VERSION >= 4000 CHECK_NOTNULL(input); @@ -213,21 +214,60 @@ void hl_conv_workspace(hl_tensor_descriptor input, size_t memoryLimitBytes = (1LL << 20) * FLAGS_cudnn_conv_workspace_limit_in_mb; + // For dilation + int algo = 0; + // cudnn convolution forward configuration cudnnTensorDescriptor_t fwd_src_desc = GET_TENSOR_DESCRIPTOR(input); cudnnTensorDescriptor_t fwd_dest_desc = GET_TENSOR_DESCRIPTOR(output); cudnnFilterDescriptor_t fwd_filter_desc = GET_FILTER_DESCRIPTOR(filter); cudnnConvolutionDescriptor_t fwd_conv_desc = GET_CONVOLUTION_DESCRIPTOR(conv); + // cudnn convolution backward data configuration + cudnnFilterDescriptor_t bwd_data_filter_desc = GET_FILTER_DESCRIPTOR(filter); + cudnnTensorDescriptor_t bwd_data_diff_desc = GET_TENSOR_DESCRIPTOR(output); + cudnnTensorDescriptor_t bwd_data_grad_desc = GET_TENSOR_DESCRIPTOR(input); + cudnnConvolutionDescriptor_t bwd_data_conv_desc = + GET_CONVOLUTION_DESCRIPTOR(conv); + // cudnn convolution backward filter configuration + cudnnTensorDescriptor_t bwd_filter_src_desc = GET_TENSOR_DESCRIPTOR(input); + cudnnTensorDescriptor_t bwd_filter_diff_desc = GET_TENSOR_DESCRIPTOR(output); + cudnnConvolutionDescriptor_t bwd_filter_conv_desc = + GET_CONVOLUTION_DESCRIPTOR(conv); + cudnnFilterDescriptor_t bwd_filter_grad_desc = GET_FILTER_DESCRIPTOR(filter); - CHECK_CUDNN(dynload::cudnnGetConvolutionForwardAlgorithm( - t_resource.cudnn_handle, - fwd_src_desc, - fwd_filter_desc, - fwd_conv_desc, - fwd_dest_desc, - CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, - memoryLimitBytes, - reinterpret_cast(convFwdAlgo))); + if (useDilation) { + convFwdAlgo = &algo; + convBwdDataAlgo = &algo; + convBwdFilterAlgo = &algo; + } else { + CHECK_CUDNN(dynload::cudnnGetConvolutionForwardAlgorithm( + t_resource.cudnn_handle, + fwd_src_desc, + fwd_filter_desc, + fwd_conv_desc, + fwd_dest_desc, + CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, + memoryLimitBytes, + reinterpret_cast(convFwdAlgo))); + CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardDataAlgorithm( + t_resource.cudnn_handle, + bwd_data_filter_desc, + bwd_data_diff_desc, + bwd_data_conv_desc, + bwd_data_grad_desc, + CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT, + memoryLimitBytes, + reinterpret_cast(convBwdDataAlgo))); + CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardFilterAlgorithm( + t_resource.cudnn_handle, + bwd_filter_src_desc, + bwd_filter_diff_desc, + bwd_filter_conv_desc, + bwd_filter_grad_desc, + CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT, + memoryLimitBytes, + reinterpret_cast(convBwdFilterAlgo))); + } CHECK_CUDNN(dynload::cudnnGetConvolutionForwardWorkspaceSize( t_resource.cudnn_handle, @@ -238,23 +278,6 @@ void hl_conv_workspace(hl_tensor_descriptor input, static_cast(*convFwdAlgo), fwdLimitBytes)); - // cudnn convolution backward data configuration - cudnnFilterDescriptor_t bwd_data_filter_desc = GET_FILTER_DESCRIPTOR(filter); - cudnnTensorDescriptor_t bwd_data_diff_desc = GET_TENSOR_DESCRIPTOR(output); - cudnnTensorDescriptor_t bwd_data_grad_desc = GET_TENSOR_DESCRIPTOR(input); - cudnnConvolutionDescriptor_t bwd_data_conv_desc = - GET_CONVOLUTION_DESCRIPTOR(conv); - - CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardDataAlgorithm( - t_resource.cudnn_handle, - bwd_data_filter_desc, - bwd_data_diff_desc, - bwd_data_conv_desc, - bwd_data_grad_desc, - CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT, - memoryLimitBytes, - reinterpret_cast(convBwdDataAlgo))); - CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardDataWorkspaceSize( t_resource.cudnn_handle, bwd_data_filter_desc, @@ -264,23 +287,6 @@ void hl_conv_workspace(hl_tensor_descriptor input, static_cast(*convBwdDataAlgo), bwdDataLimitBytes)); - // cudnn convolution backward filter configuration - cudnnTensorDescriptor_t bwd_filter_src_desc = GET_TENSOR_DESCRIPTOR(input); - cudnnTensorDescriptor_t bwd_filter_diff_desc = GET_TENSOR_DESCRIPTOR(output); - cudnnConvolutionDescriptor_t bwd_filter_conv_desc = - GET_CONVOLUTION_DESCRIPTOR(conv); - cudnnFilterDescriptor_t bwd_filter_grad_desc = GET_FILTER_DESCRIPTOR(filter); - - CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardFilterAlgorithm( - t_resource.cudnn_handle, - bwd_filter_src_desc, - bwd_filter_diff_desc, - bwd_filter_conv_desc, - bwd_filter_grad_desc, - CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT, - memoryLimitBytes, - reinterpret_cast(convBwdFilterAlgo))); - CHECK_CUDNN(dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize( t_resource.cudnn_handle, bwd_filter_src_desc, @@ -603,7 +609,9 @@ void hl_create_convolution_descriptor(hl_convolution_descriptor* conv, int padding_height, int padding_width, int stride_height, - int stride_width) { + int stride_width, + int dilation_h, + int dilation_w) { CHECK_NOTNULL(conv); cudnn_convolution_descriptor hl_conv = (cudnn_convolution_descriptor)malloc( @@ -625,18 +633,24 @@ void hl_create_convolution_descriptor(hl_convolution_descriptor* conv, padding_width, stride_height, stride_width, - 1, - 1, + dilation_h, + dilation_w, mode, data_type)); #else + if (dilation_h > 1 || dilation_w > 1) { + LOG(FATAL) + << "Current cuDNN version does't support for dilation convolution. " + << "The dilation convolution requires cuDNN >= v6.0."; + } + CHECK_CUDNN(dynload::cudnnSetConvolution2dDescriptor(hl_conv->desc, padding_height, padding_width, stride_height, stride_width, - 1, - 1, + dilation_h, + dilation_w, mode)); #endif @@ -659,7 +673,9 @@ void hl_reset_convolution_descriptor(hl_convolution_descriptor conv, int padding_height, int padding_width, int stride_height, - int stride_width) { + int stride_width, + int dilation_h, + int dilation_w) { CHECK_NOTNULL(conv); CHECK_NOTNULL(image); CHECK_NOTNULL(filter); @@ -678,8 +694,8 @@ void hl_reset_convolution_descriptor(hl_convolution_descriptor conv, padding_width, stride_height, stride_width, - 1, - 1, + dilation_h, + dilation_w, mode, data_type)); #else @@ -688,8 +704,8 @@ void hl_reset_convolution_descriptor(hl_convolution_descriptor conv, padding_width, stride_height, stride_width, - 1, - 1, + dilation_h, + dilation_w, mode)); #endif diff --git a/paddle/cuda/src/hl_cuda_matrix.cu b/paddle/cuda/src/hl_cuda_matrix.cu index 39272456c394adc0509e60cf5972df832f7b3424..b41a3a1e06db7b2566acef19ce430645f79d486d 100644 --- a/paddle/cuda/src/hl_cuda_matrix.cu +++ b/paddle/cuda/src/hl_cuda_matrix.cu @@ -592,3 +592,204 @@ void hl_matrix_rotate( mat, matRot, dimM, dimN, clockWise); CHECK_SYNC("hl_matrix_rotate failed"); } + +__global__ void keMatrixVol2Col(int num_kernels, + const real* dataSrc, + real* dataDst, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + int depth_col, + int height_col, + int width_col) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels; + index += blockDim.x * gridDim.x) { + int w_out = index % width_col; + int h_out = (index / width_col) % height_col; + int d_out = (index / width_col / height_col) % depth_col; + int channel_in = index / width_col / height_col / depth_col; + int channel_out = channel_in * filterD * filterH * filterW; + int w_in = w_out * strideW - paddingW; + int h_in = h_out * strideH - paddingH; + int d_in = d_out * strideD - paddingD; + + dataDst += + ((channel_out * depth_col + d_out) * height_col + h_out) * width_col + + w_out; + dataSrc += ((channel_in * depth + d_in) * height + h_in) * width + w_in; + for (int k = 0; k < filterD; ++k) { + for (int i = 0; i < filterH; ++i) { + for (int j = 0; j < filterW; ++j) { + int d = d_in + k; + int h = h_in + i; + int w = w_in + j; + *dataDst = (d >= 0 && d < depth && h >= 0 && h < height && w >= 0 && + w < width) + ? dataSrc[(k * height + i) * width + j] + : 0; + dataDst += depth_col * height_col * width_col; + } + } + } + } +} + +void hl_matrix_vol2Col(const real* dataSrc, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real* dataDst) { + int depth_col = (depth + 2 * paddingD - filterD) / strideD + 1; + int height_col = (height + 2 * paddingH - filterH) / strideH + 1; + int width_col = (width + 2 * paddingW - filterW) / strideW + 1; + int num_kernels = channels * depth_col * height_col * width_col; + + const int threads = 512; + const int blocks = DIVUP(num_kernels, threads); + + keMatrixVol2Col<<>>(num_kernels, + dataSrc, + dataDst, + depth, + height, + width, + filterD, + filterH, + filterW, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + depth_col, + height_col, + width_col); + CHECK_SYNC("hl_matrix_vol2Col failed"); +} + +__global__ void keMatrixCol2Vol(int num_kernels, + real* dataDst, + const real* dataSrc, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + int depth_col, + int height_col, + int width_col, + real alpha, + real beta) { + for (int index = blockIdx.x * blockDim.x + threadIdx.x; index < num_kernels; + index += blockDim.x * gridDim.x) { + real srcVal = 0; + real dstVal = dataDst[index]; + int w = index % width + paddingW; + int h = (index / width) % height + paddingH; + int d = (index / width / height) % depth + paddingD; + int c = index / width / height / depth; + // compute the start and end of the output + int w_col_start = (w < filterW) ? 0 : (w - filterW) / strideW + 1; + int w_col_end = min(w / strideW + 1, width_col); + int h_col_start = (h < filterH) ? 0 : (h - filterH) / strideH + 1; + int h_col_end = min(h / strideH + 1, height_col); + int d_col_start = (d < filterD) ? 0 : (d - filterD) / strideD + 1; + int d_col_end = min(d / strideD + 1, depth_col); + + int offset = (c * filterD * filterW * filterH + d * filterW * filterH + + h * filterW + w) * + depth_col * height_col * width_col; + + int coeff_d_col = + (1 - strideD * filterW * filterH * depth_col) * height_col * width_col; + int coeff_h_col = + (1 - strideH * filterW * depth_col * height_col) * width_col; + int coeff_w_col = (1 - strideW * depth_col * height_col * width_col); + + for (int d_col = d_col_start; d_col < d_col_end; ++d_col) { + for (int h_col = h_col_start; h_col < h_col_end; ++h_col) { + for (int w_col = w_col_start; w_col < w_col_end; ++w_col) { + srcVal += dataSrc[offset + d_col * coeff_d_col + h_col * coeff_h_col + + w_col * coeff_w_col]; + } + } + } + dataDst[index] = alpha * srcVal + beta * dstVal; + } +} + +void hl_matrix_col2Vol(real* dataDst, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + const real* dataSrc, + real alpha, + real beta) { + int depth_col = (depth + 2 * paddingD - filterD) / strideD + 1; + int height_col = (height + 2 * paddingH - filterH) / strideH + 1; + int width_col = (width + 2 * paddingW - filterW) / strideW + 1; + int num_kernels = channels * depth * height * width; + + const int threads = 512; + const int blocks = DIVUP(num_kernels, threads); + + keMatrixCol2Vol<<>>(num_kernels, + dataDst, + dataSrc, + depth, + height, + width, + filterD, + filterH, + filterW, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + depth_col, + height_col, + width_col, + alpha, + beta); + + CHECK_SYNC("hl_matrix_col2Vol failed"); +} diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 68304c9fc8b8fa13cb1f99b82517abc87c71496c..c0838d9b759110fd706577386d2c81bda6876223 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -18,8 +18,8 @@ cc_test(scope_test SRCS scope_test.cc DEPS scope) proto_library(framework_proto SRCS framework.proto) cc_library(attribute SRCS attribute.cc DEPS framework_proto) - -cc_library(operator SRCS operator.cc DEPS framework_proto device_context tensor scope attribute) +cc_library(op_info SRCS op_info.cc DEPS attribute framework_proto) +cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope) cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry) cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator) @@ -39,21 +39,3 @@ add_custom_command(TARGET framework_py_proto POST_BUILD cc_library(backward SRCS backward.cc DEPS net_op) cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context) - -if(WITH_PYTHON) -cc_library(paddle_pybind SHARED - SRCS pybind.cc - DEPS pybind python backward - sgd_op - add_op - mul_op - rowwise_add_op - sigmoid_op - softmax_op - mean_op - cross_entropy_op - recurrent_op - uniform_random_op - gaussian_random_op - fill_zeros_like_op) -endif(WITH_PYTHON) diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index bfda18724cc8ed23a40e0626ff07a290d26aa9d2..6b4c612cd8d9263258e3987914c44002e7bca92c 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -124,6 +124,9 @@ static std::unique_ptr BackwardRecursive( std::list insert_position; for (auto& dup_output_op : dup_output_ops) { const std::string& name = dup_output_op.first; + // duplicate @Empty@ don't need to be added + if (name == kEmptyVarName) continue; + auto& dup_op = dup_output_op.second; // no duplicate output if (dup_op.size() == 1) continue; @@ -209,7 +212,7 @@ std::unique_ptr Backward( const OperatorBase& forwardOp, const std::unordered_set& no_grad_vars) { std::unordered_set no_grad_names; - no_grad_names.reserve(no_grad_vars.size()); + no_grad_names.reserve(no_grad_vars.size() + 1); no_grad_names.insert(std::string(kEmptyVarName) + kGradVarSuffix); diff --git a/paddle/framework/backward.md b/paddle/framework/backward.md index 74c001b06a9e7b2279abf998604f2acf1b1168e4..8aa6728a95bc464ab8884986f0cec6c817d3303b 100644 --- a/paddle/framework/backward.md +++ b/paddle/framework/backward.md @@ -1,38 +1,82 @@ -## Operator/expression 's Backward +# Operator/expression 's Backward -### Motivation +## Motivation -In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the fundmental gradient operators/expressions together with chain rule . Every forward network need a backward network to construct the full computation lineage, the operator/ expression's Backward feature will generate the backward pass respect to forward pass. +In Neural Network, the backpropagation algorithm follows the chain rule, so we need to compound the fundmental gradient operators/expressions together with chain rule . Every forward network need a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass. + +## Backward Operator Registry -### Implement : gradient operator registry +A backward network is built up with several backward operators. Backward operators take forward operators' inputs, outputs and output gradients and then calculate its input gradients. -| | forward operator | backward operator | -| ---------------------- | ---------------- | -------------------------------- | -| **Operator::inputs_** | Inputs | Inputs, Outputs, OutputGradients | -| **Operator::outputs_** | Outputs | InputGradients | +| | forward operator | backward operator +| ---------------------- | ---------------- |------------------------- | +| **Operator::inputs_** | Inputs | Inputs, Outputs, OutputGradients | +| **Operator::outputs_** | Outputs | InputGradients | -Inputs/Outputs means the input/output of the operator, InputGradients/OutputGradients is the gradient respect to forward opeartor. Forward operator and Backward operator are isomorphic, save their corresponding needs into member attribute. + In most cases, there is a one-to-one correspondence between forward and backward operators. These correspondences are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and make operators pluggable, the registry mechanism is introduced. -We use a global hash map record the gradient operators available, follow the philosophy of minimum core, make operator pluggable unit. Each gradient is an operator and it needs to regist itself. +For example, we have got a `mul_op`, and we can register it's information and corresponding backward operator by the following macro: -grad_op_builder(fengjiayi) +```cpp +REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad); +``` -### Implement : Backward network +`mul` is the operator's type. `MulOp` and `MulOpMaker` are the operator class and the operator maker class respectively. + +`mul_grad` is the type of backward operator, and `MulOpGrad` is its class name. + +## Backward Opeartor Creating + +Given a certain forward operator, we can get its corresponding backward opeartor by calling: + +```cpp +OperatorBase* bwd_op = BuildGradOp(const OperatorBase* fwd_op); +``` + +The function `BuildGradOp` will sequentially execute following processes: + +1. Get the `type_` of given forward operator, and then get the corresponding backward operator's type by looking up the `OpInfoMap`. + +2. Build two maps named `inputs` and `outputs` to temporary storage backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these are not necessary for gradient computing. + +3. Add forward inputs' gradient variables into map `output`, adding forward outputs' gradient variables into map `input`. + +4. Building backward operator with `inputs`, `outputs` and forward operator's attributes. + +## Backward Network Building + +A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and put them together. + +In our design, the network itself is also a kind of operator. So the operators contained by a big network may be some small network. given a forward network, it generates the backward network. We only care about the Gradients—`OutputGradients`,`InputGradients`. -1. bla bla bla (yuyang) +1. Op + + when the input forward network is a Op, return its gradient Operator Immediately. 2. NetOp - when the input forward network is a NetOp, it need to call the sub NetOp/Operators backward function recursively and ensure them done. During the process, we need to collect the `OutputGradients` name. + when the input forward network is a NetOp, it need to call the sub NetOp/Operators backward function recursively. During the process, we need to collect the `OutputGradients` name according to forward NetOp. + + **shared variable**. As illustrated in the pictures, two operator's `Output` `Gradient` will overwirte their shared input variable. + +

+
+ + 1. shared variable in two operators. + +

+ + Share variable between operators or same input variable used in multiple operators lead to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively, and add a generic add operator replace the overwirte links. + +

+
- We share variable in the same scope, as a result, duplicate operator `OutputGradients` will overwirte then duplicate variable. + 2. replace shared variable gradient with `Add` Operator - ![./images/duplicate_op]() +

- Share variable between operators or same input variable used in multiple operators lead to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively, and add a generic add operator instead. -![./images/duplicate_op2]() -​ Then collect the sub graph OutputGradients/InputGradients as the NetOp's and return it. +​ Then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it. diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index b93ab66f2f5b9cffa6d51b6e36afe552125970e4..f100c4d05489ac3bd4ceb5f11ae871985f0e5d83 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -72,8 +72,8 @@ class NoGradOpMaker : public OpProtoAndCheckerMaker { class FcOp : public operators::NetOp { public: - FcOp(const std::string &type, const VarNameMap &inputs, - const VarNameMap &outputs, const AttributeMap &attrs) + FcOp(const std::string &type, const VariableNameMap &inputs, + const VariableNameMap &outputs, const AttributeMap &attrs) : NetOp(type, inputs, outputs, attrs) { AppendOp(OpRegistry::CreateOp("mul", {{"X", {Input("X")}}, {"Y", {Input("W")}}}, diff --git a/paddle/framework/grad_op_builder.cc b/paddle/framework/grad_op_builder.cc index 0a2a41f6b62658ac8633a6e384d099f8d6641f33..b02a599a800668b22e7fe39a10fa6dc132e305bd 100644 --- a/paddle/framework/grad_op_builder.cc +++ b/paddle/framework/grad_op_builder.cc @@ -20,13 +20,13 @@ namespace framework { enum class OpArgType { IN, OUT }; static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, - bool is_grad, OperatorBase::VarNameMap* vars) { + bool is_grad, VariableNameMap* vars) { const auto& src_inout = src_type == OpArgType::IN ? src_op->Inputs() : src_op->Outputs(); auto& dst_inout = *vars; - const OpProto* proto = OpRegistry::op_info_map().at(src_op->Type()).proto_; + auto& proto = OpInfoMap::Instance().Get(src_op->Type()).Proto(); const auto& src_arg_list = - src_type == OpArgType::IN ? proto->inputs() : proto->outputs(); + src_type == OpArgType::IN ? proto.inputs() : proto.outputs(); for (const auto& arg : src_arg_list) { if (arg.not_in_gradient() && !is_grad) continue; const std::string src_name = arg.name(); @@ -40,26 +40,18 @@ static void TransOpArg(const OperatorBase* src_op, const OpArgType& src_type, } OperatorBase* BuildGradOp(const OperatorBase* op) { - auto it = OpRegistry::op_info_map().find(op->Type()); - PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(), - "'%s' has not been registered.", op->Type()); - PADDLE_ENFORCE(it->second.proto_ != nullptr, "'%s' has no OpProto.", - op->Type()); - std::string grad_op_type = it->second.grad_op_type_; - PADDLE_ENFORCE(!grad_op_type.empty(), "'%s' has no gradient operator.", - op->Type()); + auto& info = OpInfoMap::Instance().Get(op->Type()); + PADDLE_ENFORCE(info.HasGradientOp()); - OperatorBase::VarNameMap inputs; - OperatorBase::VarNameMap outputs; + VariableNameMap inputs; + VariableNameMap outputs; TransOpArg(op, OpArgType::IN, false, &inputs); // I TransOpArg(op, OpArgType::OUT, false, &inputs); // O TransOpArg(op, OpArgType::OUT, true, &inputs); // OG TransOpArg(op, OpArgType::IN, true, &outputs); // IG - it = OpRegistry::op_info_map().find(grad_op_type); - PADDLE_ENFORCE(it != OpRegistry::op_info_map().end(), - "'%s' has not been registered.", grad_op_type); - return it->second.creator_(grad_op_type, inputs, outputs, op->Attrs()); + auto& grad_info = OpInfoMap::Instance().Get(info.grad_op_type_); + return grad_info.Creator()(info.grad_op_type_, inputs, outputs, op->Attrs()); } } // namespace framework diff --git a/paddle/framework/op_info.cc b/paddle/framework/op_info.cc new file mode 100644 index 0000000000000000000000000000000000000000..81ba29797c5f478e5d6a91236f3e8de1e6b43e49 --- /dev/null +++ b/paddle/framework/op_info.cc @@ -0,0 +1,29 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/op_info.h" + +namespace paddle { +namespace framework { + +static OpInfoMap* g_op_info_map = nullptr; + +OpInfoMap& OpInfoMap::Instance() { + if (g_op_info_map == nullptr) { + g_op_info_map = new OpInfoMap(); + } + return *g_op_info_map; +} +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/op_info.h b/paddle/framework/op_info.h new file mode 100644 index 0000000000000000000000000000000000000000..94245c6c44aca962b0db890947a9dc5550ac0799 --- /dev/null +++ b/paddle/framework/op_info.h @@ -0,0 +1,101 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include +#include +#include +#include + +#include "paddle/framework/attribute.h" + +namespace paddle { +namespace framework { +class OperatorBase; +using VariableNameMap = std::map>; + +using OpCreator = std::function; + +struct OpInfo { + OpCreator creator_; + std::string grad_op_type_; + OpProto* proto_; + OpAttrChecker* checker_; + + bool HasOpProtoAndChecker() const { + return proto_ != nullptr && checker_ != nullptr; + } + + const OpProto& Proto() const { + PADDLE_ENFORCE_NOT_NULL(proto_, "Operator Proto has not been registered"); + PADDLE_ENFORCE(proto_->IsInitialized(), + "Operator Proto must be initialized in op info"); + return *proto_; + } + + const OpAttrChecker& Checker() const { + PADDLE_ENFORCE_NOT_NULL(checker_, + "Operator Checker has not been registered"); + return *checker_; + } + + const OpCreator& Creator() const { + PADDLE_ENFORCE_NOT_NULL(creator_, + "Operator Creator has not been registered"); + return creator_; + } + + bool HasGradientOp() const { return !grad_op_type_.empty(); } +}; + +class OpInfoMap { + public: + static OpInfoMap& Instance(); + + OpInfoMap(const OpInfoMap& o) = delete; + OpInfoMap(OpInfoMap&& o) = delete; + OpInfoMap& operator=(const OpInfoMap& o) = delete; + OpInfoMap& operator=(OpInfoMap&& o) = delete; + + bool Has(const std::string& op_type) const { + return map_.find(op_type) != map_.end(); + } + + void Insert(const std::string& type, const OpInfo& info) { + PADDLE_ENFORCE(!Has(type), "Operator %s has been registered", type); + map_.insert({type, info}); + } + + const OpInfo& Get(const std::string& type) const { + auto it = map_.find(type); + PADDLE_ENFORCE(it != map_.end(), "Operator %s are not found", type); + return it->second; + } + + template + void IterAllInfo(Callback callback) { + for (auto& it : map_) { + callback(it.first, it.second); + } + } + + private: + OpInfoMap() = default; + std::unordered_map map_; +}; + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/op_registry.cc b/paddle/framework/op_registry.cc index 8eae86e9605da74cdc37caeb9569e7500aac2a63..b0e85dd49f97da4a7f889fde0b5f060954947be8 100644 --- a/paddle/framework/op_registry.cc +++ b/paddle/framework/op_registry.cc @@ -19,32 +19,18 @@ limitations under the License. */ namespace paddle { namespace framework { -std::unique_ptr OpRegistry::CreateOp(const std::string& type, - const VarNameMap& inputs, - const VarNameMap& outputs, - AttributeMap attrs) { - auto it = op_info_map().find(type); - PADDLE_ENFORCE(it != op_info_map().end(), - "Operator '%s' has not been registered.", type); - it->second.checker_->Check(attrs); - auto op = it->second.creator_(type, inputs, outputs, attrs); +std::unique_ptr OpRegistry::CreateOp( + const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, AttributeMap attrs) { + auto& info = OpInfoMap::Instance().Get(type); + info.Checker().Check(attrs); + auto op = info.Creator()(type, inputs, outputs, attrs); return std::unique_ptr(op); } -std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { - VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); - VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); - AttributeMap attrs; - for (auto& attr : op_desc.attrs()) { - attrs[attr.name()] = GetAttrValue(attr); - } - - return CreateOp(op_desc.type(), inputs, outputs, attrs); -} - -OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap( +static VariableNameMap ConvertOpDescVarsToVarNameMap( const google::protobuf::RepeatedPtrField& op_desc_vars) { - VarNameMap ret_val; + VariableNameMap ret_val; for (auto& var : op_desc_vars) { auto& var_names = ret_val[var.parameter()]; auto& var_names_in_proto = var.arguments(); @@ -55,6 +41,17 @@ OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap( return ret_val; } +std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { + VariableNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); + VariableNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); + AttributeMap attrs; + for (auto& attr : op_desc.attrs()) { + attrs[attr.name()] = GetAttrValue(attr); + } + + return CreateOp(op_desc.type(), inputs, outputs, attrs); +} + std::unique_ptr OpRegistry::CreateGradOp(const OperatorBase& op) { PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops"); return std::unique_ptr(BuildGradOp(&op)); diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 4c2d13d639005d2d2710c19f63988333d89bce13..2d09cde41e3f5086279f9441e0fdc52549bed5ab 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -23,6 +23,7 @@ limitations under the License. */ #include "paddle/framework/attribute.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/grad_op_builder.h" +#include "paddle/framework/op_info.h" #include "paddle/framework/operator.h" #include "paddle/framework/scope.h" @@ -30,28 +31,16 @@ namespace paddle { namespace framework { class OpRegistry { - using VarNameMap = OperatorBase::VarNameMap; - using OpCreator = std::function; - public: - struct OpInfo { - OpCreator creator_; - std::string grad_op_type_; - OpProto* proto_; - OpAttrChecker* checker_; - }; - template static void RegisterOp(const std::string& op_type, const std::string& grad_op_type) { - PADDLE_ENFORCE(op_info_map().count(op_type) == 0, + PADDLE_ENFORCE(!OpInfoMap::Instance().Has(op_type), "'%s' is registered more than once.", op_type); OpInfo op_info; - op_info.creator_ = [](const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, - const AttributeMap& attrs) { + op_info.creator_ = []( + const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) { return new OpType(type, inputs, outputs, attrs); }; op_info.grad_op_type_ = grad_op_type; @@ -70,7 +59,7 @@ class OpRegistry { op_info.proto_ = nullptr; op_info.checker_ = nullptr; } - op_info_map().insert(std::make_pair(op_type, op_info)); + OpInfoMap::Instance().Insert(op_type, op_info); // register gradient op if (!grad_op_type.empty()) { RegisterOp(grad_op_type, ""); @@ -78,21 +67,13 @@ class OpRegistry { } static std::unique_ptr CreateOp(const std::string& type, - const VarNameMap& inputs, - const VarNameMap& outputs, + const VariableNameMap& inputs, + const VariableNameMap& outputs, AttributeMap attrs); static std::unique_ptr CreateOp(const OpDesc& op_desc); - static VarNameMap ConvertOpDescVarsToVarNameMap( - const google::protobuf::RepeatedPtrField& op_desc_vars); - static std::unique_ptr CreateGradOp(const OperatorBase& op); - - static std::unordered_map& op_info_map() { - static std::unordered_map op_info_map_; - return op_info_map_; - } }; class Registrar { diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index eadd8f3316ff1ebffb94a56b2e62d661e4e0b38f..7abbde610f1e9c530393b9a9cabe40b826712212 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -115,8 +115,8 @@ void OperatorBase::Rename(const std::string& old_name, } OperatorBase::OperatorBase(const std::string& type, - const OperatorBase::VarNameMap& inputs, - const OperatorBase::VarNameMap& outputs, + const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) : type_(type), inputs_(inputs), outputs_(outputs), attrs_(attrs) { static std::atomic gUniqId(0UL); @@ -141,18 +141,10 @@ std::vector OperatorBase::OutputVars(bool has_intermediate) const { } return ret_val; } - auto it = OpRegistry::op_info_map().find(type_); - PADDLE_ENFORCE( - it != OpRegistry::op_info_map().end(), - "Operator %s not registered, cannot figure out intermediate outputs", - type_); - PADDLE_ENFORCE( - it->second.proto_ != nullptr, - "Operator %s has no OpProto, cannot figure out intermediate outputs", - type_); + auto& info = OpInfoMap::Instance().Get(Type()); // get all OpProto::Var for outputs - for (auto& o : it->second.proto_->outputs()) { + for (auto& o : info.Proto().outputs()) { // ignore all intermediate output if (o.intermediate()) continue; auto out = outputs_.find(o.name()); diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 807298088981b969622174be753ea0da72067243..8397570d26f06f0238e9c5afc85d721df7679257 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -19,6 +19,7 @@ limitations under the License. */ #include #include +#include "op_info.h" #include "paddle/framework/attribute.h" #include "paddle/framework/framework.pb.h" #include "paddle/framework/scope.h" @@ -62,10 +63,8 @@ class ExecutionContext; */ class OperatorBase { public: - using VarNameMap = std::map>; - - OperatorBase(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const AttributeMap& attrs); + OperatorBase(const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs); virtual ~OperatorBase() {} @@ -93,8 +92,8 @@ class OperatorBase { /// rename inputs outputs name void Rename(const std::string& old_name, const std::string& new_name); - const VarNameMap& Inputs() const { return inputs_; } - const VarNameMap& Outputs() const { return outputs_; } + const VariableNameMap& Inputs() const { return inputs_; } + const VariableNameMap& Outputs() const { return outputs_; } //! Get a input with argument's name described in `op_proto` const std::string& Input(const std::string& name) const; //! Get a input which has multiple variables. @@ -122,30 +121,32 @@ class OperatorBase { // I (Inputs)opear // O (Outputs) // OG (Output Gradients) - VarNameMap inputs_; + VariableNameMap inputs_; // NOTE: in case of OpGrad, outputs_ contains // IG (Inputs Gradients) - VarNameMap outputs_; + VariableNameMap outputs_; AttributeMap attrs_; }; // Macro for define a clone method. // If you are writing an kernel operator, `Clone` will be defined when you // register it. i.e. `Clone` method is not needed to define by yourself. -#define DEFINE_OP_CLONE_METHOD(CLS) \ +#define DEFINE_OP_CLONE_METHOD(cls) \ std::unique_ptr Clone() const final { \ - return std::unique_ptr(new CLS(*this)); \ + return std::unique_ptr(new cls(*this)); \ } // Macro for define a default constructor for Operator. // You can also use // using PARENT_CLASS::PARENT_CLASS; // to use parent's constructor. -#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS) \ - CLS(const std::string& type, const VarNameMap& inputs, \ - const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \ - : PARENT_CLS(type, inputs, outputs, attrs) {} +#define DEFINE_OP_CONSTRUCTOR(cls, parent_cls) \ + cls(const std::string& type, \ + const ::paddle::framework::VariableNameMap& inputs, \ + const ::paddle::framework::VariableNameMap& outputs, \ + const paddle::framework::AttributeMap& attrs) \ + : parent_cls(type, inputs, outputs, attrs) {} class NOP : public OperatorBase { public: @@ -389,8 +390,8 @@ class OperatorWithKernel : public OperatorBase { using OpKernelMap = std::unordered_map, OpKernelHash>; - OperatorWithKernel(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const AttributeMap& attrs) + OperatorWithKernel(const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} void InferShape(const Scope& scope) const override { diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index 2425b87779f6af01b0e8a91b5f574a28385f0efd..1d7efb7b9403f7c1c6bdbb27a0258f79ae032f43 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -23,8 +23,8 @@ static int op_run_num = 0; class OpWithoutKernelTest : public OperatorBase { public: - OpWithoutKernelTest(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const AttributeMap& attrs) + OpWithoutKernelTest(const std::string& type, const VariableNameMap& inputs, + const VariableNameMap& outputs, const AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs), x(1) {} void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, @@ -249,8 +249,9 @@ TEST(OpKernel, multi_inputs) { class OperatorClone : public paddle::framework::OperatorBase { public: DEFINE_OP_CLONE_METHOD(OperatorClone); - OperatorClone(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, + OperatorClone(const std::string& type, + const paddle::framework::VariableNameMap& inputs, + const paddle::framework::VariableNameMap& outputs, const paddle::framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) {} void InferShape(const paddle::framework::Scope& scope) const override {} diff --git a/paddle/framework/tensor.h b/paddle/framework/tensor.h index b8c779f4e5fc7bc51298cdd35b26c2c8ac98edf6..643f875491724bf443bd7727391734377ee6180c 100644 --- a/paddle/framework/tensor.h +++ b/paddle/framework/tensor.h @@ -105,7 +105,10 @@ class Tensor { template inline Tensor Slice(const int& begin_idx, const int& end_idx) const; - platform::Place place() const { return holder_->place(); } + platform::Place place() const { + PADDLE_ENFORCE_NOT_NULL(holder_, "Tensor get place() must contains holder"); + return holder_->place(); + } private: template diff --git a/paddle/framework/tensor_impl.h b/paddle/framework/tensor_impl.h index 7d7263b899afb7a2128548f264065a8013b6f0c9..7893e233b776425a61d9e3edd43d944a27743188 100644 --- a/paddle/framework/tensor_impl.h +++ b/paddle/framework/tensor_impl.h @@ -117,6 +117,8 @@ inline void Tensor::CopyFrom(const Tensor& src, memory::Copy(boost::get(dst_place), dst_ptr, boost::get(src_place), src_ptr, size, 0); } + PADDLE_ENFORCE(cudaStreamSynchronize(0), + "cudaStreamSynchronize failed in Tensor CopyFrom"); #endif } diff --git a/paddle/function/CMakeLists.txt b/paddle/function/CMakeLists.txt index c572a9d433bc16e6733b8fc9367970bef28e699a..f43f15e5cacb70b625d7791e1e02ce7780286200 100644 --- a/paddle/function/CMakeLists.txt +++ b/paddle/function/CMakeLists.txt @@ -21,6 +21,8 @@ if(USE_NNPACK) endif() endif() +list(APPEND cpp_files neon/NeonDepthwiseConv.cpp) + add_library(paddle_function STATIC ${cpp_files} ${cu_objs}) add_dependencies(paddle_function ${external_project_dependencies}) add_dependencies(paddle_function paddle_proto) @@ -42,11 +44,11 @@ if(WITH_GPU) add_simple_unittest(RowConvOpTest) add_simple_unittest(BlockExpandOpTest) add_simple_unittest(CropOpTest) - add_simple_unittest(DepthwiseConvOpTest) endif() add_simple_unittest(Im2ColTest) add_simple_unittest(GemmConvOpTest) +add_simple_unittest(DepthwiseConvOpTest) endif() add_style_check_target(paddle_function ${h_files}) diff --git a/paddle/function/DepthwiseConvOpTest.cpp b/paddle/function/DepthwiseConvOpTest.cpp index f44ae0c342e9536366e2b537694cee81fcb1a6ed..d8e8c889d5c23bf9b2b5fd0b0393395883188fd8 100644 --- a/paddle/function/DepthwiseConvOpTest.cpp +++ b/paddle/function/DepthwiseConvOpTest.cpp @@ -34,4 +34,13 @@ TEST(DepthwiseConv, BackwardFilter) { } #endif +#if defined(__ARM_NEON__) || defined(__ARM_NEON) + +TEST(DepthwiseConv, Forward) { + DepthwiseConvolution( + "GemmConv-CPU", "NeonDepthwiseConv-CPU", forward); +} + +#endif + } // namespace paddle diff --git a/paddle/function/GruFunctor.h b/paddle/function/GruFunctor.h new file mode 100644 index 0000000000000000000000000000000000000000..11f6174dbd4b46ae48da4222648ef28674812158 --- /dev/null +++ b/paddle/function/GruFunctor.h @@ -0,0 +1,160 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "GemmFunctor.h" +#include "GruFunctor.h" +#include "hl_cpu_gru.cuh" + +namespace paddle { + +template +struct GruFunctor { + template + static void compute(OpResetOutput opResetOutput, + OpFinalOutput opFinalOutput, + hl_gru_value value, + int frameSize, + int batchSize, + hl_activation_mode_t active_node, + hl_activation_mode_t active_gate) { +#ifndef __NVCC__ + if (value.prevOutValue) { + BlasGemm::compute(false, + false, + batchSize, + 2 * frameSize, + frameSize, + 1, + value.prevOutValue, + frameSize, + value.gateWeight, + frameSize * 2, + 1, + value.gateValue, + frameSize * 3); + } + + forward_reset_output( + opResetOutput, value, frameSize, batchSize, active_gate); + + if (value.prevOutValue) { + BlasGemm::compute(false, + false, + batchSize, + frameSize, + frameSize, + 1, + value.resetOutputValue, + frameSize, + value.stateWeight, + frameSize, + 1, + value.gateValue + frameSize * 2, + frameSize * 3); + } + + forward_final_output( + opFinalOutput, value, frameSize, batchSize, active_node); +#endif + } +}; + +template +struct GruGradFunctor { + template + static void compute(OpStateGrad opStateGrad, + OpResetGrad opResetGrad, + hl_gru_value value, + hl_gru_grad grad, + int frameSize, + int batchSize, + hl_activation_mode_t active_node, + hl_activation_mode_t active_gate) { +#ifndef __NVCC__ + backward_state_grad( + opStateGrad, value, grad, frameSize, batchSize, active_node); + + if (value.prevOutValue && grad.prevOutGrad) { + BlasGemm::compute(false, + true, + batchSize, + frameSize, + frameSize, + 1, + grad.gateGrad + frameSize * 2, + frameSize * 3, + value.stateWeight, + frameSize, + 0, + grad.resetOutputGrad, + frameSize); + + if (grad.stateWeightGrad) { + BlasGemm::compute(true, + false, + frameSize, + frameSize, + batchSize, + 1, + value.resetOutputValue, + frameSize, + grad.gateGrad + frameSize * 2, + frameSize * 3, + 1, + grad.stateWeightGrad, + frameSize); + } + } + + backward_reset_grad( + opResetGrad, value, grad, frameSize, batchSize, active_gate); + + if (grad.prevOutGrad && value.prevOutValue) { + BlasGemm::compute(false, + true, + batchSize, + frameSize, + frameSize * 2, + 1, + grad.gateGrad, + frameSize * 3, + value.gateWeight, + frameSize * 2, + 1, + grad.prevOutGrad, + frameSize); + + if (grad.gateWeightGrad) { + BlasGemm::compute(true, + false, + frameSize, + frameSize * 2, + batchSize, + 1, + value.prevOutValue, + frameSize, + grad.gateGrad, + frameSize * 3, + 1, + grad.gateWeightGrad, + frameSize * 2); + } + } +#endif + } +}; + +} // namespace paddle diff --git a/paddle/function/Im2Col.h b/paddle/function/Im2Col.h index 48e2e32f9256fb49c67ba25e9b5a47d72499758b..9b91e223a6a28586b11fe7ed4a44421e029a67bb 100644 --- a/paddle/function/Im2Col.h +++ b/paddle/function/Im2Col.h @@ -16,6 +16,7 @@ limitations under the License. */ #include "TensorShape.h" #include "TensorType.h" +#include "neon/neon_util.h" namespace paddle { @@ -93,4 +94,95 @@ public: int paddingWidth); }; +template +struct Padding { + static void run(const T* src, + T* dest, + int channels, + int inputHeight, + int inputWidth, + int paddingHeight, + int paddingWidth) { + const int destWidth = inputWidth + 2 * paddingWidth; + for (int c = 0; c < channels; c++) { + if (paddingHeight > 0) { + memset(dest, 0, destWidth * paddingHeight * sizeof(T)); + dest += destWidth * paddingHeight; + } + + for (int i = 0; i < inputHeight; i++) { + // padding head + for (int j = 0; j < paddingWidth; j++) { + *dest++ = T(0); + } + + memcpy(dest, src, inputWidth * sizeof(T)); + dest += inputWidth; + src += inputWidth; + + // padding tail + for (int j = 0; j < paddingWidth; j++) { + *dest++ = T(0); + } + } + + if (paddingHeight > 0) { + memset(dest, 0, destWidth * paddingHeight * sizeof(T)); + dest += destWidth * paddingHeight; + } + } + } +}; + +#if defined(__ARM_NEON__) || defined(__ARM_NEON) +template <> +struct Padding { + static void run(const float* src, + float* dest, + int channels, + int inputHeight, + int inputWidth, + int paddingHeight, + int paddingWidth) { + const int destWidth = inputWidth + 2 * paddingWidth; + for (int c = 0; c < channels; c++) { + if (paddingHeight > 0) { + memset(dest, 0, destWidth * paddingHeight * sizeof(float)); + dest += destWidth * paddingHeight; + } + + for (int i = 0; i < inputHeight; i++) { + // padding head + for (int j = 0; j < paddingWidth; j++) { + *dest++ = float(0); + } + + int step = inputWidth >> 2; + int remain = inputWidth & 3; + for (int s = 0; s < step; s++) { + float32x4_t s0 = vld1q_f32(src); + vst1q_f32(dest, s0); + src += 4; + dest += 4; + } + for (int r = 0; r < remain; r++) { + *dest++ = *src++; + } + + // padding tail + for (int j = 0; j < paddingWidth; j++) { + *dest++ = float(0); + } + } + + if (paddingHeight > 0) { + memset(dest, 0, destWidth * paddingHeight * sizeof(float)); + dest += destWidth * paddingHeight; + } + } + } +}; + +#endif + } // namespace paddle diff --git a/paddle/function/neon/NeonDepthwiseConv.cpp b/paddle/function/neon/NeonDepthwiseConv.cpp new file mode 100644 index 0000000000000000000000000000000000000000..14e5198e1bcdfb3101bc4d1c39b542757fbd7603 --- /dev/null +++ b/paddle/function/neon/NeonDepthwiseConv.cpp @@ -0,0 +1,577 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "neon_util.h" +#include "paddle/function/ConvOp.h" +#include "paddle/function/Im2Col.h" + +namespace paddle { + +namespace neon { + +#if defined(__ARM_NEON__) || defined(__ARM_NEON) + +template +struct DepthwiseConvKernel {}; + +inline float32_t conv3x3(float32x4_t r0, + float32x4_t r1, + float32x4_t r2, + float32x4_t k0, + float32x4_t k1, + float32x4_t k2) { + float32x4_t tmp; + tmp = vmulq_f32(r0, k0); + tmp = vmlaq_f32(tmp, r1, k1); + tmp = vmlaq_f32(tmp, r2, k2); + return vaddvq_f32(tmp); +} + +inline float32_t conv4x4(float32x4_t r0, + float32x4_t r1, + float32x4_t r2, + float32x4_t r3, + float32x4_t k0, + float32x4_t k1, + float32x4_t k2, + float32x4_t k3) { + float32x4_t tmp; + tmp = vmulq_f32(r0, k0); + tmp = vmlaq_f32(tmp, r1, k1); + tmp = vmlaq_f32(tmp, r2, k2); + tmp = vmlaq_f32(tmp, r3, k3); + return vaddvq_f32(tmp); +} + +/** + * Each step calculates four elements of the output. + * First step: + * R0[0, 1, 2, 3...] * K[0][0] + * R0[1, 2, 3, 4...] * K[0][1] + * R0[2, 3, 4, 5...] * K[0][2] + * R1[0, 1, 2, 3...] * K[1][0] + * R1[1, 2, 3, 4...] * K[1][1] + * R1[2, 3, 4, 5...] * K[1][2] + * R2[0, 1, 2, 3...] * K[2][0] + * R2[1, 2, 3, 4...] * K[2][1] + * + R2[2, 3, 4, 5...] * K[2][2] + * ------------------------------ + * Output[0, 1, 2, 3] + */ +template <> +struct DepthwiseConvKernel<3, 1> { + static void run(const float* inputData, + const float* filterData, + int inputHeight, + int inputWidth, + int outputChannels, + int outputHeight, + int outputWidth, + int filterMultiplier, + float* outputData) { + const int steps = outputWidth >> 2; + const int remain = outputWidth & 3; + for (int c = 0; c < outputChannels; c++, filterData += 9) { + // Load the filters + float32x4_t k[3]; + k[0] = vld1q_f32(filterData); + k[1] = vld1q_f32(filterData + 3); + k[2] = vld1q_f32(filterData + 6); + k[0] = vsetq_lane_f32(0.f, k[0], 3); + k[1] = vsetq_lane_f32(0.f, k[1], 3); + k[2] = vsetq_lane_f32(0.f, k[2], 3); + + const float* r0 = + inputData + (c / filterMultiplier) * (inputHeight * inputWidth); + const float* r1 = r0 + inputWidth; + const float* r2 = r0 + inputWidth * 2; + float32x4_t input[3][3]; + for (int h = 0; h < outputHeight; h++) { + for (int s = 0; s < steps; s++) { + // Load the inputs + float32x4_t tmp; + input[0][0] = vld1q_f32(r0); + tmp = vld1q_f32(r0 + 4); + input[0][1] = vextq_f32(input[0][0], tmp, 1); + input[0][2] = vextq_f32(input[0][0], tmp, 2); + input[1][0] = vld1q_f32(r1); + tmp = vld1q_f32(r1 + 4); + input[1][1] = vextq_f32(input[1][0], tmp, 1); + input[1][2] = vextq_f32(input[1][0], tmp, 2); + input[2][0] = vld1q_f32(r2); + tmp = vld1q_f32(r2 + 4); + input[2][1] = vextq_f32(input[2][0], tmp, 1); + input[2][2] = vextq_f32(input[2][0], tmp, 2); + + float32x4_t tmp1 = vdupq_n_f32(0.f); + float32x4_t tmp2 = vdupq_n_f32(0.f); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[0][0], k[0]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[0][1], k[0]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[0][2], k[0]); + tmp2 = vmlaq_laneq_f32<0>(tmp2, input[1][0], k[1]); + tmp1 = vmlaq_laneq_f32<1>(tmp1, input[1][1], k[1]); + tmp2 = vmlaq_laneq_f32<2>(tmp2, input[1][2], k[1]); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[2][0], k[2]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[2][1], k[2]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[2][2], k[2]); + tmp1 = vaddq_f32(tmp1, tmp2); + + vst1q_f32(outputData, tmp1); + r0 += 4; + r1 += 4; + r2 += 4; + outputData += 4; + } + + for (int r = 0; r < remain; r++) { + float32x4_t i0 = vld1q_f32(r0); + float32x4_t i1 = vld1q_f32(r1); + float32x4_t i2 = vld1q_f32(r2); + *outputData = conv3x3(i0, i1, i2, k[0], k[1], k[2]); + r0++; + r1++; + r2++; + outputData++; + } + + r0 += 2; + r1 += 2; + r2 += 2; + } + } + } +}; + +/** + * Each step calculates four elements of the output. + * First step: + * R0[0, 2, 4, 6...] * K[0][0] + * R0[1, 3, 5, 7...] * K[0][1] + * R0[2, 4, 6, 8...] * K[0][2] + * R1[0, 2, 4, 6...] * K[1][0] + * R1[1, 3, 5, 7...] * K[1][1] + * R1[2, 4, 6, 8...] * K[1][2] + * R2[0, 2, 4, 6...] * K[2][0] + * R2[1, 3, 5, 7...] * K[2][1] + * R2[2, 4, 6, 8...] * K[2][2] + * ------------------------------ + * Output[0, 1, 2, 3] + */ +template <> +struct DepthwiseConvKernel<3, 2> { + static void run(const float* inputData, + const float* filterData, + int inputHeight, + int inputWidth, + int outputChannels, + int outputHeight, + int outputWidth, + int filterMultiplier, + float* outputData) { + const int steps = outputWidth >> 2; + const int remain = outputWidth & 3; + for (int c = 0; c < outputChannels; c++, filterData += 9) { + // Load the filters + float32x4_t k[3]; + k[0] = vld1q_f32(filterData); + k[1] = vld1q_f32(filterData + 3); + k[2] = vld1q_f32(filterData + 6); + k[0] = vsetq_lane_f32(0.f, k[0], 3); + k[1] = vsetq_lane_f32(0.f, k[1], 3); + k[2] = vsetq_lane_f32(0.f, k[2], 3); + + const float* start = + inputData + (c / filterMultiplier) * (inputHeight * inputWidth); + float32x4_t input[3][3]; + for (int h = 0; h < outputHeight; h++) { + const float* r0 = start + 2 * h * inputWidth; + const float* r1 = start + (2 * h + 1) * inputWidth; + const float* r2 = start + (2 * h + 2) * inputWidth; + for (int s = 0; s < steps; s++) { + // Load the inputs + float32x4_t data1; + float32x4x2_t data2; + + data2 = vld2q_f32(r0); + input[0][0] = data2.val[0]; + input[0][1] = data2.val[1]; + data1 = vld1q_f32(r0 + 8); + input[0][2] = vextq_f32(data2.val[0], data1, 1); + + data2 = vld2q_f32(r1); + input[1][0] = data2.val[0]; + input[1][1] = data2.val[1]; + data1 = vld1q_f32(r1 + 8); + input[1][2] = vextq_f32(data2.val[0], data1, 1); + + data2 = vld2q_f32(r2); + input[2][0] = data2.val[0]; + input[2][1] = data2.val[1]; + data1 = vld1q_f32(r2 + 8); + input[2][2] = vextq_f32(data2.val[0], data1, 1); + + float32x4_t tmp1 = vdupq_n_f32(0.f); + float32x4_t tmp2 = vdupq_n_f32(0.f); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[0][0], k[0]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[0][1], k[0]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[0][2], k[0]); + tmp2 = vmlaq_laneq_f32<0>(tmp2, input[1][0], k[1]); + tmp1 = vmlaq_laneq_f32<1>(tmp1, input[1][1], k[1]); + tmp2 = vmlaq_laneq_f32<2>(tmp2, input[1][2], k[1]); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[2][0], k[2]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[2][1], k[2]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[2][2], k[2]); + tmp1 = vaddq_f32(tmp1, tmp2); + + vst1q_f32(outputData, tmp1); + r0 += 8; + r1 += 8; + r2 += 8; + outputData += 4; + } + + for (int r = 0; r < remain; r++) { + float32x4_t i0 = vld1q_f32(r0); + float32x4_t i1 = vld1q_f32(r1); + float32x4_t i2 = vld1q_f32(r2); + *outputData = conv3x3(i0, i1, i2, k[0], k[1], k[2]); + r0 += 2; + r1 += 2; + r2 += 2; + outputData++; + } + } + } + } +}; + +/** + * Each step calculates four elements of the output. + */ +template <> +struct DepthwiseConvKernel<4, 1> { + static void run(const float* inputData, + const float* filterData, + int inputHeight, + int inputWidth, + int outputChannels, + int outputHeight, + int outputWidth, + int filterMultiplier, + float* outputData) { + const int steps = outputWidth >> 2; + const int remain = outputWidth & 3; + for (int c = 0; c < outputChannels; c++, filterData += 16) { + // Load the filters + float32x4_t k[4]; + k[0] = vld1q_f32(filterData); + k[1] = vld1q_f32(filterData + 4); + k[2] = vld1q_f32(filterData + 8); + k[3] = vld1q_f32(filterData + 12); + + const float* r0 = + inputData + (c / filterMultiplier) * (inputHeight * inputWidth); + const float* r1 = r0 + inputWidth; + const float* r2 = r0 + inputWidth * 2; + const float* r3 = r0 + inputWidth * 3; + float32x4_t input[4][4]; + for (int h = 0; h < outputHeight; h++) { + for (int s = 0; s < steps; s++) { + // Load the inputs + float32x4_t tmp; + input[0][0] = vld1q_f32(r0); + tmp = vld1q_f32(r0 + 4); + input[0][1] = vextq_f32(input[0][0], tmp, 1); + input[0][2] = vextq_f32(input[0][0], tmp, 2); + input[0][3] = vextq_f32(input[0][0], tmp, 3); + + input[1][0] = vld1q_f32(r1); + tmp = vld1q_f32(r1 + 4); + input[1][1] = vextq_f32(input[1][0], tmp, 1); + input[1][2] = vextq_f32(input[1][0], tmp, 2); + input[1][3] = vextq_f32(input[1][0], tmp, 3); + + input[2][0] = vld1q_f32(r2); + tmp = vld1q_f32(r2 + 4); + input[2][1] = vextq_f32(input[2][0], tmp, 1); + input[2][2] = vextq_f32(input[2][0], tmp, 2); + input[2][3] = vextq_f32(input[2][0], tmp, 3); + + input[3][0] = vld1q_f32(r3); + tmp = vld1q_f32(r3 + 4); + input[3][1] = vextq_f32(input[3][0], tmp, 1); + input[3][2] = vextq_f32(input[3][0], tmp, 2); + input[3][3] = vextq_f32(input[3][0], tmp, 3); + + float32x4_t tmp1 = vdupq_n_f32(0.f); + float32x4_t tmp2 = vdupq_n_f32(0.f); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[0][0], k[0]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[0][1], k[0]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[0][2], k[0]); + tmp2 = vmlaq_laneq_f32<3>(tmp2, input[0][3], k[0]); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[1][0], k[1]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[1][1], k[1]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[1][2], k[1]); + tmp2 = vmlaq_laneq_f32<3>(tmp2, input[1][3], k[1]); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[2][0], k[2]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[2][1], k[2]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[2][2], k[2]); + tmp2 = vmlaq_laneq_f32<3>(tmp2, input[2][3], k[2]); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[3][0], k[3]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[3][1], k[3]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[3][2], k[3]); + tmp2 = vmlaq_laneq_f32<3>(tmp2, input[3][3], k[3]); + tmp1 = vaddq_f32(tmp1, tmp2); + + vst1q_f32(outputData, tmp1); + r0 += 4; + r1 += 4; + r2 += 4; + r3 += 4; + outputData += 4; + } + + for (int r = 0; r < remain; r++) { + float32x4_t i0 = vld1q_f32(r0); + float32x4_t i1 = vld1q_f32(r1); + float32x4_t i2 = vld1q_f32(r2); + float32x4_t i3 = vld1q_f32(r3); + *outputData = conv4x4(i0, i1, i2, i3, k[0], k[1], k[2], k[3]); + r0++; + r1++; + r2++; + r3++; + outputData++; + } + + r0 += 3; + r1 += 3; + r2 += 3; + r3 += 3; + } + } + } +}; + +/** + * Each step calculates four elements of the output. + */ +template <> +struct DepthwiseConvKernel<4, 2> { + static void run(const float* inputData, + const float* filterData, + int inputHeight, + int inputWidth, + int outputChannels, + int outputHeight, + int outputWidth, + int filterMultiplier, + float* outputData) { + const int steps = outputWidth >> 2; + const int remain = outputWidth & 3; + for (int c = 0; c < outputChannels; c++, filterData += 16) { + // Load the filters + float32x4_t k[4]; + k[0] = vld1q_f32(filterData); + k[1] = vld1q_f32(filterData + 4); + k[2] = vld1q_f32(filterData + 8); + k[3] = vld1q_f32(filterData + 12); + + const float* start = + inputData + (c / filterMultiplier) * (inputHeight * inputWidth); + float32x4_t input[4][4]; + for (int h = 0; h < outputHeight; h++) { + const float* r0 = start + 2 * h * inputWidth; + const float* r1 = start + (2 * h + 1) * inputWidth; + const float* r2 = start + (2 * h + 2) * inputWidth; + const float* r3 = start + (2 * h + 3) * inputWidth; + for (int s = 0; s < steps; s++) { + // Load the inputs + float32x4x2_t data1; + float32x4x2_t data2; + + data1 = vld2q_f32(r0); + data2 = vld2q_f32(r0 + 8); + input[0][0] = data1.val[0]; + input[0][1] = data1.val[1]; + input[0][2] = vextq_f32(data1.val[0], data2.val[0], 1); + input[0][3] = vextq_f32(data1.val[1], data2.val[1], 1); + + data1 = vld2q_f32(r1); + data2 = vld2q_f32(r1 + 8); + input[1][0] = data1.val[0]; + input[1][1] = data1.val[1]; + input[1][2] = vextq_f32(data1.val[0], data2.val[0], 1); + input[1][3] = vextq_f32(data1.val[1], data2.val[1], 1); + + data1 = vld2q_f32(r2); + data2 = vld2q_f32(r2 + 8); + input[2][0] = data1.val[0]; + input[2][1] = data1.val[1]; + input[2][2] = vextq_f32(data1.val[0], data2.val[0], 1); + input[2][3] = vextq_f32(data1.val[1], data2.val[1], 1); + + data1 = vld2q_f32(r3); + data2 = vld2q_f32(r3 + 8); + input[3][0] = data1.val[0]; + input[3][1] = data1.val[1]; + input[3][2] = vextq_f32(data1.val[0], data2.val[0], 1); + input[3][3] = vextq_f32(data1.val[1], data2.val[1], 1); + + float32x4_t tmp1 = vdupq_n_f32(0.f); + float32x4_t tmp2 = vdupq_n_f32(0.f); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[0][0], k[0]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[0][1], k[0]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[0][2], k[0]); + tmp2 = vmlaq_laneq_f32<3>(tmp2, input[0][3], k[0]); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[1][0], k[1]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[1][1], k[1]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[1][2], k[1]); + tmp2 = vmlaq_laneq_f32<3>(tmp2, input[1][3], k[1]); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[2][0], k[2]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[2][1], k[2]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[2][2], k[2]); + tmp2 = vmlaq_laneq_f32<3>(tmp2, input[2][3], k[2]); + tmp1 = vmlaq_laneq_f32<0>(tmp1, input[3][0], k[3]); + tmp2 = vmlaq_laneq_f32<1>(tmp2, input[3][1], k[3]); + tmp1 = vmlaq_laneq_f32<2>(tmp1, input[3][2], k[3]); + tmp2 = vmlaq_laneq_f32<3>(tmp2, input[3][3], k[3]); + tmp1 = vaddq_f32(tmp1, tmp2); + + vst1q_f32(outputData, tmp1); + r0 += 8; + r1 += 8; + r2 += 8; + r3 += 8; + outputData += 4; + } + + for (int r = 0; r < remain; r++) { + float32x4_t i0 = vld1q_f32(r0); + float32x4_t i1 = vld1q_f32(r1); + float32x4_t i2 = vld1q_f32(r2); + float32x4_t i3 = vld1q_f32(r3); + *outputData = conv4x4(i0, i1, i2, i3, k[0], k[1], k[2], k[3]); + r0 += 2; + r1 += 2; + r2 += 2; + r3 += 2; + outputData++; + } + } + } + } +}; + +template +class NeonDepthwiseConvFunction : public ConvFunctionBase { +public: + void init(const FuncConfig& config) override { + ConvFunctionBase::init(config); + } + + void check(const BufferArgs& inputs, const BufferArgs& outputs) override { + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + checkShape(input, filter, output); + } + + void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { + CHECK_EQ(numInputs_, inputs.size()); + CHECK_EQ(numOutputs_, outputs.size()); + check(inputs, outputs); + + const TensorShape& input = inputs[0].shape(); + const TensorShape& filter = inputs[1].shape(); + const TensorShape& output = outputs[0].shape(); + + size_t batchSize = input[0]; + size_t inputChannels = input[1]; + size_t inputHeight = input[2]; + size_t inputWidth = input[3]; + size_t filterHeight = getFilterHeight(filter); + size_t filterWidth = getFilterWidth(filter); + size_t outputChannels = output[1]; + size_t outputHeight = output[2]; + size_t outputWidth = output[3]; + size_t filterMultiplier = outputChannels / groups_; + CHECK_EQ(inputChannels, groups_); + + // only support strideH() == strideW() and filterHeight == filterWidth. + CHECK_EQ(strideH(), strideW()); + CHECK_EQ(filterHeight, filterWidth); + + float* inputData = inputs[0].data(); + float* filterData = inputs[1].data(); + float* outputData = outputs[0].data(); + + // padding the input + float* inputPadding = inputData; + if (paddingH() > 0 || paddingW() > 0) { + int newSize = batchSize * inputChannels * (inputHeight + 2 * paddingH()) * + (inputWidth + 2 * paddingW()); + resizeBuffer(newSize); + inputPadding = reinterpret_cast(memory_->getBuf()); + Padding::run(inputData, + inputPadding, + batchSize * inputChannels, + inputHeight, + inputWidth, + paddingH(), + paddingW()); + + // height and width of padding data + inputHeight += 2 * paddingH(); + inputWidth += 2 * paddingW(); + } + + std::function + DepthWiseConv; + + if (filterWidth == 3 && strideW() == 1) { + DepthWiseConv = DepthwiseConvKernel<3, 1>::run; + } else if (filterWidth == 3 && strideW() == 2) { + DepthWiseConv = DepthwiseConvKernel<3, 2>::run; + } else if (filterWidth == 4 && strideW() == 1) { + DepthWiseConv = DepthwiseConvKernel<4, 1>::run; + } else if (filterWidth == 4 && strideW() == 2) { + DepthWiseConv = DepthwiseConvKernel<4, 2>::run; + } else { + LOG(FATAL) << "Not supported"; + } + + for (size_t i = 0; i < batchSize; i++) { + DepthWiseConv(inputPadding, + filterData, + inputHeight, + inputWidth, + outputChannels, + outputHeight, + outputWidth, + filterMultiplier, + outputData); + inputPadding += inputChannels * inputHeight * inputWidth; + outputData += outputChannels * outputHeight * outputWidth; + } + } +}; + +REGISTER_TYPED_FUNC(NeonDepthwiseConv, CPU, NeonDepthwiseConvFunction); + +#endif + +} // namespace neon +} // namespace paddle diff --git a/paddle/function/neon/neon_util.h b/paddle/function/neon/neon_util.h new file mode 100644 index 0000000000000000000000000000000000000000..dbe017170bbf8a69bf842cd8b4638aae5e0b5b38 --- /dev/null +++ b/paddle/function/neon/neon_util.h @@ -0,0 +1,47 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#if defined(__ARM_NEON__) || defined(__ARM_NEON) + +#include + +namespace paddle { + +namespace neon { + +inline float32x4_t vld1q_f32_aligned(const float* p) { + return vld1q_f32( + (const float*)__builtin_assume_aligned(p, sizeof(float32x4_t))); +} + +#ifndef __aarch64__ +inline float32_t vaddvq_f32(float32x4_t a) { + float32x2_t v = vadd_f32(vget_high_f32(a), vget_low_f32(a)); + return vget_lane_f32(vpadd_f32(v, v), 0); +} + +template +inline float32x4_t vmlaq_laneq_f32(float32x4_t a, + float32x4_t b, + float32x4_t v) { + return vmlaq_n_f32(a, b, vgetq_lane_f32(v, lane)); +} +#endif + +} // namespace neon +} // namespace paddle + +#endif diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp b/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp index 157b1ab45163a94a81d859dbcb7a52ae8edae439..9f29b97466910f1daf88e3ca86f92d10661462c5 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.cpp @@ -1012,11 +1012,6 @@ void RecurrentGradientMachine::generateSequence() { /* width */ resultNum, false, /* useGpu */ false); - Matrix::resizeOrCreate(generator_.outArg.value, - /* height */ maxGenWordCount, - /* width */ 1, - false, - /* useGpu */ false); } ICpuGpuVector::resizeOrCreate(generator_.outArg.sequenceStartPositions, numSequences + 1, @@ -1026,7 +1021,7 @@ void RecurrentGradientMachine::generateSequence() { } else { oneWaySearch(numSequences); } - if (dataArgsSize_) createDataOutlink(batchMachineIdVec_); + if (dataArgsSize_) createDataOutlink(); size_t size = generator_.ids.size(); generator_.outArg.ids->resize(size); @@ -1106,6 +1101,7 @@ void RecurrentGradientMachine::oneWaySearch(size_t batchSize) { } batchMachineIdVec_.clear(); + batchMachineStartPos_.clear(); int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false); starts[0] = 0; generator_.ids.clear(); @@ -1312,13 +1308,20 @@ void RecurrentGradientMachine::fillGenOutputs() { finalPaths_[i].resize(minFinalPathsSize); } - batchMachineIdVec_.clear(); generator_.ids.clear(); int* starts = generator_.outArg.sequenceStartPositions->getMutableData(false); starts[0] = 0; if (numResults > 1) { - real* probs = generator_.outArg.in->getData(); + int idsProbSaveSize = 0; + for (auto inSeq : finalPaths_) { + for (auto path : inSeq) idsProbSaveSize += path.ids.size(); + idsProbSaveSize += inSeq.size(); + } + Matrix::resizeOrCreate( + generator_.outArg.value, idsProbSaveSize, 1, false, false); real* idsProb = generator_.outArg.value->getData(); + + real* probs = generator_.outArg.in->getData(); size_t curPos = 0; for (size_t i = 0; i < finalPaths_.size(); ++i) { for (size_t j = 0; j < finalPaths_[i].size(); ++j) { @@ -1333,24 +1336,16 @@ void RecurrentGradientMachine::fillGenOutputs() { curPos += genLen; idsProb[curPos++] = -1.0; probs[i * numResults + j] = path.logProb; - - if (!j && dataArgsSize_) { - // in beam search, here only reserved the top 1 generated result - // for out_links that are not the generated word indices. - batchMachineIdVec_.insert(batchMachineIdVec_.end(), - path.machineIdVec.begin(), - path.machineIdVec.end()); - } } starts[i + 1] = generator_.ids.size(); } } else { for (size_t i = 0; i < finalPaths_.size(); ++i) { CHECK(!finalPaths_[i].empty()); - generator_.ids.insert(generator_.ids.begin(), - finalPaths_[i][0].ids.begin(), - finalPaths_[i][0].ids.end()); - starts[i + 1] = starts[i] + finalPaths_[i][0].ids.size(); + Path& path = finalPaths_[i][0]; + generator_.ids.insert( + generator_.ids.end(), path.ids.begin(), path.ids.end()); + starts[i + 1] = starts[i] + path.ids.size(); } } } @@ -1364,25 +1359,76 @@ void RecurrentGradientMachine::copyDataOutlinkFrame(size_t machineCur) { } } -void RecurrentGradientMachine::createDataOutlink( - std::vector& machineIdVec) { - size_t seqNum = - getBeamSize() > 1UL ? finalPaths_.size() : finalPaths_[0].size(); - std::vector starts(seqNum + 1, 0); - for (size_t i = 0; i < seqNum; ++i) { - size_t seqLen = getBeamSize() > 1UL ? finalPaths_[i][0].ids.size() - : finalPaths_[0][i].ids.size(); - starts[i + 1] = starts[i] + seqLen; +void RecurrentGradientMachine::createDataOutlinkSelRowsInfo( + bool isSeq, std::vector& outArgs) { + batchMachineIdVec_.clear(); + + size_t seqIdx = 0; + for (size_t i = 0; i < finalPaths_.size(); ++i) { + for (size_t j = 0; j < finalPaths_[i].size(); ++j) { + std::vector& machineIdVec = finalPaths_[i][j].machineIdVec; + if (isSeq) { + for (size_t i = 0; i < machineIdVec.size(); ++i) { + size_t rowId = machineIdVec[i]; + int* seqPos = + outArgs[i].sequenceStartPositions->getMutableData(false); + batchMachineIdVec_.push_back(seqPos[rowId]); + } + } else { + batchMachineIdVec_.insert( + batchMachineIdVec_.end(), machineIdVec.begin(), machineIdVec.end()); + } + seqIdx++; + } + } +} + +void RecurrentGradientMachine::createDataOutlinkCopySizeInfo( + bool isSeq, std::vector& outArgs, std::vector& copySize) { + size_t totalSeqNum = std::accumulate( + finalPaths_.begin(), + finalPaths_.end(), + 0UL, + [](size_t a, const std::vector& b) { return a + b.size(); }); + copySize.resize(totalSeqNum, 1); + + batchMachineStartPos_.resize(totalSeqNum + 1, 0); + if (isSeq) { + ICpuGpuVectorPtr inputSeqStartPos = outArgs[0].sequenceStartPositions; + CHECK_EQ(static_cast(inputSeqStartPos->getSize() - 1), + getBeamSize() > 1 ? finalPaths_.size() : finalPaths_[0].size()); + int* starts = inputSeqStartPos->getMutableData(false); + int seqId = 0; + for (size_t i = 0; i < finalPaths_.size(); ++i) { + for (size_t j = 0; j < finalPaths_[i].size(); ++j) { + copySize[seqId] = getBeamSize() > 1 ? starts[i + 1] - starts[i] + : starts[j + 1] - starts[j]; + batchMachineStartPos_[seqId + 1] = + batchMachineStartPos_[seqId] + finalPaths_[i][j].ids.size(); + seqId++; + } + } + } else { + for (size_t i = 0; i < finalPaths_[0].size(); ++i) + batchMachineStartPos_[i + 1] = + batchMachineStartPos_[i] + finalPaths_[0][i].ids.size(); } +} +void RecurrentGradientMachine::createDataOutlink() { for (size_t i = 0; i < dataArgsSize_; i++) { + bool isSeq = dataArgsFrame_[i][0].hasSeq(); + std::vector copySize; + createDataOutlinkCopySizeInfo(isSeq, dataArgsFrame_[i], copySize); + createDataOutlinkSelRowsInfo(isSeq, dataArgsFrame_[i]); + dataArgs_[i].concat(dataArgsFrame_[i], - machineIdVec, - starts, + batchMachineIdVec_, + batchMachineStartPos_, + copySize, useGpu_, HPPL_STREAM_1, PASS_TEST); - auto dataAgent = dynamic_cast(outFrameLines_[i + 1].agentLayer.get()); CHECK_NOTNULL(dataAgent); diff --git a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h index fb3fc5877ac96323e891f800db80af83b6809831..c16fae6d1770e616fdcfabd440624c9be9753c91 100644 --- a/paddle/gserver/gradientmachines/RecurrentGradientMachine.h +++ b/paddle/gserver/gradientmachines/RecurrentGradientMachine.h @@ -190,7 +190,7 @@ public: std::vector ids; /** - * @brief idsProb, log probability of each generated words. + * @brief idsProb, log probability of each generated word. */ std::vector idsProb; @@ -472,15 +472,43 @@ private: void copyDataOutlinkFrame(size_t machineCur); /* - * @brief In generation, if the layer group has more than 1 outlink, outlinks - * except the first one are data outlinks. This function creates the data - * outlinks. - * @note In beam search, only one generated sequence with the hightest log - * probabilites are retained. - * @param machineIdVec : select a row of output matrix in each frame - * that the generation process expanded. + * @brief In generation, if the layer group has more than 1 outlink, outlink + * except the first one is a data outlink. In RecurrentLayerGroup, each time + * step is a separate Network, outputs of a layer inside the + * RecurrentLayerGroup are stored in separate Arguments. If one layer is + * specified as an outlink of RecurrentLayerGroup. This function will + * collect outputs in each time step of each generated sequence which are + * dispersed in separate Arguments to form a new single Argument as output of + * RecurrentLayerGroup. */ - void createDataOutlink(std::vector& machineIdVec); + void createDataOutlink(); + + /* + * @brief decide to select how many rows from the Matrix stored the forward + * pass results from a start position. + * + * @param isSeq: a flag indicating whetehr the layer to be output of the + * RecurrentGradientMachine is a sequence or not + * @param outArgs: all of the the returned Arguments of the forward pass + * during the generation process. + * @param copySize: the returned result, number of rows to select from the + * Matrix stored the forward pass results from a start position. + */ + void createDataOutlinkCopySizeInfo(bool isSeq, + std::vector& outArgs, + std::vector& copySize); + + /* + * @brief decide index of the start row for each time step of a generated + * sequence in Matrix stored the entire beam search batch's forward pass + * results. + * + * @param isSeq: a flag indicating whether the layer to be output of the + * RecurrentGradientMachine is a sequence or not + * @param outArgs: all of the returned Arguments of the forward pass + * during the generation process. + */ + void createDataOutlinkSelRowsInfo(bool isSeq, std::vector& outArgs); /* * @brief used in beam search, connect previous frame to form recurrent link @@ -543,6 +571,7 @@ private: std::vector topIds_; std::vector seqIds_; std::vector batchMachineIdVec_; + std::vector batchMachineStartPos_; std::vector> finalPaths_; std::vector minFinalPathLogProb_; BeamSearchControlCallbacks* beamSearchCtrlCallbacks_; diff --git a/paddle/gserver/layers/Conv3DLayer.cpp b/paddle/gserver/layers/Conv3DLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7cc9937cce37cbbc4640fbb88312841c23b757c0 --- /dev/null +++ b/paddle/gserver/layers/Conv3DLayer.cpp @@ -0,0 +1,244 @@ +/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "Conv3DLayer.h" +#include "paddle/utils/Logging.h" +#include "paddle/utils/Stat.h" + +namespace paddle { + +REGISTER_LAYER(conv3d, Conv3DLayer); + +bool Conv3DLayer::init(const LayerMap &layerMap, + const ParameterMap ¶meterMap) { + if (!ConvBaseLayer::init(layerMap, parameterMap)) return false; + int index = 0; + for (auto &inputConfig : config_.inputs()) { + const ConvConfig &conf = inputConfig.conv_conf(); + M_.push_back(numFilters_ / conf.groups()); + K_.push_back(filterPixels_[index] * filterChannels_[index]); + + // create a new weight + size_t height, width; + width = filterPixels_[index] * filterChannels_[index]; + height = numFilters_; + CHECK_EQ(parameters_[index]->getSize(), width * height); + Weight *w = new Weight(height, width, parameters_[index]); + weights_.emplace_back(w); + ++index; + } + if (biasParameter_.get()) { + if (sharedBiases_) { + CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); + biases_ = + std::unique_ptr(new Weight(1, numFilters_, biasParameter_)); + } else { + biases_ = + std::unique_ptr(new Weight(1, getSize(), biasParameter_)); + } + } + return true; +} + +size_t Conv3DLayer::getSize() { + CHECK_NE(inputLayers_.size(), 0UL); + outputH_.clear(); + outputW_.clear(); + outputD_.clear(); + N_.clear(); + size_t layerSize = 0; + for (size_t i = 0; i < inputLayers_.size(); ++i) { + outputW_.push_back(outputSize( + imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true)); + outputH_.push_back(outputSize( + imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true)); + outputD_.push_back(outputSize( + imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true)); + + N_.push_back(outputD_[i] * outputH_[i] * outputW_[i]); + CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize); + layerSize += N_[i] * numFilters_; + } + getOutput().setFrameHeight(outputH_[0]); + getOutput().setFrameWidth(outputW_[0]); + getOutput().setFrameDepth(outputD_[0]); + return layerSize; +} + +void Conv3DLayer::forward(PassType passType) { + Layer::forward(passType); + + int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); + int outWidth = getSize(); + resetOutput(batchSize, outWidth); + + for (size_t i = 0; i != inputLayers_.size(); ++i) { + REGISTER_TIMER_INFO("FwdConv3D", getName().c_str()); + const MatrixPtr &inMat = getInputValue(i); + const MatrixPtr &outMat = getOutputValue(); + int M = M_[i]; + int N = N_[i]; + int K = K_[i]; + Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_); + MatrixPtr wMat = weights_[i]->getW(); + for (int n = 0; n < batchSize; ++n) { + colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(), + channels_[i], + imgSizeD_[i], + imgSizeH_[i], + imgSizeW_[i], + filterSizeZ_[i], + filterSizeY_[i], + filterSize_[i], + strideZ_[i], + strideY_[i], + stride_[i], + paddingZ_[i], + paddingY_[i], + padding_[i]); + + real *outData = outMat->getData() + n * outMat->getStride(); + MatrixPtr outMatSub = + Matrix::create(outData, groups_[i] * M, N, false, useGpu_); + for (int g = 0; g < groups_[i]; g++) { + MatrixPtr wMatSub = wMat->subMatrix(g * M, M); + MatrixPtr in = colBuf_->subMatrix(g * K, K); + MatrixPtr out = outMatSub->subMatrix(g * M, M); + out->mul(*wMatSub, *in, 1.0, 1.0); + } + } + } + if (nullptr != this->biasParameter_) { + REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str()); + this->addBias(); + } + forwardActivation(); +} + +void Conv3DLayer::backward(const UpdateCallback &callback) { + backwardActivation(); + + if (biases_ && biases_->getWGrad()) { + bpropBiases(); + biases_->getParameterPtr()->incUpdate(callback); + } + + for (size_t i = 0; i != inputLayers_.size(); ++i) { + REGISTER_TIMER_INFO("BwdConv3D", getName().c_str()); + if (weights_[i]->getWGrad()) { + bpropWeights(i); + } + if (getInputGrad(i)) { + bpropData(i); + } + REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); + weights_[i]->getParameterPtr()->incUpdate(callback); + } +} + +void Conv3DLayer::bpropWeights(int i) { + int M = M_[i]; + int N = N_[i]; + int K = K_[i]; + const MatrixPtr &inMat = getInputValue(i); + Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_); + MatrixPtr wGradMat = weights_[i]->getWGrad(); + int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); + for (int n = 0; n < batchSize; ++n) { + colBuf_->vol2Col(inMat->getData() + n * inMat->getStride(), + channels_[i], + imgSizeD_[i], + imgSizeH_[i], + imgSizeW_[i], + filterSizeZ_[i], + filterSizeY_[i], + filterSize_[i], + strideZ_[i], + strideY_[i], + stride_[i], + paddingZ_[i], + paddingY_[i], + padding_[i]); + + real *outGradData = + getOutputGrad()->getData() + n * getOutputGrad()->getStride(); + MatrixPtr outGradSub = + Matrix::create(outGradData, groups_[i] * M, N, false, useGpu_); + for (int g = 0; g < groups_[i]; ++g) { + MatrixPtr inMatSub = colBuf_->subMatrix(g * K, K); + MatrixPtr outG = outGradSub->subMatrix(g * M, M); + MatrixPtr wGradSub = wGradMat->subMatrix(g * M, M); + wGradSub->mul(*outG, *(inMatSub->getTranspose()), 1.0, 1.0); + } + } +} + +void Conv3DLayer::bpropData(int i) { + int M = M_[i]; + int N = N_[i]; + int K = K_[i]; + Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_); + MatrixPtr wMat = weights_[i]->getW(); + int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); + for (int n = 0; n < batchSize; ++n) { + real *outGradData = + getOutputGrad()->getData() + n * getOutputGrad()->getStride(); + real *preGradData = + getInputGrad(i)->getData() + n * getInputGrad(i)->getStride(); + MatrixPtr outGradSub = + Matrix::create(outGradData, M * groups_[i], N, false, useGpu_); + for (int g = 0; g < groups_[i]; ++g) { + MatrixPtr wMatSub = wMat->subMatrix(g * M, M); + MatrixPtr outG = outGradSub->subMatrix(g * M, M); + MatrixPtr inGradMatSub = colBuf_->subMatrix(g * K, K); + inGradMatSub->mul(*(wMatSub->getTranspose()), *outG, 1.0, 0.0); + } + colBuf_->col2Vol(preGradData, + channels_[i], + imgSizeD_[i], + imgSizeH_[i], + imgSizeW_[i], + filterSizeZ_[i], + filterSizeY_[i], + filterSize_[i], + strideZ_[i], + strideY_[i], + stride_[i], + paddingZ_[i], + paddingY_[i], + padding_[i], + 1.0, + 1.0); + } +} + +void Conv3DLayer::bpropBiases() { + MatrixPtr outGradMat = getOutputGrad(); + if (this->sharedBiases_) { + biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f); + } else { + biases_->getWGrad()->collectBias(*outGradMat, 1.0f); + } +} + +void Conv3DLayer::addBias() { + MatrixPtr outMat = getOutputValue(); + if (this->sharedBiases_) { + outMat->addSharedBias(*(biases_->getW()), 1.0f); + } else { + outMat->addBias(*(biases_->getW()), 1.0f); + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/Conv3DLayer.h b/paddle/gserver/layers/Conv3DLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..b622508d0ce1b0938c44f5c7f1371a34c86b2c1d --- /dev/null +++ b/paddle/gserver/layers/Conv3DLayer.h @@ -0,0 +1,51 @@ +/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include "ConvBaseLayer.h" +#include "paddle/math/MathUtils.h" +#include "paddle/math/Matrix.h" + +namespace paddle { + +/** + * @brief A subclass of convolution layer. + * This layer expands input and use matrix multiplication to + * calculate convolution operation. + */ +class Conv3DLayer : public ConvBaseLayer { +public: + explicit Conv3DLayer(const LayerConfig& config) : ConvBaseLayer(config) {} + ~Conv3DLayer() {} + + bool init(const LayerMap& layerMap, const ParameterMap& parameterMap); + + void forward(PassType passType); + void addBias(); + void backward(const UpdateCallback& callback); + void bpropBiases(); + void bpropData(int i); + void bpropWeights(int i); + size_t getSize(); + +protected: + // Figure out the dimensions for individual gemms. + IntV M_; /// numFilters_ / filter_group_; + IntV N_; /// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_ + IntV K_; /// outputD_ * outputH_ * outputW_ + MatrixPtr colBuf_; +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/ConvBaseLayer.cpp b/paddle/gserver/layers/ConvBaseLayer.cpp index e161d89c38a290000a2cbdb2905e56901ae4c144..b848ab6bdd44f8fe81cbbf63b35a321599fd93fe 100644 --- a/paddle/gserver/layers/ConvBaseLayer.cpp +++ b/paddle/gserver/layers/ConvBaseLayer.cpp @@ -32,11 +32,12 @@ bool ConvBaseLayer::init(const LayerMap& layerMap, const ConvConfig& conf = inputConfig.conv_conf(); padding_.push_back(conf.padding()); stride_.push_back(conf.stride()); + dilation_.push_back(conf.dilation()); filterSize_.push_back(conf.filter_size()); paddingY_.push_back(conf.padding_y()); strideY_.push_back(conf.stride_y()); + dilationY_.push_back(conf.dilation_y()); filterSizeY_.push_back(conf.filter_size_y()); - filterPixels_.push_back(filterSize_.back() * filterSizeY_.back()); channels_.push_back(conf.channels()); imgSizeH_.push_back(conf.has_img_size_y() ? conf.img_size_y() : conf.img_size()); @@ -45,31 +46,20 @@ bool ConvBaseLayer::init(const LayerMap& layerMap, filterChannels_.push_back(conf.filter_channels()); outputH_.push_back(conf.has_output_y() ? conf.output_y() : conf.output_x()); outputW_.push_back(conf.output_x()); + + paddingZ_.push_back(conf.padding_z()); + strideZ_.push_back(conf.stride_z()); + filterSizeZ_.push_back(conf.filter_size_z()); + imgSizeD_.push_back(conf.img_size_z()); + outputD_.push_back(conf.output_z()); + filterPixels_.push_back(filterSize_.back() * filterSizeY_.back() * + filterSizeZ_.back()); } CHECK(inputLayers_.size() == parameters_.size()); - for (size_t i = 0; i < inputLayers_.size(); i++) { - size_t height, width; - height = filterPixels_[i] * filterChannels_[i]; - width = (!isDeconv_) ? numFilters_ : channels_[i]; - - // create a new weight - CHECK_EQ(parameters_[i]->getSize(), width * height); - Weight* w = new Weight(height, width, parameters_[i]); - weights_.emplace_back(w); - } - /* initialize the biases_ */ - if (biasParameter_.get()) { - if (sharedBiases_) { - CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); - biases_ = - std::unique_ptr(new Weight(numFilters_, 1, biasParameter_)); - } else { - biases_ = - std::unique_ptr(new Weight(getSize(), 1, biasParameter_)); - } - } + // create new weights_ in derived class + // create new biases_ in derived class // default caffe model caffeMode_ = true; @@ -89,7 +79,11 @@ size_t ConvBaseLayer::calOutputSize() { size_t layerSize = 0; auto setLayerSize = [&](IntV& inH, IntV& inW, IntV& outH, IntV& outW) { + size_t filterSizeY; + size_t filterSize; for (size_t i = 0; i < inputLayers_.size(); i++) { + filterSizeY = (filterSizeY_[i] - 1) * dilationY_[i] + 1; + filterSize = (filterSize_[i] - 1) * dilation_[i] + 1; inH.push_back(inputLayers_[i]->getOutput().getFrameHeight()); inW.push_back(inputLayers_[i]->getOutput().getFrameWidth()); const ConvConfig& conf = config_.inputs(i).conv_conf(); @@ -98,17 +92,17 @@ size_t ConvBaseLayer::calOutputSize() { inH[i] = conf.has_output_y() ? conf.output_y() : conf.output_x(); if (inW[i] == 0) inW[i] = conf.output_x(); outH.push_back(imageSize( - inH[i], filterSizeY_[i], paddingY_[i], strideY_[i], caffeMode_)); - outW.push_back(imageSize( - inW[i], filterSize_[i], padding_[i], stride_[i], caffeMode_)); + inH[i], filterSizeY, paddingY_[i], strideY_[i], caffeMode_)); + outW.push_back( + imageSize(inW[i], filterSize, padding_[i], stride_[i], caffeMode_)); } else { if (inH[i] == 0) inH[i] = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size(); if (inW[i] == 0) inW[i] = conf.img_size(); outH.push_back(outputSize( - inH[i], filterSizeY_[i], paddingY_[i], strideY_[i], caffeMode_)); + inH[i], filterSizeY, paddingY_[i], strideY_[i], caffeMode_)); outW.push_back(outputSize( - inW[i], filterSize_[i], padding_[i], stride_[i], caffeMode_)); + inW[i], filterSize, padding_[i], stride_[i], caffeMode_)); } CHECK_EQ(outH[i], outH[0]); CHECK_EQ(outW[i], outW[0]); diff --git a/paddle/gserver/layers/ConvBaseLayer.h b/paddle/gserver/layers/ConvBaseLayer.h index e9d15d94f806a5d2e6f11cbbfc29e291dfe8538f..ccd170d9d85f573dff7340c26b2038c17a548471 100644 --- a/paddle/gserver/layers/ConvBaseLayer.h +++ b/paddle/gserver/layers/ConvBaseLayer.h @@ -40,6 +40,10 @@ protected: IntV stride_; /// The y dimension of the stride. IntV strideY_; + /// The x dimension of the dilation. + IntV dilation_; + /// The y dimension of the dilation. + IntV dilationY_; /// The x dimension of a filter kernel. IntV filterSize_; /// The y dimension of a filter kernel. @@ -58,6 +62,13 @@ protected: IntV outputH_; /// The spatial dimensions of output feature map width. IntV outputW_; + + IntV outputD_; + IntV imgSizeD_; + IntV filterSizeZ_; + IntV strideZ_; + IntV paddingZ_; + /// Group size, refer to grouped convolution in /// Alex Krizhevsky's paper: when group=2, the first half of the /// filters are only connected to the first half of the input channels, diff --git a/paddle/gserver/layers/ConvBaseOperator.cpp b/paddle/gserver/layers/ConvBaseOperator.cpp index 5c231986292d2cd26ee30ccc122142fccd5b4949..5469c41c87468001232f7bae0d5b6bf26693b9e0 100644 --- a/paddle/gserver/layers/ConvBaseOperator.cpp +++ b/paddle/gserver/layers/ConvBaseOperator.cpp @@ -59,7 +59,8 @@ void ConvBaseOperator::allocConvWorkSpace() { &bwdDataAlgo_, &bwdDataLimitBytes_, &bwdFilterAlgo_, - &bwdFilterLimitBytes_); + &bwdFilterLimitBytes_, + /*useDilation*/ false); size_t maxWorkSpace = 0; maxWorkSpace = std::max(fwdLimitBytes_, bwdDataLimitBytes_); diff --git a/paddle/gserver/layers/ConvBaseProjection.cpp b/paddle/gserver/layers/ConvBaseProjection.cpp index eb6b0445c95a9e9a7acd5d693ecdb11a263f41fd..08f36c516cfdadd42e9333c1c5a7a247df1f263e 100644 --- a/paddle/gserver/layers/ConvBaseProjection.cpp +++ b/paddle/gserver/layers/ConvBaseProjection.cpp @@ -41,6 +41,11 @@ void ConvBaseProjection::getConvParams() { strideH_ = conf.stride_y(); strideW_ = conf.stride(); + dilationH_ = conf.dilation_y(); + dilationW_ = conf.dilation(); + CHECK_GT(dilationH_, 0); + CHECK_GT(dilationW_, 0); + filterH_ = conf.filter_size_y(); filterW_ = conf.filter_size(); @@ -77,7 +82,9 @@ void ConvBaseProjection::initCudnn() { paddingH_, paddingW_, strideH_, - strideW_); + strideW_, + dilationH_, + dilationW_); // initialize all to default algorithms fwdAlgo_ = 0; @@ -131,7 +138,9 @@ void ConvBaseProjection::reshapeTensorDesc(int batchSize) { paddingH_, paddingW_, strideH_, - strideW_); + strideW_, + dilationH_, + dilationW_); } void ConvBaseProjection::reshape(int batchSize) { @@ -140,6 +149,10 @@ void ConvBaseProjection::reshape(int batchSize) { CHECK_EQ(calInputSize(), in_->value->getWidth()); reshapeTensorDesc(batchSize); + bool useDilation = false; + if (dilationH_ > 1 || dilationW_ > 1) { + useDilation = true; + } hl_conv_workspace(imageDesc_, outputDesc_, filterDesc_, @@ -149,7 +162,8 @@ void ConvBaseProjection::reshape(int batchSize) { &bwdDataAlgo_, &bwdDataLimitBytes_, &bwdFilterAlgo_, - &bwdFilterLimitBytes_); + &bwdFilterLimitBytes_, + useDilation); size_t maxWorkSpace = 0; maxWorkSpace = std::max(fwdLimitBytes_, bwdDataLimitBytes_); diff --git a/paddle/gserver/layers/ConvBaseProjection.h b/paddle/gserver/layers/ConvBaseProjection.h index e9d9f8f1b2937b3a3b7323c43ef5608ffc5f82ca..ebdb57845bb36ac607b1e4c8e02f9d20b6e82a36 100644 --- a/paddle/gserver/layers/ConvBaseProjection.h +++ b/paddle/gserver/layers/ConvBaseProjection.h @@ -63,6 +63,7 @@ protected: int configChannels_, configNumFilters_; int paddingH_, paddingW_; int strideH_, strideW_; + int dilationH_, dilationW_; int filterH_, filterW_; /// One group offset of input data. int inputOffset_; diff --git a/paddle/gserver/layers/ConvProjection.cpp b/paddle/gserver/layers/ConvProjection.cpp index 5b7ecc5560c1e7431305b34a331fe1fbc96c6b06..6f0106b713d93494ba9baa5c7afa0a6b1f167262 100644 --- a/paddle/gserver/layers/ConvProjection.cpp +++ b/paddle/gserver/layers/ConvProjection.cpp @@ -25,12 +25,12 @@ size_t ConvProjection::calOutputSize() { if (imageH_ == 0) imageH_ = configImgH_; if (imageW_ == 0) imageW_ = configImgW_; outputH_ = outputSize(imageH_, - filterH_, + (filterH_ - 1) * dilationH_ + 1, paddingH_, strideH_, /* caffeMode */ true); outputW_ = outputSize(imageW_, - filterW_, + (filterW_ - 1) * dilationW_ + 1, paddingW_, strideW_, /* caffeMode */ true); diff --git a/paddle/gserver/layers/CostLayer.cpp b/paddle/gserver/layers/CostLayer.cpp index 6bfdea3c6e3f7cb80b620564f8229d954d773f04..ce071323ff585d28c9eaf80fec9be2394be526d1 100644 --- a/paddle/gserver/layers/CostLayer.cpp +++ b/paddle/gserver/layers/CostLayer.cpp @@ -572,13 +572,8 @@ void MultiBinaryLabelCrossEntropy::backwardImp(Matrix& output, } } -// -// Huber loss for robust 2-classes classification -// -REGISTER_LAYER(huber, HuberTwoClass); - -bool HuberTwoClass::init(const LayerMap& layerMap, - const ParameterMap& parameterMap) { +bool HuberCost::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { CostLayer::init(layerMap, parameterMap); if (useGpu_) { tmpCpuInput_.reserve(inputLayers_.size()); @@ -589,7 +584,7 @@ bool HuberTwoClass::init(const LayerMap& layerMap, return true; } -void HuberTwoClass::forwardImp(Matrix& output, Argument& label, Matrix& cost) { +void HuberCost::forwardImp(Matrix& output, Argument& label, Matrix& cost) { if (useGpu_) { for (size_t i = 0; i < inputLayers_.size(); i++) { tmpCpuInput_[i].resizeAndCopyFrom( @@ -597,13 +592,87 @@ void HuberTwoClass::forwardImp(Matrix& output, Argument& label, Matrix& cost) { } hl_stream_synchronize(HPPL_STREAM_DEFAULT); } - forwardImpIn(output, label, cost); } -void HuberTwoClass::forwardImpIn(Matrix& output, - Argument& label, - Matrix& target) { +// +// Huber loss for robust regression. +// +REGISTER_LAYER(huber_regression, HuberRegressionLoss); + +bool HuberRegressionLoss::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + HuberCost::init(layerMap, parameterMap); + delta_ = config_.delta(); + return true; +} + +void HuberRegressionLoss::forwardImp(Matrix& output, + Argument& label, + Matrix& target) { + HuberCost::forwardImp(output, label, target); + size_t numSamples = target.getHeight(); + size_t dim = output.getWidth(); + CHECK(label.value); + CHECK_EQ((*label.value).getHeight(), numSamples); + CHECK_EQ(output.getHeight(), numSamples); + CHECK_EQ(dim, (*label.value).getWidth()); + CHECK_EQ(target.getWidth(), (size_t)1); + + real* out = useGpu_ ? tmpCpuInput_[0].value->getData() : output.getData(); + real* lbl = + useGpu_ ? tmpCpuInput_[1].value->getData() : (*label.value).getData(); + std::vector cost(numSamples, 0); + for (size_t i = 0; i < numSamples; ++i) { + for (size_t j = 0; j < dim; ++j) { + int index = i * dim + j; + real a = std::abs(lbl[index] - out[index]); + if (a <= delta_) + cost[i] += a * a / 2; + else + cost[i] += delta_ * (a - delta_ / 2); + } + } + target.copyFrom(cost.data(), numSamples); +} + +void HuberRegressionLoss::backwardImp(Matrix& output, + Argument& label, + Matrix& outputG) { + size_t numSamples = output.getHeight(); + size_t dim = output.getWidth(); + real* out = useGpu_ ? tmpCpuInput_[0].value->getData() : output.getData(); + real* lbl = + useGpu_ ? tmpCpuInput_[1].value->getData() : (*label.value).getData(); + real* grad = useGpu_ ? tmpCpuInput_[0].grad->getData() : outputG.getData(); + for (size_t i = 0; i < numSamples; ++i) { + for (size_t j = 0; j < dim; ++j) { + int index = i * dim + j; + real a = lbl[index] - out[index]; + if (std::abs(a) <= delta_) + grad[index] += -a; + else + grad[index] += a > 0 ? -delta_ : delta_; + } + } + if (useGpu_) outputG.copyFrom(grad, numSamples * dim); +} + +// +// Huber loss for robust 2-classes classification +// +REGISTER_LAYER(huber_classification, HuberTwoClassification); + +bool HuberTwoClassification::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + return HuberCost::init(layerMap, parameterMap); +} + +void HuberTwoClassification::forwardImp(Matrix& output, + Argument& label, + Matrix& target) { + HuberCost::forwardImp(output, label, target); size_t numSamples = target.getHeight(); + CHECK(label.ids); CHECK_EQ((*label.ids).getSize(), numSamples); CHECK_EQ(output.getHeight(), numSamples); CHECK_EQ(output.getWidth(), (size_t)1); @@ -611,47 +680,35 @@ void HuberTwoClass::forwardImpIn(Matrix& output, real* out = useGpu_ ? tmpCpuInput_[0].value->getData() : output.getData(); int* lbl = useGpu_ ? tmpCpuInput_[1].ids->getData() : (*label.ids).getData(); - std::vector cost(numSamples); + std::vector cost(numSamples, 0); for (size_t i = 0; i < numSamples; ++i) { int y = 2 * lbl[i] - 1; - if (out[i] * y < -1) - cost[i] = -4 * out[i] * y; - else if (out[i] * y < 1) - cost[i] = (1 - out[i] * y) * (1 - out[i] * y); - else - cost[i] = 0; + real a = out[i] * y; + if (a < -1) + cost[i] = -4 * a; + else if (a < 1) + cost[i] = (1 - a) * (1 - a); } target.copyFrom(cost.data(), numSamples); } -void HuberTwoClass::backwardImp(Matrix& outputValue, - Argument& label, - Matrix& outputGrad) { - if (useGpu_) { - backwardImpIn( - *tmpCpuInput_[0].value, tmpCpuInput_[1], *tmpCpuInput_[0].grad); - outputGrad.copyFrom(*tmpCpuInput_[0].grad); - } else { - backwardImpIn(outputValue, label, outputGrad); - } -} - -void HuberTwoClass::backwardImpIn(Matrix& output, - Argument& label, - Matrix& outputG) { +void HuberTwoClassification::backwardImp(Matrix& output, + Argument& label, + Matrix& outputG) { size_t numSamples = output.getHeight(); - real* out = output.getData(); - real* grad = outputG.getData(); - int* lbl = (*label.ids).getData(); + real* out = useGpu_ ? tmpCpuInput_[0].value->getData() : output.getData(); + int* lbl = useGpu_ ? tmpCpuInput_[1].ids->getData() : (*label.ids).getData(); + real* grad = useGpu_ ? tmpCpuInput_[0].grad->getData() : outputG.getData(); for (size_t i = 0; i < numSamples; ++i) { int y = 2 * lbl[i] - 1; - if (y * out[i] < -1) + real a = out[i] * y; + if (a < -1) grad[i] += -4 * y; - else if (y * out[i] < 1) - grad[i] += -2 * (1 - y * out[i]) * y; + else if (a < 1) + grad[i] += -2 * (1 - a) * y; } + if (useGpu_) outputG.copyFrom(grad, numSamples); } - /** * This cost layer compute the sum of its input as loss. * \f[ diff --git a/paddle/gserver/layers/CostLayer.h b/paddle/gserver/layers/CostLayer.h index 14c0b33ec1a628521ae2d694dda8da553c29fd38..0f655b48eea051c41ce17c0a41189b26188cc866 100644 --- a/paddle/gserver/layers/CostLayer.h +++ b/paddle/gserver/layers/CostLayer.h @@ -304,37 +304,70 @@ public: Matrix& outputGrad) override; }; -/** - * Huber loss for robust 2-classes classification. - * - * For label={0, 1}, let y=2*label-1. Given output f, the loss is: - * \f[ - * Loss = - * \left\{\begin{matrix} - * 4 * y * f & \textit{if} \ \ y* f < -1 \\ - * (1 - y * f)^2 & \textit{if} \ \ -1 < y * f < 1 \\ - * 0 & \textit{otherwise} - * \end{matrix}\right. - * \f] +/* + * A base layer for HuberRegressionLoss and HuberTwoClassification. */ -class HuberTwoClass : public CostLayer { +class HuberCost : public CostLayer { +public: std::vector tmpCpuInput_; -public: - explicit HuberTwoClass(const LayerConfig& config) : CostLayer(config) {} + explicit HuberCost(const LayerConfig& config) : CostLayer(config) {} bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) override; void forwardImp(Matrix& output, Argument& label, Matrix& cost) override; - void forwardImpIn(Matrix& output, Argument& label, Matrix& cost); + void backwardImp(Matrix& outputValue, + Argument& label, + Matrix& outputGrad) override {} +}; + +/** + * Huber loss for robust regression. + * + * Given output f(x), label y and delta, the loss is: + * Loss = 0.5 * (1 - y * f)^2, if abs(y - f) <= delta \\ + * Loss = delta * abs(y - f) - 0.5 * delta^2, otherwise + */ +class HuberRegressionLoss : public HuberCost { +public: + explicit HuberRegressionLoss(const LayerConfig& config) : HuberCost(config) {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void forwardImp(Matrix& output, Argument& label, Matrix& cost) override; void backwardImp(Matrix& outputValue, Argument& label, Matrix& outputGrad) override; - void backwardImpIn(Matrix& outputValue, Argument& label, Matrix& outputGrad); +protected: + real delta_; +}; + +/** + * Huber loss for robust 2-classes classification. + * + * For label={0, 1}, let y=2*label-1. Given output f(x), the loss is: + * Loss = 4 * y * f, if y* f < -1 \\ + * Loss = (1 - y * f)^2, if -1 < y * f < 1 \\ + * Loss = 0, otherwise + */ +class HuberTwoClassification : public HuberCost { +public: + explicit HuberTwoClassification(const LayerConfig& config) + : HuberCost(config) {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void forwardImp(Matrix& output, Argument& label, Matrix& cost) override; + + void backwardImp(Matrix& outputValue, + Argument& label, + Matrix& outputGrad) override; }; typedef std::shared_ptr CostLayerPtr; diff --git a/paddle/gserver/layers/CrossEntropyOverBeam.cpp b/paddle/gserver/layers/CrossEntropyOverBeam.cpp new file mode 100644 index 0000000000000000000000000000000000000000..4acc077035b17fdf5ec06e0d4d916fa0a62f6cba --- /dev/null +++ b/paddle/gserver/layers/CrossEntropyOverBeam.cpp @@ -0,0 +1,393 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "CrossEntropyOverBeam.h" + +namespace paddle { + +void CostForOneSequence::calValidExpandStep() { + validExpansionCount_ = 0; + goldAsExtraPath_ = true; + + for (size_t i = 0; i < beams_->expansionCount; ++i) { + real gold = static_cast(beams_->gold[i]); + if (i) { + real* start = beams_->candidateIds[i - 1]->getData(); + goldRowIds_[i] = std::count_if( + start, + start + goldRowIds_[i - 1] * beamSize_ + goldColIds_[i - 1], + [](const real& val) { return val != -1.; }); + } else { + goldRowIds_[i] = 0; + } + + real* start = + beams_->candidateIds[i]->getData() + goldRowIds_[i] * beamSize_; + real* findEnd = std::find(start, start + beamSize_, gold); + validExpansionCount_++; + + if (start + beamSize_ == findEnd) return; + goldColIds_[i] = findEnd - start; + } + if (goldColIds_[beams_->expansionCount - 1] != -1) goldAsExtraPath_ = false; +} + +size_t CostForOneSequence::initLastExpansion() { + int beamId = validExpansionCount_ - 1; + const MatrixPtr candidates = beams_->candidateIds[beamId]; + size_t height = candidates->getHeight(); + + /* initialization the last expansion. */ + size_t pathCount = std::count_if(candidates->getData(), + candidates->getData() + height * beamSize_, + [](const real& val) { return val != -1; }); + /* + * if the gold sequence falls off the beam during search, add the gold + * sequence as the last path into the all expanded candidates. + */ + if (goldAsExtraPath_) goldIdsInFinalExpansion_ = pathCount++; + + pathRowIdsInEachBeam_.clear(); + pathRowIdsInEachBeam_.resize(validExpansionCount_, + std::vector(pathCount, 0)); + parentIdsInBeam_.clear(); + parentIdsInBeam_.resize(pathCount, 0); + + if (goldAsExtraPath_) { + /* add gold sequence into the total expansion. */ + pathRowIdsInEachBeam_[beamId].back() = + beams_->gold[beamId] + + getSeqStartPos(beamId, goldRowIds_[validExpansionCount_ - 1]); + parentIdsInBeam_.back() = goldRowIds_[validExpansionCount_ - 1]; + } else { + size_t goldOffset = goldRowIds_[beamId] * beamSize_ + goldColIds_[beamId]; + goldIdsInFinalExpansion_ = + std::count_if(candidates->getData(), + candidates->getData() + goldOffset, + [](const real& val) { return val != -1.; }); + } + + /* + * TODO(caoying): fix this, store the indices of selected candidate + * paths into Argument.ids + */ + real* ids = candidates->getData(); + size_t curIdx = 0; + for (size_t i = 0; i < height; ++i) { + int basePos = getSeqStartPos(beamId, i); + for (size_t j = 0; j < beamSize_; ++j) { + int id = ids[i * beamSize_ + j]; + if (id == -1) continue; + pathRowIdsInEachBeam_[beamId][curIdx] = id + basePos; + parentIdsInBeam_[curIdx++] = i; + } + } + return pathCount; +} + +void CostForOneSequence::constructTotalExpansion() { + /* + * construct the entire expanded beam by begining with the last search + * in which gold falls off the beam. + */ + size_t totalPathCount = initLastExpansion(); + + for (int beamId = validExpansionCount_ - 2; beamId >= 0; --beamId) { + const MatrixPtr candidates = beams_->candidateIds[beamId]; + real* ids = candidates->getData(); + + int lastParentIdInBeam = -1; + int basePos = -1; + for (size_t i = 0; + i < (goldAsExtraPath_ ? totalPathCount - 1 : totalPathCount); + ++i) { + int id = ids[parentIdsInBeam_[i]]; + int parentRowId = std::div(parentIdsInBeam_[i], beamSize_).quot; + if (parentIdsInBeam_[i] != lastParentIdInBeam) + basePos = getSeqStartPos(beamId, parentRowId); + + pathRowIdsInEachBeam_[beamId][i] = id + basePos; + lastParentIdInBeam = parentIdsInBeam_[i]; + parentIdsInBeam_[i] = parentRowId; + + if (goldAsExtraPath_) + pathRowIdsInEachBeam_[beamId][totalPathCount - 1] = + beams_->gold[beamId] + getSeqStartPos(beamId, goldRowIds_[beamId]); + } + } +} + +real CostForOneSequence::globallyNormalizedScore() { + expandedPathScores_.resize(validExpansionCount_); + + Matrix::resizeOrCreate( + softmaxOut_, 1, pathRowIdsInEachBeam_[0].size(), false, false); + softmaxOut_->zeroMem(); + MatrixPtr tmp = Matrix::create( + softmaxOut_->getData(), softmaxOut_->getWidth(), 1, false, false); + + for (size_t i = 0; i < validExpansionCount_; ++i) { + Matrix::resizeOrCreate(expandedPathScores_[i], + pathRowIdsInEachBeam_[i].size(), + 1, + false, + false); + expandedPathScores_[i]->zeroMem(); + + IVectorPtr rowIds = IVector::create(pathRowIdsInEachBeam_[i].data(), + pathRowIdsInEachBeam_[i].size(), + false); + expandedPathScores_[i]->selectRows(*(beams_->scores[i]), *rowIds); + tmp->add(*expandedPathScores_[i]); + } + + softmaxOut_->softmax(*softmaxOut_); + return -std::log(softmaxOut_->getData()[goldIdsInFinalExpansion_]); +} + +real CostForOneSequence::forward() { + calValidExpandStep(); + constructTotalExpansion(); + return globallyNormalizedScore(); +} + +void CostForOneSequence::backward() { + /* + * when softmax layer is the output layer, and it is combined with + * cross-entropy as cost. The derivate with regard to softmax's input + * is simply: + * + * grad_i = softmax_out_i - target_i, + * + * and here hard label is used. + */ + softmaxOut_->getData()[goldIdsInFinalExpansion_] -= 1.; + + MatrixPtr tmp = Matrix::create( + softmaxOut_->getData(), softmaxOut_->getWidth(), 1, false, false); + + for (size_t i = 0; i < validExpansionCount_; ++i) { + IVectorPtr rowIds = IVector::create(pathRowIdsInEachBeam_[i].data(), + pathRowIdsInEachBeam_[i].size(), + false); + /* + beams_->scoreGrad[i] has been intialized outside this class, this + class only keeps a pointer pointing to the original input gradients, + so here does not need to allocate or initalize the memory. + */ + tmp->addToRows(*beams_->scoreGrad[i], *rowIds); + } +} + +REGISTER_LAYER(cross_entropy_over_beam, CrossEntropyOverBeam); + +bool CrossEntropyOverBeam::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + /* Initialize the basic parent class */ + Layer::init(layerMap, parameterMap); + CHECK_EQ(0U, inputLayers_.size() % 3) << "Error input number."; + + beamExpanCount_ = inputLayers_.size() / 3; + + candidateScores_.resize(beamExpanCount_); + candidateScoreGrad_.resize(beamExpanCount_); + + candidateInBeam_.resize(beamExpanCount_); + goldSequence_.resize(beamExpanCount_); + gradToInputs_.resize(beamExpanCount_); + + setNeedSequenceInfo(false); + return true; +} + +void CrossEntropyOverBeam::checkInputs() { + batchSize_ = 0; + for (size_t i = 0; i < beamExpanCount_; ++i) { + const Argument& scores = getInput(i * 3); + const Argument& selCandidates = getInput(i * 3 + 1); + const Argument& goldSeq = getInput(i * 3 + 2); + + if (i) { + CHECK(scores.hasSubseq()) << "input " << i << " " + << inputLayers_[i * 3]->getName() + << " should be a nested sequence"; + CHECK_EQ(getInputValue(i * 3 + 1)->getWidth(), beamSize_); + CHECK_EQ(scores.getNumSequences(), batchSize_); + CHECK_EQ(scores.getNumSubSequences(), selCandidates.getBatchSize()); + } else { + CHECK(scores.hasSeq()) << "input " << i << " " + << inputLayers_[i]->getName() + << " should be a sequence"; + batchSize_ = scores.getNumSequences(); + beamSize_ = getInputValue(i * 3 + 1)->getWidth(); + CHECK_EQ(batchSize_, selCandidates.getBatchSize()); + } + CHECK_EQ(1U, scores.value->getWidth()); + CHECK_EQ(batchSize_, goldSeq.getBatchSize()); + } +} + +void CrossEntropyOverBeam::copyInputsToCpu() { + auto copyValue = [](const MatrixPtr& src, MatrixPtr& trg) { + if (dynamic_cast(src.get())) { + Matrix::resizeOrCreate( + trg, src->getHeight(), src->getWidth(), false, false); + trg->copyFrom(*src); + } else { + trg = std::move(src); + } + }; + + auto copyIds = [](const IVectorPtr& src, IVectorPtr& trg) { + if (dynamic_cast(src.get())) { + IVector::resizeOrCreate(trg, src->getSize(), false); + trg->copyFrom(*src); + } else { + trg = std::move(src); + } + }; + + beamSplitPos_.clear(); + beamSplitPos_.resize(batchSize_, std::vector(beamExpanCount_, 0)); + for (size_t i = 0; i < beamExpanCount_; ++i) { + copyValue(getInputValue(i * 3), candidateScores_[i]); + copyValue(getInputValue(i * 3 + 1), candidateInBeam_[i]); + copyIds(getInput(i * 3 + 2).ids, goldSequence_[i]); + + if (i) { + ICpuGpuVectorPtr seqInfo = getInput(i * 3).sequenceStartPositions; + const int* seqStarts = seqInfo->getMutableData(false); + ICpuGpuVectorPtr subSeqInfo = getInput(i * 3).subSequenceStartPositions; + const int* subSeqStarts = subSeqInfo->getMutableData(false); + + size_t seqId = 1; + for (size_t subSeqId = 0; subSeqId < subSeqInfo->getSize() - 1; + ++subSeqId) { + CHECK_LT(seqId, seqInfo->getSize()); + if (subSeqStarts[subSeqId] == seqStarts[seqId]) { + beamSplitPos_[seqId][i] = beamSplitPos_[seqId - 1][i]; + seqId++; + } + beamSplitPos_[seqId - 1][i]++; + } + } else { + for (size_t j = 0; j < batchSize_; ++j) beamSplitPos_[j][i] = j + 1; + } + } +} + +void CrossEntropyOverBeam::splitBatchBeams() { + beamCosts_.resize(batchSize_); + beamPerSeq_.resize(batchSize_, BeamExpansion(beamExpanCount_)); + + for (size_t i = 0; i < beamExpanCount_; ++i) { + int* seqStarts = + getInput(i * 3).sequenceStartPositions->getMutableData(false); + + int* subSeqStarts = nullptr; + int maxLen = 0; + if (i) { + subSeqStarts = + getInput(i * 3).subSequenceStartPositions->getMutableData(false); + maxLen = getInput(i * 3).subSequenceStartPositions->getSize() - 1; + } else { + maxLen = getInput(i).sequenceStartPositions->getSize() - 1; + } + + for (size_t j = 0; j < batchSize_; ++j) { + beamPerSeq_[j].scores[i] = + Matrix::create(candidateScores_[i]->getData() + seqStarts[j], + seqStarts[j + 1] - seqStarts[j], + 1, + false, + false); + beamPerSeq_[j].scoreGrad[i] = + Matrix::create(candidateScoreGrad_[i]->getData() + seqStarts[j], + seqStarts[j + 1] - seqStarts[j], + 1, + false, + false); + + int offset = j ? beamSplitPos_[j - 1][i] : 0; + int height = beamSplitPos_[j][i] - (j ? beamSplitPos_[j - 1][i] : 0); + CHECK_GE(maxLen, offset + height); + beamPerSeq_[j].seqInfo[i] = IVector::create( + (i ? subSeqStarts : seqStarts) + offset, height + 1, false); + + beamPerSeq_[j].candidateIds[i] = + Matrix::create(candidateInBeam_[i]->getData() + offset * beamSize_, + height, + beamSize_, + false, + false); + beamPerSeq_[j].gold[i] = goldSequence_[i]->getData()[j]; + + CHECK_LE(beamPerSeq_[j].gold[i], seqStarts[j + 1] - seqStarts[j]); + } + } +} + +void CrossEntropyOverBeam::resizeOutput() { + Matrix::resizeOrCreate(output_.value, batchSize_, 1, false, false); + output_.value->zeroMem(); + + for (size_t i = 0; i < beamExpanCount_; ++i) { + MatrixPtr inGrad = getInputGrad(i * 3); + if (dynamic_cast(inGrad.get())) { + Matrix::resizeOrCreate(candidateScoreGrad_[i], + inGrad->getHeight(), + inGrad->getWidth(), + false, + false); + } else { + candidateScoreGrad_[i] = std::move(inGrad); + } + candidateScoreGrad_[i]->zeroMem(); + } +} + +void CrossEntropyOverBeam::copyGradToGpu(size_t copyCount) { + for (size_t i = 0; i < beamExpanCount_; ++i) { + if (dynamic_cast(getInputGrad(i * 3).get())) + getInputGrad(i * 3)->copyFrom(*candidateScoreGrad_[i]); + + if (i == copyCount - 1) break; + } +} + +void CrossEntropyOverBeam::forward(PassType passType) { + Layer::forward(passType); + + checkInputs(); + copyInputsToCpu(); + + resizeOutput(); + splitBatchBeams(); + + MatrixPtr outputValue = getOutputValue(); + for (size_t i = 0; i < batchSize_; ++i) { + beamCosts_[i].setData( + std::move(std::make_shared(beamPerSeq_[i])), beamSize_); + outputValue->getData()[i] = beamCosts_[i].forward(); + } +} + +void CrossEntropyOverBeam::backward(const UpdateCallback& callback) { + for (size_t i = 0; i < batchSize_; ++i) { + beamCosts_[i].backward(); + copyGradToGpu(beamCosts_[i].getValidExpansionCount()); + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/CrossEntropyOverBeam.h b/paddle/gserver/layers/CrossEntropyOverBeam.h new file mode 100644 index 0000000000000000000000000000000000000000..5643556f43370912a730d9895658d8944f50dced --- /dev/null +++ b/paddle/gserver/layers/CrossEntropyOverBeam.h @@ -0,0 +1,135 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "CrossEntropyOverBeam.h" +#include "Layer.h" + +namespace paddle { + +/* This struct stores the beams in all search steps for a single sequence. */ +struct BeamExpansion { + std::vector scores; + std::vector seqInfo; + + std::vector candidateIds; + std::vector gold; + + std::vector scoreGrad; + + size_t expansionCount; + + explicit BeamExpansion(int n) { + expansionCount = n; + scores.resize(expansionCount); + seqInfo.resize(expansionCount); + candidateIds.resize(expansionCount); + scoreGrad.resize(expansionCount); + + gold.resize(expansionCount); + } +}; +typedef std::shared_ptr BeamExpansionPtr; + +class CostForOneSequence { +public: + CostForOneSequence() + : beamSize_(0), validExpansionCount_(0), goldAsExtraPath_(false) {} + void setData(const BeamExpansionPtr bPtr, size_t beamSize) { + beams_ = bPtr; + beamSize_ = beamSize; + + expandedPathScores_.clear(); + expandedPathScores_.resize(beams_->expansionCount); + + goldRowIds_.clear(); + goldRowIds_.resize(beams_->expansionCount, 0); + goldColIds_.clear(); + goldColIds_.resize(beams_->expansionCount, -1); + } + size_t getValidExpansionCount() { return validExpansionCount_; } + + real forward(); + void backward(); + +private: + void calValidExpandStep(); + void constructTotalExpansion(); + size_t initLastExpansion(); + real globallyNormalizedScore(); + + int getSeqStartPos(size_t beamId, size_t rowId) { + CHECK_GT(beams_->seqInfo[beamId]->getSize() - 1, rowId); + int* starts = beams_->seqInfo[beamId]->getData(); + return starts[rowId] - starts[0]; + } + + size_t beamSize_; + size_t validExpansionCount_; + bool goldAsExtraPath_; + std::vector goldRowIds_; + std::vector goldColIds_; + + BeamExpansionPtr beams_; + std::vector> pathRowIdsInEachBeam_; + std::vector parentIdsInBeam_; + size_t goldIdsInFinalExpansion_; + + std::vector expandedPathScores_; + + MatrixPtr softmaxOut_; +}; + +class CrossEntropyOverBeam : public Layer { +public: + explicit CrossEntropyOverBeam(const LayerConfig& config) : Layer(config) {} + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + void forward(PassType passType) override; + void backward(const UpdateCallback& callback) override; + +private: + void checkInputs(); + void copyInputsToCpu(); + void resizeOutput(); + void copyGradToGpu(size_t copyCount); + void splitBatchBeams(); + + size_t beamExpanCount_; + size_t batchSize_; + size_t beamSize_; + + /* + * the process of constructing beams is not friendly to GPU, currently, this + * layer only runs on CPU, if any of its inputs is on GPU memory, then copy + * it to CPU memory. + */ + std::vector candidateScores_; + std::vector candidateScoreGrad_; + std::vector candidateInBeam_; + std::vector gradToInputs_; + std::vector goldSequence_; + std::vector> beamSplitPos_; + + /* + * split entire bath of beams into beam per sequnence and store the result + * into this member. + */ + std::vector beamPerSeq_; + /* beamCosts_ is used to propagate error in one sequence. */ + std::vector beamCosts_; +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/CudnnConvBaseLayer.cpp b/paddle/gserver/layers/CudnnConvBaseLayer.cpp index c056bbe4d1d354751d4f85f8d0743cf30486c087..9e954615cddf2566ea336d1c947985fd916e8cc4 100644 --- a/paddle/gserver/layers/CudnnConvBaseLayer.cpp +++ b/paddle/gserver/layers/CudnnConvBaseLayer.cpp @@ -46,8 +46,26 @@ bool CudnnConvBaseLayer::init(const LayerMap &layerMap, projConf_.emplace_back(conf); projections_.emplace_back( Projection::create(*projConf_[i], parameters_[i], useGpu_)); + + // create a new weight + size_t height, width; + height = filterPixels_[i] * filterChannels_[i]; + width = (!isDeconv_) ? numFilters_ : channels_[i]; + CHECK_EQ(parameters_[i]->getSize(), width * height); + Weight *w = new Weight(height, width, parameters_[i]); + weights_.emplace_back(w); } + if (biasParameter_.get()) { + if (sharedBiases_) { + CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); + biases_ = + std::unique_ptr(new Weight(numFilters_, 1, biasParameter_)); + } else { + biases_ = + std::unique_ptr(new Weight(getSize(), 1, biasParameter_)); + } + } if (biases_.get() && sharedBiases_) { hl_create_tensor_descriptor(&biasDesc_); hl_create_tensor_descriptor(&outputDesc_); diff --git a/paddle/gserver/layers/DeConv3DLayer.cpp b/paddle/gserver/layers/DeConv3DLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..7d5c772c89d260264a59f4cc4439bb8a44c605a4 --- /dev/null +++ b/paddle/gserver/layers/DeConv3DLayer.cpp @@ -0,0 +1,212 @@ +/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "DeConv3DLayer.h" +#include "paddle/utils/Logging.h" +#include "paddle/utils/Stat.h" + +namespace paddle { + +REGISTER_LAYER(deconv3d, DeConv3DLayer); + +bool DeConv3DLayer::init(const LayerMap &layerMap, + const ParameterMap ¶meterMap) { + if (!ConvBaseLayer::init(layerMap, parameterMap)) return false; + // for Deconv, the dimension of Kernel is + // channel * output * depth * height * weigth + // Matrix storage format: (output * depth * height * weigth) x channel + for (int index = 0; index < config_.inputs().size(); ++index) { + M_.push_back(filterChannels_[index]); + K_.push_back(filterPixels_[index] * (numFilters_ / groups_[index])); + + // create a new weight + size_t height, width; + height = filterPixels_[index] * numFilters_; + width = filterChannels_[index]; + CHECK_EQ(parameters_[index]->getSize(), width * height); + Weight *w = new Weight(height, width, parameters_[index]); + weights_.emplace_back(w); + } + if (biasParameter_.get()) { + if (sharedBiases_) { + CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); + biases_ = + std::unique_ptr(new Weight(1, numFilters_, biasParameter_)); + } else { + biases_ = + std::unique_ptr(new Weight(1, getSize(), biasParameter_)); + } + } + return true; +} + +size_t DeConv3DLayer::getSize() { + CHECK_NE(inputLayers_.size(), 0UL); + outputH_.clear(); + outputW_.clear(); + outputD_.clear(); + N_.clear(); + NOut_.clear(); + size_t layerSize = 0; + for (size_t i = 0; i < inputLayers_.size(); ++i) { + outputW_.push_back( + imageSize(imgSizeW_[i], filterSize_[i], padding_[i], stride_[i], true)); + outputH_.push_back(imageSize( + imgSizeH_[i], filterSizeY_[i], paddingY_[i], strideY_[i], true)); + outputD_.push_back(imageSize( + imgSizeD_[i], filterSizeZ_[i], paddingZ_[i], strideZ_[i], true)); + NOut_.push_back(outputD_[i] * outputH_[i] * outputW_[i]); + N_.push_back(imgSizeD_[i] * imgSizeH_[i] * imgSizeW_[i]); + CHECK(layerSize == 0 || N_[i] * size_t(numFilters_) == layerSize); + layerSize += NOut_[i] * numFilters_; + } + getOutput().setFrameHeight(outputH_[0]); + getOutput().setFrameWidth(outputW_[0]); + getOutput().setFrameDepth(outputD_[0]); + return layerSize; +} + +void DeConv3DLayer::forward(PassType passType) { + Layer::forward(passType); + int batchSize = inputLayers_[0]->getOutputValue()->getHeight(); + int outWidth = getSize(); + resetOutput(batchSize, outWidth); + const MatrixPtr outMat = getOutputValue(); + + for (size_t i = 0; i != inputLayers_.size(); ++i) { + REGISTER_TIMER_INFO("FwdDeConv3D", getName().c_str()); + const MatrixPtr &inMat = getInputValue(i); + int M = M_[i]; + int N = N_[i]; + int K = K_[i]; + MatrixPtr wMat = weights_[i]->getW(); + Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_); + for (int n = 0; n < batchSize; ++n) { + real *inData = inMat->getData() + n * inMat->getStride(); + for (int g = 0; g < groups_[i]; ++g) { + MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_); + MatrixPtr wMatSub = wMat->subMatrix(g * K, K); + MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K); + colBufDataSub->mul(*wMatSub, *inMatSub, 1.0, 0.0); + inData += M * N; + } + colBuf_->col2Vol(outMat->getData() + n * outMat->getStride(), + numFilters_, + outputD_[i], + outputH_[i], + outputW_[i], + filterSizeZ_[i], + filterSizeY_[i], + filterSize_[i], + strideZ_[i], + strideY_[i], + stride_[i], + paddingZ_[i], + paddingY_[i], + padding_[i], + 1.0, + 1.0); + } + } + if (nullptr != this->biasParameter_) { + REGISTER_TIMER_INFO("FwBiasTimer", getName().c_str()); + this->addBias(); + } + forwardActivation(); +} + +void DeConv3DLayer::backward(const UpdateCallback &callback) { + backwardActivation(); + int batchSize = getOutputGrad()->getHeight(); + if (biases_ && biases_->getWGrad()) { + bpropBiases(); + biases_->getParameterPtr()->incUpdate(callback); + } + for (size_t i = 0; i < inputLayers_.size(); ++i) { + if (weights_[i]->getWGrad() || this->needGradient_) { + int M = M_[i]; + int N = N_[i]; + int K = K_[i]; + REGISTER_TIMER_INFO("BwdDeConv3D", getName().c_str()); + Matrix::resizeOrCreate(colBuf_, K * groups_[i], N, false, useGpu_); + const MatrixPtr &inMat = getInputValue(i); + for (int n = 0; n < batchSize; ++n) { + colBuf_->vol2Col( + getOutputGrad()->getData() + n * getOutputGrad()->getStride(), + numFilters_, + outputD_[i], + outputH_[i], + outputW_[i], + filterSizeZ_[i], + filterSizeY_[i], + filterSize_[i], + strideZ_[i], + strideY_[i], + stride_[i], + paddingZ_[i], + paddingY_[i], + padding_[i]); + if (weights_[i]->getWGrad()) { + real *inData = inMat->getData() + n * inMat->getStride(); + for (int g = 0; g < groups_[i]; ++g) { + MatrixPtr colBufDataSub = colBuf_->subMatrix(g * K, K); + MatrixPtr wGradMatSub = + weights_[i]->getWGrad()->subMatrix(g * K, K); + MatrixPtr inMatSub = Matrix::create(inData, M, N, false, useGpu_); + wGradMatSub->mul( + *colBufDataSub, *(inMatSub->getTranspose()), 1.0, 1.0); + inData += M * N; + } + } + if (getInputGrad(i)) { + real *preGrad = + getInputGrad(i)->getData() + n * getInputGrad(i)->getStride(); + for (int g = 0; g < groups_[i]; ++g) { + MatrixPtr w = weights_[i]->getW()->subMatrix(g * K, K); + MatrixPtr outGradMat = colBuf_->subMatrix(g * K, K); + MatrixPtr inGradMatSub = + Matrix::create(preGrad, M, N, false, useGpu_); + inGradMatSub->mul(*(w->getTranspose()), *outGradMat, 1.0, 1.0); + preGrad += M * N; + } + } + } + REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); + weights_[i]->getParameterPtr()->incUpdate(callback); + } + } +} +void DeConv3DLayer::bpropWeights(int i) {} +void DeConv3DLayer::bpropData(int i) {} + +void DeConv3DLayer::bpropBiases() { + const MatrixPtr &outGradMat = getOutputGrad(); + + if (this->sharedBiases_) { + biases_->getWGrad()->collectSharedBias(*outGradMat, 1.0f); + } else { + biases_->getWGrad()->collectBias(*outGradMat, 1.0f); + } +} + +void DeConv3DLayer::addBias() { + MatrixPtr outMat = getOutputValue(); + if (this->sharedBiases_) { + outMat->addSharedBias(*(biases_->getW()), 1.0f); + } else { + outMat->addBias(*(biases_->getW()), 1.0f); + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/DeConv3DLayer.h b/paddle/gserver/layers/DeConv3DLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..a2a3d3f8273ed77065224c27df6f711f09f34bbc --- /dev/null +++ b/paddle/gserver/layers/DeConv3DLayer.h @@ -0,0 +1,52 @@ +/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "ConvBaseLayer.h" +#include "paddle/math/MathUtils.h" +#include "paddle/math/Matrix.h" + +namespace paddle { + +/** + * @brief A subclass of deconvolution3D layer. + * This layer expands input and use matrix multiplication to + * calculate deconvolution3D operation. + */ +class DeConv3DLayer : public ConvBaseLayer { +public: + explicit DeConv3DLayer(const LayerConfig& config) : ConvBaseLayer(config) {} + ~DeConv3DLayer() {} + bool init(const LayerMap& layerMap, const ParameterMap& parameterMap); + + void forward(PassType passType); + void addBias(); + void backward(const UpdateCallback& callback); + void bpropBiases(); + void bpropData(int i); + void bpropWeights(int i); + size_t getSize(); + +protected: + // Figure out the dimensions for individual gemms. + IntV M_; /// numFilters_ / filter_group_; + IntV N_; /// channels_ * filterSizeZ_ * filterSize_ * filterSizeY_ + IntV K_; /// outputD_ * outputH_ * outputW_ + IntV NOut_; + MatrixPtr colBuf_; +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/ExpandConvBaseLayer.cpp b/paddle/gserver/layers/ExpandConvBaseLayer.cpp index 77736e78f9349c0393e1e53ac700817a70893e53..2b7bef0a757d7c706be3815c539b036b094596cf 100644 --- a/paddle/gserver/layers/ExpandConvBaseLayer.cpp +++ b/paddle/gserver/layers/ExpandConvBaseLayer.cpp @@ -22,12 +22,31 @@ bool ExpandConvBaseLayer::init(const LayerMap &layerMap, /* Initialize the basic convolutional parent class */ ConvBaseLayer::init(layerMap, parameterMap); + int index = 0; for (auto &inputConfig : config_.inputs()) { const ConvConfig &conf = inputConfig.conv_conf(); /* Consistent caffe mode for multiple input */ caffeMode_ = conf.caffe_mode(); - } + // create a new weight + size_t height, width; + height = filterPixels_[index] * filterChannels_[index]; + width = (!isDeconv_) ? numFilters_ : channels_[index]; + CHECK_EQ(parameters_[index]->getSize(), width * height); + Weight *w = new Weight(height, width, parameters_[index]); + weights_.emplace_back(w); + index++; + } + if (biasParameter_.get()) { + if (sharedBiases_) { + CHECK_EQ((size_t)numFilters_, biasParameter_->getSize()); + biases_ = + std::unique_ptr(new Weight(numFilters_, 1, biasParameter_)); + } else { + biases_ = + std::unique_ptr(new Weight(getSize(), 1, biasParameter_)); + } + } getOutputSize(); return true; diff --git a/paddle/gserver/layers/ExpandConvLayer.cpp b/paddle/gserver/layers/ExpandConvLayer.cpp index 0ece2799318ea5ecc91f97f71289d4d07246dcaa..20de475fc3f6b6f3c05ac26bea8363daff0cf110 100644 --- a/paddle/gserver/layers/ExpandConvLayer.cpp +++ b/paddle/gserver/layers/ExpandConvLayer.cpp @@ -29,6 +29,10 @@ namespace paddle { REGISTER_LAYER(exconv, ExpandConvLayer); REGISTER_LAYER(exconvt, ExpandConvLayer); +inline bool isDepthwiseConv(int channels, int groups) { + return channels == groups; +} + bool ExpandConvLayer::init(const LayerMap &layerMap, const ParameterMap ¶meterMap) { /* Initialize the basic convolutional parent class */ @@ -47,14 +51,27 @@ bool ExpandConvLayer::init(const LayerMap &layerMap, std::vector paddings = {(size_t)paddingY_[i], (size_t)padding_[i]}; std::vector strides = {(size_t)strideY_[i], (size_t)stride_[i]}; - if (useGpu_ && (size_t)groups_[i] == (size_t)channels_[i] && !isDeconv_) { + // Convolution Layer uses the GemmConv function by default. + convType = "GemmConv"; + convGradInputType = "GemmConvGradInput"; + convGradFilterType = "GemmConvGradFilter"; + + // If depth wise convolution and useGpu == true + if (useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) { convType = "DepthwiseConv"; convGradInputType = "DepthwiseConvGradInput"; convGradFilterType = "DepthwiseConvGradFilter"; - } else { - convType = "GemmConv"; - convGradInputType = "GemmConvGradInput"; - convGradFilterType = "GemmConvGradFilter"; + } + + // If depth wise convolution and useGpu == false and ARM-NEON + if (!useGpu_ && isDepthwiseConv(channels_[i], groups_[i]) && !isDeconv_) { +#if defined(__ARM_NEON__) || defined(__ARM_NEON) + if ((filterSize_[i] == filterSizeY_[i]) && + (filterSize_[i] == 3 || filterSize_[i] == 4) && + (stride_[i] == strideY_[i]) && (stride_[i] == 1 || stride_[i] == 2)) { + convType = "NeonDepthwiseConv"; + } +#endif } if (FLAGS_use_nnpack && !isDeconv_) { diff --git a/paddle/gserver/layers/GruCompute.cpp b/paddle/gserver/layers/GruCompute.cpp index 06907768e98f4bad952706cffbbd65d1f86cc6df..148516391c6cad8feff34b9bd1c10c27d1a8a0e6 100644 --- a/paddle/gserver/layers/GruCompute.cpp +++ b/paddle/gserver/layers/GruCompute.cpp @@ -14,6 +14,7 @@ limitations under the License. */ #include "GruCompute.h" #include "hl_recurrent_apply.cuh" +#include "paddle/function/GruFunctor.h" #include "paddle/utils/Util.h" namespace paddle { @@ -25,13 +26,13 @@ void GruCompute::init(LayerConfig &config) { template <> void GruCompute::forward<0>(hl_gru_value value, int frameSize, int batchSize) { - hl_cpu_gru_forward(hppl::forward::gru_resetOutput(), - hppl::forward::gru_finalOutput(), - value, - frameSize, - batchSize, - activeNode_, - activeGate_); + GruFunctor::compute(hppl::forward::gru_resetOutput(), + hppl::forward::gru_finalOutput(), + value, + frameSize, + batchSize, + activeNode_, + activeGate_); } template <> @@ -39,14 +40,15 @@ void GruCompute::backward<0>(hl_gru_value value, hl_gru_grad grad, int frameSize, int batchSize) { - hl_cpu_gru_backward(hppl::backward::gru_stateGrad(), - hppl::backward::gru_resetGrad(), - value, - grad, - frameSize, - batchSize, - activeNode_, - activeGate_); + GruGradFunctor::compute( + hppl::backward::gru_stateGrad(), + hppl::backward::gru_resetGrad(), + value, + grad, + frameSize, + batchSize, + activeNode_, + activeGate_); } } // namespace paddle diff --git a/paddle/gserver/layers/KmaxSeqScoreLayer.cpp b/paddle/gserver/layers/KmaxSeqScoreLayer.cpp index 8ce591d4762466e1ed4b2970cb9cae9203bc0a2b..d5407555b248d79a5156a5ea354042d43ecda02c 100644 --- a/paddle/gserver/layers/KmaxSeqScoreLayer.cpp +++ b/paddle/gserver/layers/KmaxSeqScoreLayer.cpp @@ -80,13 +80,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) { << "input of " << getName() << " must be a sequence or a nested sequence."; CHECK_EQ(input.value->getWidth(), 1UL) - << "input of " << getName() - << " is score over a sequence or a nested sequence, so its width " - << " must be 1."; + << "input of " << getName() << " are scores over a sequence or " + << "a nested sequence, so its width must be 1."; if (useGpu_) { - // this Layer runs only in CPU, if the model is runing on GPU, - // then copy the input to this layer from GPU to CPU. + /* + * currently, this Layer only runs in CPU, if the other part of the model is + * runing on GPU, then copy the input to this layer from GPU to CPU. + */ Matrix::resizeOrCreate(scores_, inputScore->getHeight(), 1, @@ -97,6 +98,14 @@ void KmaxSeqScoreLayer::forward(PassType passType) { scores_ = inputScore; } + /* + * TODO(caoying) + * In PaddePaddle, currently all matrices are real number types, + * but output of this layer which is some selected indices of the give + * sequence are actually filled with int types so that storing int types + * information in a real number matrix is dangerous, since real numbers will + * be convered to int types. + */ Matrix::resizeOrCreate( output_.value, input.hasSubseq() ? input.getNumSubSequences() : input.getNumSequences(), diff --git a/paddle/gserver/layers/Layer.cpp b/paddle/gserver/layers/Layer.cpp index d5621412caee843e24a0d0c9b7096402765738c7..2bc20eee6c452d0943dbf43b17ebe77976c97489 100644 --- a/paddle/gserver/layers/Layer.cpp +++ b/paddle/gserver/layers/Layer.cpp @@ -41,7 +41,7 @@ namespace paddle { Layer::Layer(const LayerConfig& config, bool useGpu) : config_(config), useGpu_(useGpu), - deviceId_(-1), + deviceId_(CPU_DEVICE), needSequenceInfo_(true) {} bool Layer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) { diff --git a/paddle/gserver/layers/Layer.h b/paddle/gserver/layers/Layer.h index 0ed482889d0cea884db3759620088575c5b10201..edef36194aabdb9c122ec3423deb036169a34d7c 100644 --- a/paddle/gserver/layers/Layer.h +++ b/paddle/gserver/layers/Layer.h @@ -59,7 +59,12 @@ protected: LayerConfig config_; /// whether to use GPU bool useGpu_; - /// Device Id. CPU is -1, and GPU is 0, 1, 2 ... + /// Paddle device ID, MKLDNN is -2, CPU is -1 + enum PADDLE_DEVICE_ID { + MKLDNN_DEVICE = -2, + CPU_DEVICE = -1, + }; + /// Device Id. MKLDNN is -2, CPU is -1, and GPU is 0, 1, 2 ... int deviceId_; /// Input layers std::vector inputLayers_; @@ -77,6 +82,7 @@ protected: Argument output_; /// Several outputs stored on different devices, used in 'parallel_nn' case, /// and record them by deviceId_. + /// Also used in 'use_mkldnn' case. std::vector outputOtherDevice_; /// If there are several outputs, map them by each name. std::map outputMap_; @@ -172,6 +178,13 @@ protected: return inputLayer.getOutput(deviceId_); } + /** + * Get the argument of input layer with deviceId. + */ + const Argument& getInput(size_t inputIndex, int deviceId) const { + return inputLayers_[inputIndex]->getOutput(deviceId); + } + /** * Get the forward-input value. */ @@ -186,6 +199,13 @@ protected: return inputLayer.getOutput(deviceId_).value; } + /** + * Get the forward-input value with deviceId. + */ + const MatrixPtr& getInputValue(int inputIndex, int deviceId) { + return inputLayers_[inputIndex]->getOutput(deviceId).value; + } + /** * Get the forward-input grad. */ @@ -200,6 +220,13 @@ protected: return inputLayer.getOutput(deviceId_).grad; } + /** + * Get the forward-input grad. + */ + const MatrixPtr& getInputGrad(int inputIndex, int deviceId) { + return inputLayers_[inputIndex]->getOutput(deviceId).grad; + } + /** * Get the forward-input label. */ diff --git a/paddle/gserver/layers/MKLDNNFcLayer.cpp b/paddle/gserver/layers/MKLDNNFcLayer.cpp index d201fac65e0459050304195140e1aae081468f43..8318c8c519a4cec1610eadd28320ee5ce0b4147d 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.cpp +++ b/paddle/gserver/layers/MKLDNNFcLayer.cpp @@ -61,43 +61,42 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() { return; } - // TODO(TJ): dst format should get from wgtVal_ - int dstFmt = PARAM_FORMAT_MKLDNN_OI; - int srcFmt = weight_->getParameterPtr()->getHeaderFormat(); - if (srcFmt == dstFmt) { - return; - } - - // The weight_ is transposed from initial paddle weight - MatrixPtr paddleWgt = Matrix::create( - weight_->getW()->getData(), iLayerSize_, oc_, false, false); - - // TODO(TJ): remove this print when do not need differ weights - std::ostringstream ostr; - paddleWgt->print(ostr); - VLOG(MKLDNN_ALL) << "Initial Weight from paddle: " << std::endl << ostr.str(); - - // The mkldnn weight is transposed from initial paddle matrix - MatrixPtr paddleWgtT; - paddleWgt->transpose(paddleWgtT, true); - weight_->getW()->copyFrom(*paddleWgtT); - weight_->getParameterPtr()->setHeaderFormat(dstFmt); + CHECK(wgtVal_) << "should have been initialized"; + bool hasNoSpatial_ = ih_ == 1 && iw_ == 1; + auto targetDim = wgtVal_->getDims(); + auto srcFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo; + wgtVal_->reorderDataFrom(wgtVal_, srcFmt, targetDim); hasInitedWgt_ = true; } void MKLDNNFcLayer::convertWeightsToPaddle() { - MatrixPtr dnnWgt = weight_->getW(); - MatrixPtr paddleWgt; - dnnWgt->transpose(paddleWgt, true); - - // copy paddle weight and override on weight_ - MatrixPtr dnnWgtT = Matrix::create( - dnnWgt->getData(), dnnWgt->getWidth(), dnnWgt->getHeight(), false, false); - dnnWgtT->copyFrom(*paddleWgt); + CHECK(wgtVal_) << "should have been initialized"; + bool hasNoSpatial_ = ih_ == 1 && iw_ == 1; + auto targetDim = wgtVal_->getDims(); + auto dstFmt = hasNoSpatial_ ? memory::format::io : memory::format::ihwo; + wgtVal_->reorderDataTo(wgtVal_, dstFmt, targetDim); +} + +void MKLDNNFcLayer::convertOutputToOtherDevice() { + copyOutputInfoToOtherDevice(); + // find other cpu device and reorder output to cpu device + int cnt = 0; + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + if (outputOtherDevice_[i].deviceId == CPU_DEVICE) { + // fc cpu output value do not need convert + // just share point + outputOtherDevice_[i].value = output_.value; + ++cnt; + } + } + + if (cnt > 1) { + LOG(WARNING) << "should not have more than one CPU devie"; + } } void MKLDNNFcLayer::reshape() { - const Argument& input = getInput(0); + const Argument& input = getInput(0, getPrev(0)->getDeviceId()); int batchSize = input.getBatchSize(); if (bs_ == batchSize) { return; @@ -111,10 +110,6 @@ void MKLDNNFcLayer::reshape() { if (iw_ == 0) { iw_ = 1; } - hasSpatial_ = true; - if (ih_ == 1 && iw_ == 1) { - hasSpatial_ = false; - } CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize()); ic_ = iLayerSize_ / (ih_ * iw_); CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible"; @@ -135,37 +130,53 @@ void MKLDNNFcLayer::reshape() { void MKLDNNFcLayer::resetFwd() { bool hasBias = biases_ && biases_->getW(); - real* iData = getInputValue(0)->getData(); - real* oData = getOutputValue()->getData(); - real* wData = weight_->getW()->getData(); - real* bData = hasBias ? biases_->getW()->getData() : NULL; - - // TODO(TJ): below create should be covered in MkldnnMatrix - // create memory desc - memory::desc iMD = hasSpatial_ ? createMD({bs_, ic_, ih_, iw_}, format::nchw) - : createMD({bs_, ic_}, format::nc); - memory::desc wMD = hasSpatial_ ? createMD({oc_, ic_, ih_, iw_}, format::oihw) - : createMD({oc_, ic_}, format::oi); - memory::desc bMD = bData != NULL ? createMD({oc_}, format::x) - : createMD({}, format::format_undef); - memory::desc oMD = createMD({bs_, oc_}, format::nc); - - // create memory primitive desc and memory self - inVal_.reset(new memory(memory::primitive_desc(iMD, engine_), iData)); - wgtVal_.reset(new memory(memory::primitive_desc(wMD, engine_), wData)); - outVal_.reset(new memory(memory::primitive_desc(oMD, engine_), oData)); + const MatrixPtr& wgt = weight_->getW(); + const MatrixPtr& bias = hasBias ? biases_->getW() : nullptr; + const MatrixPtr& out = output_.value; + + if (inputIsOnlyMKLDNN()) { + const MatrixPtr& in = getInputValue(0); + inVal_ = std::dynamic_pointer_cast(in); + CHECK(inVal_) << "Input should be MKLDNNMatrix"; + } else { + CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet"; + const MatrixPtr& in = getInputValue(0, CPU_DEVICE); + inVal_ = MKLDNNMatrix::create( + in, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_); + } + inVal_->downSpatial(); + wgtVal_ = MKLDNNMatrix::create( + wgt, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_); + wgtVal_->downSpatial(); + biasVal_ = + hasBias ? MKLDNNMatrix::create(bias, {oc_}, format::x, engine_) : nullptr; + outVal_ = MKLDNNMatrix::create(out, {bs_, oc_}, format::nc, engine_); + + // change original output value to mkldnn output value + output_.value = std::dynamic_pointer_cast(outVal_); + if (!outputIsOnlyMKLDNN()) { + convertOutputToOtherDevice(); + } + // create forward handle prop_kind pk = prop_kind::forward; - fc_fwd::desc fwdDesc = bData != NULL ? fc_fwd::desc(pk, iMD, wMD, bMD, oMD) - : fc_fwd::desc(pk, iMD, wMD, oMD); + fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk, + inVal_->getMemoryDesc(), + wgtVal_->getMemoryDesc(), + biasVal_->getMemoryDesc(), + outVal_->getMemoryDesc()) + : fc_fwd::desc(pk, + inVal_->getMemoryDesc(), + wgtVal_->getMemoryDesc(), + outVal_->getMemoryDesc()); fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); - - if (bData != NULL) { - biasVal_.reset(new memory(memory::primitive_desc(bMD, engine_), bData)); + if (hasBias) { fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_)); } else { fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_)); } + printValueFormatFlow(); + pipelineFwd_.clear(); pipelineFwd_.push_back(*fwd_); } @@ -175,45 +186,46 @@ void MKLDNNFcLayer::resetBwd() { return; } needResetBwd_ = false; - bool hasBias = biases_ && biases_->getWGrad(); - real* iData = getInputValue(0)->getData(); - real* iDiff = getInputGrad(0) != nullptr ? getInputGrad(0)->getData() : NULL; - real* oDiff = getOutputGrad()->getData(); - real* wDiff = weight_->getWGrad()->getData(); - real* bDiff = hasBias ? biases_->getWGrad()->getData() : NULL; /// backward weight - // create memory desc for backward memory - memory::desc iMD = hasSpatial_ ? createMD({bs_, ic_, ih_, iw_}, format::nchw) - : createMD({bs_, ic_}, format::nc); - memory::desc wMD = hasSpatial_ ? createMD({oc_, ic_, ih_, iw_}, format::oihw) - : createMD({oc_, ic_}, format::oi); - memory::desc oMD = createMD({bs_, oc_}, format::nc); - memory::desc bMD = bDiff != NULL ? createMD({oc_}, format::x) - : createMD({}, format::format_undef); - - if (inVal_) { - // update data - inVal_->set_data_handle(iData); - } else { - inVal_.reset(new memory(memory::primitive_desc(iMD, engine_), iData)); - } - - // create memory primitive desc and memory self - wgtGrad_.reset(new memory(memory::primitive_desc(wMD, engine_), wDiff)); - outGrad_.reset(new memory(memory::primitive_desc(oMD, engine_), oDiff)); - - fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward, iMD, wMD, oMD); + CHECK(inVal_) << "Should have input value"; + const MatrixPtr& wgt = weight_->getWGrad(); + const MatrixPtr& bias = hasBias ? biases_->getWGrad() : nullptr; + + // TODO(TJ): merge outgrad + int device = outputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE; + // for MKLDNN device: + // can not directly cast outputgrad to mkldnnmatrix, + // since each layer can not write the inputgrad to mkldnn inputgrad. + // So just create from matrix with outputvalue format. + // for CPU device: + // fc do not need to convert from cpu device since output is always nc format + // only need create from cpu device + const MatrixPtr& out = getOutput(device).grad; + outGrad_ = MKLDNNMatrix::create(out, outVal_->getPrimitiveDesc()); + wgtGrad_ = MKLDNNMatrix::create(wgt, wgtVal_->getPrimitiveDesc()); + biasGrad_ = hasBias ? MKLDNNMatrix::create(bias, biasVal_->getPrimitiveDesc()) + : nullptr; + + // create memory primitive desc + fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward, + inVal_->getMemoryDesc(), + wgtGrad_->getMemoryDesc(), + outGrad_->getMemoryDesc()); fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); - fc_bwdWgt::desc bwdWgtDesc = bDiff != NULL - ? fc_bwdWgt::desc(iMD, wMD, bMD, oMD) - : fc_bwdWgt::desc(iMD, wMD, oMD); + fc_bwdWgt::desc bwdWgtDesc = hasBias + ? fc_bwdWgt::desc(inVal_->getMemoryDesc(), + wgtGrad_->getMemoryDesc(), + biasGrad_->getMemoryDesc(), + outGrad_->getMemoryDesc()) + : fc_bwdWgt::desc(inVal_->getMemoryDesc(), + wgtGrad_->getMemoryDesc(), + outGrad_->getMemoryDesc()); fc_bwdWgt::primitive_desc bwdWgtPD = fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD); - if (bDiff != NULL) { - biasGrad_.reset(new memory(memory::primitive_desc(bMD, engine_), bDiff)); + if (hasBias) { bwdWgt_.reset( new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_)); } else { @@ -223,15 +235,26 @@ void MKLDNNFcLayer::resetBwd() { pipelineBwd_.push_back(*bwdWgt_); /// backward data - if (iDiff == NULL) { + device = inputIsOnlyMKLDNN() ? MKLDNN_DEVICE : CPU_DEVICE; + const MatrixPtr& in = getInputGrad(0, device); + if (in == nullptr) { return; } - fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(iMD, wMD, oMD); + if (getInput(0, device).getAllCount() > 1) { + // TODO(TJ): use outputMaps_ ways when merge outgrad done + } else { + inGrad_ = MKLDNNMatrix::create(in, inVal_->getPrimitiveDesc()); + } + + fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(inVal_->getMemoryDesc(), + wgtGrad_->getMemoryDesc(), + outGrad_->getMemoryDesc()); fc_bwdData::primitive_desc bwdDataPD = fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD); - inGrad_.reset(new memory(memory::primitive_desc(iMD, engine_), iDiff)); + CHECK(wgtVal_) << "Should have weight memory"; bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_)); + printGradFormatFlow(); pipelineBwd_.push_back(*bwdData_); } @@ -241,11 +264,7 @@ void MKLDNNFcLayer::forward(PassType passType) { { REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); - - // update input data - // since it might be changed if this is after data layer - real* iData = getInputValue(0)->getData(); - inVal_->set_data_handle(iData); + syncInputValue(); // just submit forward pipeline stream_->submit(pipelineFwd_); @@ -267,10 +286,7 @@ void MKLDNNFcLayer::backward(const UpdateCallback& callback) { REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); resetBwd(); - // update diff - real* oDiff = getOutputGrad()->getData(); - outGrad_->set_data_handle(oDiff); - + syncOutputGrad(); // just sumbmit backward pipeline stream_->submit(pipelineBwd_); } diff --git a/paddle/gserver/layers/MKLDNNFcLayer.h b/paddle/gserver/layers/MKLDNNFcLayer.h index 7954852a23f81d36d5fb0ae6a19768f419886fb1..e138a6faf181c412949218458e7ecf800a0d6a07 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.h +++ b/paddle/gserver/layers/MKLDNNFcLayer.h @@ -32,16 +32,13 @@ protected: // if has already init the weight bool hasInitedWgt_; - // if input layer has image size info (ih>1 && iw>1) - bool hasSpatial_; - // fc weight and bias std::unique_ptr weight_; std::unique_ptr biases_; public: explicit MKLDNNFcLayer(const LayerConfig& config) - : MKLDNNLayer(config), hasInitedWgt_(false), hasSpatial_(true) {} + : MKLDNNLayer(config), hasInitedWgt_(false) {} ~MKLDNNFcLayer() {} @@ -75,6 +72,8 @@ protected: * only would be called when needed */ void resetBwd(); + + void convertOutputToOtherDevice() override; }; } // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNLayer.h b/paddle/gserver/layers/MKLDNNLayer.h index 63e29f447eede5ff9df8715bc9140b64ab7f7d17..b983b833d510b823c5d4cff0b9390173e4cefc89 100644 --- a/paddle/gserver/layers/MKLDNNLayer.h +++ b/paddle/gserver/layers/MKLDNNLayer.h @@ -18,9 +18,9 @@ limitations under the License. */ #include "Layer.h" #include "MKLDNNBase.h" #include "mkldnn.hpp" +#include "paddle/math/MKLDNNMatrix.h" DECLARE_bool(use_mkldnn); -DECLARE_bool(use_mkldnn_wgt); namespace paddle { @@ -52,15 +52,15 @@ protected: std::vector pipelineFwd_; std::vector pipelineBwd_; - // TODO(TJ): change below memory as MKLDNNMatrixPtr type - std::shared_ptr inVal_; - std::shared_ptr inGrad_; - std::shared_ptr outVal_; - std::shared_ptr outGrad_; - std::shared_ptr wgtVal_; - std::shared_ptr wgtGrad_; - std::shared_ptr biasVal_; - std::shared_ptr biasGrad_; + // MKLDNNMatrixPtr + MKLDNNMatrixPtr inVal_; + MKLDNNMatrixPtr inGrad_; + MKLDNNMatrixPtr outVal_; + MKLDNNMatrixPtr outGrad_; + MKLDNNMatrixPtr wgtVal_; + MKLDNNMatrixPtr wgtGrad_; + MKLDNNMatrixPtr biasVal_; + MKLDNNMatrixPtr biasGrad_; public: explicit MKLDNNLayer(const LayerConfig& config) @@ -83,17 +83,21 @@ public: virtual bool init(const LayerMap& layerMap, const ParameterMap& parameterMap) { + CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn." + << "Please set WITH_MKLDNN=ON " + << "and set use_mkldnn=True"; + CHECK(!useGpu_) << "Do not support GPU yet"; + + // set device id before Layer::init + setDevice(MKLDNN_DEVICE); + // change param device to MKLDNN device + setParamsDevice(MKLDNN_DEVICE, parameterMap); if (!Layer::init(layerMap, parameterMap)) { return false; } - CHECK(FLAGS_use_mkldnn) << "MkldnnLayers only support use_mkldnn." - << "Please set WITH_MKLDNN=ON " - << "and set use_mkldnn=True"; stream_.reset(new MKLDNNStream()); engine_ = CPUEngine::Instance().getEngine(); - - // TODO(TJ): deivecId return true; } @@ -109,6 +113,12 @@ public: */ virtual void convertWeightsToPaddle() {} + /** + * convert MKLDNN output to other device. + * only support CPU device yet + */ + virtual void convertOutputToOtherDevice() {} + /** * print info about sizes */ @@ -118,14 +128,124 @@ public: << ", oh: " << oh_ << ", ow: " << ow_; } - // TODO(TJ): move to MkldnnMatrix - // create memory desc - inline mkldnn::memory::desc createMD( - mkldnn::memory::dims dims, - mkldnn::memory::format fmt, - mkldnn::memory::data_type type = mkldnn::memory::data_type::f32) { - // TODO(TJ): isFmtSuppoted(fmt) - return mkldnn::memory::desc(dims, type, fmt); + /** + * Print the mkldnn memory format flow of value + */ + virtual void printValueFormatFlow() { + if (inVal_ && outVal_) { + VLOG(MKLDNN_FMTS) << "value format flow --- " << inVal_->getFormat() + << " >>> " << outVal_->getFormat(); + } + } + + /** + * Print the mkldnn memory format flow of grad + */ + virtual void printGradFormatFlow() { + if (inGrad_ && outGrad_) { + VLOG(MKLDNN_FMTS) << "grad format flow --- " << inGrad_->getFormat() + << " <<< " << outGrad_->getFormat(); + } + } + +protected: + /** + * copy image size and sequence info to other device + * @note: can not directly use Layer::copyOutputToOtherDevice since here only + * copy base info and do not copy data value + */ + void copyOutputInfoToOtherDevice() { + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + outputOtherDevice_[i].setFrameHeight(output_.getFrameHeight()); + outputOtherDevice_[i].setFrameWidth(output_.getFrameWidth()); + outputOtherDevice_[i].sequenceStartPositions = + output_.sequenceStartPositions; + outputOtherDevice_[i].subSequenceStartPositions = + output_.subSequenceStartPositions; + outputOtherDevice_[i].cpuSequenceDims = output_.cpuSequenceDims; + } + } + + /** + * If input only has MKLDNN device. + * Otherwise, only support the previous layer using CPU device. + */ + bool inputIsOnlyMKLDNN(int index = 0) { + int prevDevice = getPrev(index)->getDeviceId(); + if (prevDevice == MKLDNN_DEVICE) { + return true; + } else { + // do not support GPU yet + CHECK_EQ(prevDevice, CPU_DEVICE) << "Only support CPU yet"; + return false; + } + } + + /** + * If output only has MKLDNN device. + * Otherwise, other devices should only using CPU device. + */ + bool outputIsOnlyMKLDNN() { + for (size_t i = 0; i < outputOtherDevice_.size(); i++) { + CHECK_EQ(outputOtherDevice_[i].deviceId, CPU_DEVICE) + << "Only support other device is CPU yet"; + } + return outputOtherDevice_.size() == 0; + } + + /** + * Sync input value data + */ + void syncInputValue() { + if (inputIsOnlyMKLDNN()) { + return; + } + real* iData = getInputValue(0, CPU_DEVICE)->getData(); + // update input data + // since it might be changed if this is after data layer + inVal_->updateData(iData); + } + + /** + * Sync output grad data + */ + void syncOutputGrad() { + if (outputIsOnlyMKLDNN()) { + return; + } + + // update diff + real* oDiff = getOutput(CPU_DEVICE).grad->getData(); + outGrad_->updateData(oDiff); + } + + /** + * Set deviceId of this layer. + */ + void setDevice(int id) { deviceId_ = id; } + + /** + * Set deviceId of the params used in this layer. + */ + void setParamsDevice(int id, const ParameterMap& parameterMap) { + for (auto& inputConfig : config_.inputs()) { + if (inputConfig.has_input_parameter_name()) { + ParameterPtr parameter; + std::string name = inputConfig.input_parameter_name(); + CHECK(mapGet(name, parameterMap, ¶meter)) + << "Cannot find input parameter " << name << " for layer " + << getName(); + parameter->setDevice(id); + } + } + if (config_.has_bias_parameter_name()) { + ParameterPtr parameter; + std::string name = config_.bias_parameter_name(); + CHECK(mapGet(name, parameterMap, ¶meter)) + << "Cannot find bias parameter " << name << " for layer " + << getName(); + parameter->setDevice(id); + } } }; diff --git a/paddle/gserver/layers/Pool3DLayer.cpp b/paddle/gserver/layers/Pool3DLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..199f21adb1a5923b590e4f0e716fc67effb2a2d1 --- /dev/null +++ b/paddle/gserver/layers/Pool3DLayer.cpp @@ -0,0 +1,178 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "Pool3DLayer.h" +#include "PoolProjectionLayer.h" +#include "paddle/utils/Logging.h" + +namespace paddle { + +REGISTER_LAYER(pool3d, Pool3DLayer); + +bool Pool3DLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + Layer::init(layerMap, parameterMap); + + /* the size of inputs for pool-layer is 1 */ + CHECK_EQ(config_.inputs_size(), 1); + + const PoolConfig& conf = config_.inputs(0).pool_conf(); + poolType_ = conf.pool_type(); + channels_ = conf.channels(); + + sizeX_ = conf.size_x(); + sizeY_ = conf.size_y(); + sizeZ_ = conf.size_z(); + + strideW_ = conf.stride(); + strideH_ = conf.stride_y(); + strideD_ = conf.stride_z(); + + imgSizeW_ = conf.img_size(); + imgSizeH_ = conf.img_size_y(); + imgSizeD_ = conf.img_size_z(); + + paddingW_ = conf.padding(); + paddingH_ = conf.padding_y(); + paddingD_ = conf.padding_z(); + + outputW_ = conf.output_x(); + outputH_ = conf.output_y(); + outputD_ = conf.output_z(); + + return true; +} + +size_t Pool3DLayer::getSize() { + CHECK_EQ(inputLayers_.size(), 1UL); + + size_t layerSize = 0; + outputD_ = outputSize(imgSizeD_, sizeZ_, paddingD_, strideD_, false); + outputH_ = outputSize(imgSizeH_, sizeY_, paddingH_, strideH_, false); + outputW_ = outputSize(imgSizeW_, sizeX_, paddingW_, strideW_, false); + + layerSize = outputD_ * outputH_ * outputW_ * channels_; + getOutput().setFrameHeight(outputH_); + getOutput().setFrameWidth(outputW_); + getOutput().setFrameDepth(outputD_); + return layerSize; +} + +void Pool3DLayer::forward(PassType passType) { + Layer::forward(passType); + const MatrixPtr& inMat = inputLayers_[0]->getOutputValue(); + size_t batchSize = inMat->getHeight(); + size_t outWidth = getSize(); + resetOutput(batchSize, outWidth); + Matrix::resizeOrCreate(maxPoolIdx_, batchSize, outWidth, false, useGpu_); + const MatrixPtr outMat = getOutputValue(); + + if (poolType_ == "avg") { + outMat->avgPool3DForward(*inMat, + channels_, + imgSizeD_, + imgSizeH_, + imgSizeW_, + outputD_, + outputH_, + outputW_, + sizeZ_, + sizeY_, + sizeX_, + strideD_, + strideH_, + strideW_, + paddingD_, + paddingH_, + paddingW_); + } else if (poolType_ == "max") { + outMat->maxPool3DForward(*inMat, + *maxPoolIdx_, + channels_, + imgSizeD_, + imgSizeH_, + imgSizeW_, + outputD_, + outputH_, + outputW_, + sizeZ_, + sizeY_, + sizeX_, + strideD_, + strideH_, + strideW_, + paddingD_, + paddingH_, + paddingW_); + } else { + LOG(FATAL) << "Unknown pool type: " << poolType_; + } + forwardActivation(); +} + +void Pool3DLayer::backward(const UpdateCallback& callback) { + backwardActivation(); + + (void)callback; + if (NULL == getInputGrad(0)) return; + MatrixPtr inMat = inputLayers_[0]->getOutputValue(); + MatrixPtr inGradMat = inputLayers_[0]->getOutputGrad(); + MatrixPtr outMat = getOutputValue(); + MatrixPtr outGradMat = getOutputGrad(); + + if (poolType_ == "avg") { + inGradMat->avgPool3DBackward(*outGradMat, + imgSizeD_, + imgSizeH_, + imgSizeW_, + outputD_, + outputH_, + outputW_, + sizeZ_, + sizeY_, + sizeZ_, + strideD_, + strideH_, + strideW_, + paddingD_, + paddingH_, + paddingW_, + 1.0, + 1.0); + } else if (poolType_ == "max") { + inGradMat->maxPool3DBackward(*outGradMat, + *maxPoolIdx_, + imgSizeD_, + imgSizeH_, + imgSizeW_, + outputD_, + outputH_, + outputW_, + sizeZ_, + sizeY_, + sizeZ_, + strideD_, + strideH_, + strideW_, + paddingD_, + paddingH_, + paddingW_, + 1.0, + 1.0); + } else { + LOG(FATAL) << "Unknown pool type: " << poolType_; + } +} + +} // namespace paddle diff --git a/paddle/gserver/layers/Pool3DLayer.h b/paddle/gserver/layers/Pool3DLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..8329a02f571bf3b5422134c756c248f77fd517b1 --- /dev/null +++ b/paddle/gserver/layers/Pool3DLayer.h @@ -0,0 +1,49 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "Layer.h" +#include "paddle/math/MathUtils.h" +#include "paddle/math/Matrix.h" + +namespace paddle { + +/** + * @brief Basic parent layer of pooling + * Pools the input within regions + */ +class Pool3DLayer : public Layer { +public: + explicit Pool3DLayer(const LayerConfig& config) : Layer(config) {} + ~Pool3DLayer() {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + void forward(PassType passType) override; + void backward(const UpdateCallback& callback) override; + size_t getSize(); + +protected: + int channels_; + int sizeX_, sizeY_, sizeZ_; + int strideW_, strideH_, strideD_; + int paddingW_, paddingH_, paddingD_; + int imgSizeW_, imgSizeH_, imgSizeD_; + int outputW_, outputH_, outputD_; + std::string poolType_; + MatrixPtr maxPoolIdx_; +}; +} // namespace paddle diff --git a/paddle/gserver/layers/SequenceSliceLayer.cpp b/paddle/gserver/layers/SequenceSliceLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..d3a83fad276a384ab3fddd5349912c56be6f3cc0 --- /dev/null +++ b/paddle/gserver/layers/SequenceSliceLayer.cpp @@ -0,0 +1,223 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "Layer.h" +#include "paddle/math/Matrix.h" +#include "paddle/math/Vector.h" +#include "paddle/utils/Logging.h" +#include "paddle/utils/Stat.h" + +namespace paddle { + +class SequenceSliceLayer : public Layer { +public: + explicit SequenceSliceLayer(const LayerConfig& config) : Layer(config) {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void forward(PassType passType) override; + void backward(const UpdateCallback& callback = nullptr) override; + +private: + /* + * TODO(caoying) + * In PaddePaddle, currently all matrices are real number types, + * but the second and the (optional) third input which are some + * selected indices of the give sequence to trim the sequence, are actually + * filled with int types so that storing int types information in real number + * matrices is very dangerous, since real numbers will be convered to int + * types. If a user fills this matrix himself, invalid data may occor. + */ + + MatrixPtr startIdsOnCpu_; + MatrixPtr endIdsOnCpu_; + + std::vector selectedRows_; + IVectorPtr rowIndice_; + std::vector> inputSeqInfoVec_; + std::vector outSubSeqStartPos_; + std::vector outSeqStartPos_; + + void checkInputs(); + void copySliceIdsToCpu(); + void calSelectedRows(const MatrixPtr starts, const MatrixPtr ends); +}; + +REGISTER_LAYER(seq_slice, SequenceSliceLayer); + +bool SequenceSliceLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + /* Initialize the basic parent class */ + Layer::init(layerMap, parameterMap); + CHECK_GE(inputLayers_.size(), 2U); + CHECK_LE(inputLayers_.size(), 3U); + + setNeedSequenceInfo(false); + return true; +} + +void SequenceSliceLayer::checkInputs() { + const Argument& inputSeq = getInput(0); + CHECK(inputSeq.hasSeq()) << "The first input of sequence slice layer " + << "must be a sequence."; + const MatrixPtr indices1 = getInputValue(1); + CHECK_EQ(static_cast(indices1->getHeight()), + inputSeq.hasSubseq() ? inputSeq.getNumSubSequences() + : inputSeq.getNumSequences()) + << "Height of the second input should be equal to number of sequence " + << "in the first input."; + if (inputLayers_.size() == 3) { + const MatrixPtr indices2 = getInputValue(2); + CHECK_EQ(indices2->getHeight(), indices1->getHeight()) + << "start indices and end indices should have the same height."; + CHECK_EQ(indices2->getWidth(), indices1->getWidth()) + << "start indices and end indices should have the same Width."; + } +} + +void SequenceSliceLayer::copySliceIdsToCpu() { + const MatrixPtr indices1 = getInputValue(1); + if (inputLayers_.size() == 2U) { + if (config_.select_first()) { + Matrix::resizeOrCreate(startIdsOnCpu_, + indices1->getHeight(), + indices1->getWidth(), + false /* trans */, + false /* useGpu */); + startIdsOnCpu_->copyFrom(*indices1); + endIdsOnCpu_ = nullptr; + } else { + Matrix::resizeOrCreate(endIdsOnCpu_, + indices1->getHeight(), + indices1->getWidth(), + false /* trans */, + false /* useGpu */); + endIdsOnCpu_->copyFrom(*indices1); + startIdsOnCpu_ = nullptr; + } + } else if (inputLayers_.size() == 3U) { + Matrix::resizeOrCreate(startIdsOnCpu_, + indices1->getHeight(), + indices1->getWidth(), + false /* trans */, + false /* useGpu */); + startIdsOnCpu_->copyFrom(*indices1); + + const MatrixPtr indices2 = getInputValue(2); + Matrix::resizeOrCreate(endIdsOnCpu_, + indices2->getHeight(), + indices2->getWidth(), + false /* trans */, + false /* useGpu */); + endIdsOnCpu_->copyFrom(*indices2); + } +} + +void SequenceSliceLayer::calSelectedRows(const MatrixPtr starts, + const MatrixPtr ends) { + CHECK(starts || ends) << "At least one of the start or end indices " + << "should be given."; + + bool hasSubseq = getInput(0).hasSubseq(); + + outSeqStartPos_.resize(1, 0); + outSubSeqStartPos_.resize(1, 0); + selectedRows_.clear(); + + size_t beamSize = starts ? starts->getWidth() : ends->getWidth(); + size_t rowIdx = 0; + for (size_t i = 0; i < inputSeqInfoVec_.size(); ++i) { + for (size_t j = 0; j < inputSeqInfoVec_[i].size() - 1; ++j) { + for (size_t k = 0; k < beamSize; ++k) { + if (starts && starts->getElement(rowIdx, k) == -1.) break; + if (ends && ends->getElement(rowIdx, k) == -1.) break; + + int begPos = inputSeqInfoVec_[i][j]; + if (starts) begPos += starts->getElement(rowIdx, k); + + int endPos = inputSeqInfoVec_[i][j + 1] - 1; + if (ends) endPos = inputSeqInfoVec_[i][j] + ends->getElement(rowIdx, k); + + int seqLen = endPos - begPos + 1; + CHECK_GT(seqLen, 0U); + for (int m = begPos; m <= endPos; ++m) selectedRows_.push_back(m); + hasSubseq + ? outSubSeqStartPos_.push_back(outSubSeqStartPos_.back() + seqLen) + : outSeqStartPos_.push_back(outSeqStartPos_.back() + seqLen); + } + rowIdx++; + } + if (hasSubseq) outSeqStartPos_.push_back(outSubSeqStartPos_.back()); + } + + if (useGpu_) { + rowIndice_ = IVector::create(selectedRows_.size(), useGpu_); + rowIndice_->copyFrom(selectedRows_.data(), selectedRows_.size()); + } else { + rowIndice_ = + IVector::create(selectedRows_.data(), selectedRows_.size(), useGpu_); + } + + // create the sequence information for the output. + ICpuGpuVector::resizeOrCreate( + output_.sequenceStartPositions, outSeqStartPos_.size(), false); + output_.sequenceStartPositions->copyFrom( + outSeqStartPos_.data(), outSeqStartPos_.size(), false); + + if (hasSubseq) { + ICpuGpuVector::resizeOrCreate( + output_.subSequenceStartPositions, outSubSeqStartPos_.size(), false); + output_.subSequenceStartPositions->copyFrom( + outSubSeqStartPos_.data(), outSubSeqStartPos_.size(), false); + } +} + +void SequenceSliceLayer::forward(PassType passType) { + Layer::forward(passType); + checkInputs(); + + const Argument& inputSeq = getInput(0); + inputSeqInfoVec_.clear(); + Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions, + inputSeq.subSequenceStartPositions, + inputSeqInfoVec_); + if (!useGpu_) { + if (inputLayers_.size() == 2U) { + startIdsOnCpu_ = config_.select_first() ? getInputValue(1) : nullptr; + endIdsOnCpu_ = config_.select_first() ? nullptr : getInputValue(1); + } else if (inputLayers_.size() == 3U) { + startIdsOnCpu_ = getInputValue(1); + endIdsOnCpu_ = getInputValue(2); + } + } else { + copySliceIdsToCpu(); + } + + /* + * calculate the selected row indices in a batch, and build the output + * sequence information. + */ + calSelectedRows(startIdsOnCpu_, endIdsOnCpu_); + + resetOutput(selectedRows_.size(), getSize()); + + getOutputValue()->selectRows(*getInputValue(0), *rowIndice_); +} + +void SequenceSliceLayer::backward(const UpdateCallback& callback) { + getOutputGrad()->addToRows(*getInputGrad(0), *rowIndice_); +} + +} // namespace paddle diff --git a/paddle/gserver/layers/SubNestedSequenceLayer.cpp b/paddle/gserver/layers/SubNestedSequenceLayer.cpp index 648d3908f391450f276d8a900ebb3bccb8d5532c..e9bee77212065effdac78cba590caed2e9155f0a 100644 --- a/paddle/gserver/layers/SubNestedSequenceLayer.cpp +++ b/paddle/gserver/layers/SubNestedSequenceLayer.cpp @@ -52,23 +52,34 @@ private: * ] * * ths output is saved to private member rowIndice_; - * [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15, - * 16,17,18,19,20,21,22,23,24,25,26,27] + * [0,1,2,3,4,5,6,7,8,9,15,16,17,18,19,20,21,23,24,25,26,27] */ - void calSelectedCols(const MatrixPtr selectedIndices, + void calSelectedRows(const MatrixPtr selectedIndices, const std::vector>& inputSeqInfo); - // if the second input of this layer is on GPU memory, copy it to CPU memory. + /* + * TODO(caoying) + * In PaddePaddle, currently all matrices are real number types, + * but the second is some selected indices of the give sequence to trim + * the nested sequence, are actually filled with int types so that storing + * int types information in real number matrices is very dangerous, since + * real numbers will be convered to int types. If a user fills this matrix + * himself, invalid data may occor. + * + * if the second input of this layer is on GPU memory, copy it to CPU memory. + */ MatrixPtr selIdsCpu_; - // reorganized sequenceStartPositions and subSequenceStartPositions - // into a 2d vector to facilitate the sequence selection process. + /* + * reorganize sequenceStartPositions and subSequenceStartPositions + * into a 2d vector to facilitate the sequence selection process. + */ std::vector> inputSeqInfoVec_; - // the final selected row indices in a batch, - // rowIdx_ and selectedRows_ actually share a same memory. + /* store the final selected row indices in a batch */ IVectorPtr rowIndice_; + /* rowIndice_ and selectedRows_ actually share a same memory. */ std::vector selectedRows_; }; @@ -83,7 +94,7 @@ bool SubNestedSequenceLayer::init(const LayerMap& layerMap, return true; } -void SubNestedSequenceLayer::calSelectedCols( +void SubNestedSequenceLayer::calSelectedRows( const MatrixPtr selectedIndices, const std::vector>& inputSeqInfo) { selectedRows_.clear(); @@ -160,7 +171,7 @@ void SubNestedSequenceLayer::forward(PassType passType) { Argument::reorganizeSeqInfo(inputSeq.sequenceStartPositions, inputSeq.subSequenceStartPositions, inputSeqInfoVec_); - calSelectedCols(selIdsCpu_, inputSeqInfoVec_); + calSelectedRows(selIdsCpu_, inputSeqInfoVec_); resetOutput(selectedRows_.size(), getSize()); getOutputValue()->selectRows(*getInputValue(0), *rowIndice_); diff --git a/paddle/gserver/tests/CMakeLists.txt b/paddle/gserver/tests/CMakeLists.txt index c2a2993620492a9ec5dae932ff1292ced2c00064..de9b8e63dfc4291f8f42ca8c57cb5eb6baed8d8e 100644 --- a/paddle/gserver/tests/CMakeLists.txt +++ b/paddle/gserver/tests/CMakeLists.txt @@ -34,6 +34,19 @@ add_unittest_without_exec(test_CRFLayerGrad add_test(NAME test_CRFLayerGrad COMMAND test_CRFLayerGrad) +################ test_CrossEntropyOverBeam #################### +add_unittest_without_exec(test_CrossEntropyOverBeam + test_CrossEntropyOverBeamGrad.cpp + LayerGradUtil.cpp) +add_test(NAME test_CrossEntropyOverBeam + COMMAND test_CrossEntropyOverBeam) + +################ test_SeqSliceLayerGrad #################### +add_unittest_without_exec(test_SeqSliceLayerGrad + test_SeqSliceLayerGrad.cpp + LayerGradUtil.cpp) +add_test(NAME test_SeqSliceLayerGrad + COMMAND test_SeqSliceLayerGrad) add_unittest_without_exec(test_ActivationGrad test_ActivationGrad.cpp diff --git a/paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp b/paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp new file mode 100644 index 0000000000000000000000000000000000000000..538d18cdc3d262df0ddb031d9e6b38a3fea57606 --- /dev/null +++ b/paddle/gserver/tests/test_CrossEntropyOverBeamGrad.cpp @@ -0,0 +1,353 @@ +/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include + +#include +#include "ModelConfig.pb.h" +#include "paddle/gserver/layers/DataLayer.h" +#include "paddle/trainer/Trainer.h" + +#include "LayerGradUtil.h" +#include "paddle/testing/TestUtil.h" + +using namespace paddle; // NOLINT + +DECLARE_int32(gpu_id); +DECLARE_bool(thread_local_rand_use_global_seed); + +const size_t MAX_SEQ_NUM = 23; +const size_t MAX_SEQ_LEN = 50; +const size_t MAX_BEAM_SIZE = 27; + +const size_t SEED = (size_t)(time(NULL)); + +struct SingleBeamExpansion { + vector seqStartPos; + vector subSeqStartPos; + vector candidateScores; + + // TODO(caoying): store this into Argument.ids + vector selectedIndices; + + vector groundTruth; + vector inBeam; + vector rowIdxInBeam; + vector colIdxInBeam; + + void resetGroundTruth(size_t n) { + groundTruth.clear(); + groundTruth.resize(n, -1); + + inBeam.clear(); + inBeam.resize(n, 0); + + rowIdxInBeam.clear(); + rowIdxInBeam.resize(n, -1); + + colIdxInBeam.clear(); + colIdxInBeam.resize(n, -1); + } +}; + +inline float randFloat() { + return static_cast(rand()) / static_cast(RAND_MAX); +} + +void genRand(real* numbers, size_t n) { + default_random_engine generator; + uniform_real_distribution distribution(0.0, 1.0); + for (size_t i = 0; i < n; ++i) numbers[i] = distribution(generator); +} + +vector randSampling(real range, int n) { + CHECK_GE(range, n); + vector num(range); + iota(begin(num), end(num), 0.); + if (range == n) return num; + + random_shuffle(begin(num), end(num)); + num.resize(n); + sort(begin(num), end(num)); + return num; +} + +void genCandidateScores(bool hasSubseq, + size_t beamSize, + SingleBeamExpansion& prevBeam, + SingleBeamExpansion& curBeam) { + vector& seqStartPos = curBeam.seqStartPos; + seqStartPos.resize(1, 0); + vector& subSeqStartPos = curBeam.subSeqStartPos; + subSeqStartPos.resize(1, 0); + + srand(SEED); + if (prevBeam.selectedIndices.size()) { + if (prevBeam.subSeqStartPos.size() > 1) { + int seqIdx = 1; + // samples in previous beam are nested sequences. + for (size_t i = 1; i < prevBeam.subSeqStartPos.size(); ++i) { + for (size_t j = 0; j < beamSize; ++j) { + if (prevBeam.selectedIndices[(i - 1) * beamSize + j] == -1.) break; + subSeqStartPos.push_back(1 + (rand() % MAX_SEQ_LEN) + + subSeqStartPos.back()); + } + if (prevBeam.seqStartPos[seqIdx] == prevBeam.subSeqStartPos[i]) { + seqStartPos.push_back(subSeqStartPos.back()); + seqIdx++; + } + } + } else { + for (size_t i = 0; i <= prevBeam.selectedIndices.size(); ++i) { + if (i && i % beamSize == 0) { + seqStartPos.push_back(subSeqStartPos.back()); + if (i == prevBeam.selectedIndices.size()) break; + } + if (prevBeam.selectedIndices[i] == -1.) continue; + subSeqStartPos.push_back(subSeqStartPos.back() + + (1 + (rand() % MAX_SEQ_LEN))); + } + } + } else { + // the first beam expansion + int seqNum = 1 + (rand() % MAX_SEQ_NUM); + for (int i = 0; i < seqNum; ++i) { + if (hasSubseq) { + for (size_t j = 0; j < 1 + (rand() % MAX_SEQ_NUM); ++j) + subSeqStartPos.push_back(subSeqStartPos.back() + + (1 + (rand() % MAX_SEQ_LEN))); + seqStartPos.push_back(subSeqStartPos.back()); + } else { + seqStartPos.push_back(seqStartPos.back() + + (1 + (rand() % MAX_SEQ_LEN))); + } + } + } + + size_t totalSeqNum = hasSubseq ? subSeqStartPos.back() : seqStartPos.back(); + curBeam.candidateScores.resize(totalSeqNum, 0.); + genRand(curBeam.candidateScores.data(), totalSeqNum); +} + +void genSelectedIndices(size_t beamSize, + vector& seqStartPos, + vector& selectedIndices) { + size_t selectedIdsCount = beamSize * (seqStartPos.size() - 1); + selectedIndices.resize(selectedIdsCount, -1.); + + for (size_t i = 0; i < seqStartPos.size() - 1; ++i) { + int seqLen = seqStartPos[i + 1] - seqStartPos[i]; + int n = min(seqLen, static_cast(beamSize)); + vector ids = randSampling(seqLen, n); + memcpy(selectedIndices.data() + i * beamSize, + ids.data(), + sizeof(real) * ids.size()); + } +} + +void genGroundTruth(vector& beamExpansions, + size_t beamSize) { + SingleBeamExpansion& beam = beamExpansions[1]; + size_t seqNum = beam.seqStartPos.size() - 1; + for (size_t i = 2; i < beamExpansions.size(); ++i) + CHECK_EQ(seqNum, beamExpansions[i].seqStartPos.size() - 1); + + srand(SEED); + + // initialize the first beam. + beam.resetGroundTruth(seqNum); + for (size_t i = 0; i < seqNum; ++i) { + if (randFloat() > 0.5) { + /* + * force the randomly generated label falls in the beam by chance 0.5. + * otherwise, when sequence length is relatively long and beam size is + * relatively small, the gold sequences falls off the beam at in the + * first search. + */ + real* begPos = beam.selectedIndices.data() + i * beamSize; + beam.colIdxInBeam[i] = + rand() % count_if(begPos, begPos + beamSize, [](const real& val) { + return val != -1.; + }); + beam.groundTruth[i] = + beam.selectedIndices[i * beamSize + beam.colIdxInBeam[i]]; + beam.inBeam[i] = 1; + } else { + int label = rand() % (beam.seqStartPos[i + 1] - beam.seqStartPos[i]); + beam.groundTruth[i] = label; + + real* begPos = beam.selectedIndices.data() + i * beamSize; + real* endPos = begPos + beamSize; + real* lblPos = find(begPos, endPos, real(label)); + if (lblPos != endPos) { + beam.inBeam[i] = 1; + beam.colIdxInBeam[i] = lblPos - begPos; + } + } + beam.rowIdxInBeam[i] = i; + } + + // iterate over each beam expansions + for (size_t i = 2; i < beamExpansions.size(); ++i) { + SingleBeamExpansion& curBeam = beamExpansions[i]; + SingleBeamExpansion& prevBeam = beamExpansions[i - 1]; + curBeam.resetGroundTruth(seqNum); + + // iterate over each sequence + for (size_t j = 0; j < seqNum; ++j) { + if (!prevBeam.inBeam[j]) continue; + + // gold sequence falls in the beam in previous search. + real* begPos = prevBeam.selectedIndices.data(); + int offset = + prevBeam.rowIdxInBeam[j] * beamSize + prevBeam.colIdxInBeam[j]; + curBeam.rowIdxInBeam[j] = count_if( + begPos, begPos + offset, [](const real& val) { return val != -1.; }); + + if (randFloat() > 0.5) { + // force the randomly generated label falls in the beam by chance 0.5. + + real* start = + curBeam.selectedIndices.data() + curBeam.rowIdxInBeam[j] * beamSize; + int n = rand() % count_if(start, start + beamSize, [](const real& val) { + return val != -1.; + }); + curBeam.colIdxInBeam[j] = n; + curBeam.groundTruth[j] = *(start + n); + curBeam.inBeam[j] = 1; + } else { + CHECK_LE(curBeam.rowIdxInBeam[j] + 1, + curBeam.subSeqStartPos.size() - 1); + int start = curBeam.subSeqStartPos[curBeam.rowIdxInBeam[j]]; + int end = curBeam.subSeqStartPos[curBeam.rowIdxInBeam[j] + 1]; + CHECK_GT(size_t(end), size_t(start)); + int label = rand() % (end - start); + + curBeam.groundTruth[j] = label; + real* findBeg = + curBeam.selectedIndices.data() + curBeam.rowIdxInBeam[j] * beamSize; + real* lblPos = + find(findBeg, findBeg + beamSize, static_cast(label)); + if (lblPos != (findBeg + beamSize)) { + curBeam.inBeam[j] = 1; + curBeam.colIdxInBeam[j] = lblPos - findBeg; + } + } + } + } +} + +void genOneBeam(size_t beamSize, + bool hasSubseq, + SingleBeamExpansion& prevBeam, + SingleBeamExpansion& curBeam) { + genCandidateScores(hasSubseq, beamSize, prevBeam, curBeam); + genSelectedIndices(beamSize, + hasSubseq ? curBeam.subSeqStartPos : curBeam.seqStartPos, + curBeam.selectedIndices); +} + +void genRandomBeamExpansion(size_t expansionCount, + size_t beamSize, + vector& beamExpansions) { + beamExpansions.clear(); + beamExpansions.resize(expansionCount + 1); + + // beamExpansions[0] is reserved. + for (size_t i = 1; i <= expansionCount; ++i) + genOneBeam(beamSize, bool(i - 1), beamExpansions[i - 1], beamExpansions[i]); + genGroundTruth(beamExpansions, beamSize); +} + +void testCrossEntropyOverBeam(bool useGpu, + size_t beamSize, + vector& beams) { + TestConfig config; + config.layerConfig.set_type("cross_entropy_over_beam"); + + size_t seqNum = 0; + for (size_t i = 1; i < beams.size(); ++i) { + const SingleBeamExpansion& beam = beams[i]; + // create scores for all the candidates + MatrixPtr candidateScorePtr = + Matrix::create(beam.candidateScores.size(), 1, false, false); + candidateScorePtr->copyFrom(beam.candidateScores.data(), + beam.candidateScores.size()); + + ostringstream paramName; + paramName << "candidate_scores_" << i; + + if (beam.subSeqStartPos.size() > 1) { + seqNum = beam.subSeqStartPos.size() - 1; + config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, + paramName.str(), + candidateScorePtr, + beam.seqStartPos, + beam.subSeqStartPos}); + } else { + seqNum = beam.seqStartPos.size() - 1; + config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, + paramName.str(), + candidateScorePtr, + beam.seqStartPos}); + } + config.layerConfig.add_inputs(); + + // create indices for the selected candidates + MatrixPtr selectedCandidates = + Matrix::create(seqNum, beamSize, false, false); + selectedCandidates->copyFrom(beam.selectedIndices.data(), + beam.selectedIndices.size()); + paramName.clear(); + paramName << "selected_candidates_" << i; + config.inputDefs.push_back( + {INPUT_SELF_DEFINE_DATA, paramName.str(), selectedCandidates}); + config.layerConfig.add_inputs(); + + // create the ground truth + paramName.clear(); + paramName << "label_" << i; + config.inputDefs.push_back( + {INPUT_SELF_DEFINE_DATA, paramName.str(), beam.groundTruth}); + config.layerConfig.add_inputs(); + } + + testLayerGrad( + config, "cross_entropy_over_beam", seqNum, false, useGpu, false); +} + +TEST(Layer, CrossEntropyOverBeam) { + LOG(INFO) << "SEED = " << SEED; + const size_t beamSize = 1 + rand() % MAX_BEAM_SIZE; + LOG(INFO) << "beamSize = " << beamSize; + + // TODO(caoying): test with random beam expansions. + const size_t expansionCount = 3; + vector beams; + genRandomBeamExpansion(expansionCount, beamSize, beams); + + for (bool useGpu : {false, true}) + testCrossEntropyOverBeam(useGpu, beamSize, beams); +} + +int main(int argc, char** argv) { + initMain(argc, argv); + hl_start(); + hl_init(FLAGS_gpu_id); + FLAGS_thread_local_rand_use_global_seed = true; + srand(SEED); + testing::InitGoogleTest(&argc, argv); + return RUN_ALL_TESTS(); +} diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index dd2c955e6a4660a1811f205ec5c5861798291912..a831ffbc73fbd6ad42fa31b2d6d583718474e59b 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -12,6 +12,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#ifndef PADDLE_ONLY_CPU +#include +#endif #include #include #include @@ -189,10 +192,16 @@ TEST(Projection, scaling) { void testProjectionConv(size_t groups, bool isDeconv) { const int NUM_FILTERS = 18; const int FILTER_SIZE = 2; - const int FILTER_SIZE_Y = 4; + const int FILTER_SIZE_Y = 2; const int CHANNELS = 3; const int IMAGE_SIZE = 16; +#if CUDNN_VERSION >= 6000 + const int DILATION = 2; +#else + const int DILATION = 1; +#endif + ProjectionConfig conf; if (isDeconv) { conf.set_type("convt"); @@ -209,6 +218,8 @@ void testProjectionConv(size_t groups, bool isDeconv) { conv->set_padding_y(1); conv->set_stride(2); conv->set_stride_y(2); + conv->set_dilation(DILATION); + conv->set_dilation_y(DILATION); conv->set_groups(groups); if (isDeconv) { conv->set_filter_channels(NUM_FILTERS / conv->groups()); @@ -217,12 +228,12 @@ void testProjectionConv(size_t groups, bool isDeconv) { } conv->set_img_size(IMAGE_SIZE); int output_x = outputSize(conv->img_size(), - conv->filter_size(), + (conv->filter_size() - 1) * DILATION + 1, conv->padding(), conv->stride(), /* caffeMode */ true); int output_y = outputSize(conv->img_size(), - conv->filter_size_y(), + (conv->filter_size_y() - 1) * DILATION + 1, conv->padding_y(), conv->stride_y(), /* caffeMode */ true); @@ -424,27 +435,38 @@ void testConvLayer(const string& type, bool trans, bool useGpu) { config.layerConfig.set_partial_sum(1); config.layerConfig.set_shared_biases(true); - config.inputDefs.push_back({INPUT_DATA, "layer_0", 384, 288}); + int dilation = 1; + if (type == "cudnn_conv") { +#if CUDNN_VERSION >= 6000 + dilation = 2; +#else + dilation = 1; +#endif + } + + config.inputDefs.push_back({INPUT_DATA, "layer_0", 768, 192}); LayerInputConfig* input = config.layerConfig.add_inputs(); ConvConfig* conv = input->mutable_conv_conf(); conv->set_filter_size(2); - conv->set_filter_size_y(3); + conv->set_filter_size_y(2); conv->set_channels(3); conv->set_padding(0); conv->set_padding_y(1); conv->set_stride(2); conv->set_stride_y(2); + conv->set_dilation(dilation); + conv->set_dilation_y(dilation); conv->set_groups(1); conv->set_filter_channels(conv->channels() / conv->groups()); conv->set_img_size(16); - conv->set_img_size_y(8); + conv->set_img_size_y(16); conv->set_output_x(outputSize(conv->img_size(), - conv->filter_size(), + (conv->filter_size() - 1) * dilation + 1, conv->padding(), conv->stride(), /* caffeMode */ true)); conv->set_output_y(outputSize(conv->img_size_y(), - conv->filter_size_y(), + (conv->filter_size_y() - 1) * dilation + 1, conv->padding_y(), conv->stride_y(), /* caffeMode */ true)); @@ -828,9 +850,27 @@ TEST(Layer, square_error_weighted) { } } +TEST(Layer, huber_regression_loss) { + TestConfig config; + config.layerConfig.set_type("huber_regression"); + config.biasSize = 0; + + config.inputDefs.push_back({INPUT_DATA, "layer_0", 10, 0}); + config.inputDefs.push_back({INPUT_DATA_TARGET, "layer_1", 10, 0}); + config.layerConfig.add_inputs(); + config.layerConfig.add_inputs(); + + for (auto useGpu : {false, true}) { + for (auto delta : {1, 3, 5}) { + config.layerConfig.set_delta(delta); + testLayerGrad(config, "huber_regression", 100, /* trans */ false, useGpu); + } + } +} + TEST(Layer, huber_two_class) { TestConfig config; - config.layerConfig.set_type("huber"); + config.layerConfig.set_type("huber_classification"); config.biasSize = 0; config.inputDefs.push_back({INPUT_DATA, "layer_0", 1, 0}); @@ -839,7 +879,7 @@ TEST(Layer, huber_two_class) { config.layerConfig.add_inputs(); for (auto useGpu : {false, true}) { - testLayerGrad(config, "huber", 100, /* trans */ false, useGpu); + testLayerGrad(config, "huber_two_class", 100, /* trans */ false, useGpu); } } @@ -1206,6 +1246,75 @@ TEST(Layer, PoolLayer) { #endif } +void setPool3DConfig(TestConfig* config, + PoolConfig* pool, + const string& poolType) { + // filter size + const int NUM_FILTERS = 16; + const int FILTER_SIZE = 3; + const int FILTER_SIZE_Y = 3; + const int FILTER_SIZE_Z = 3; + const int CHANNELS = 16; + + (*config).biasSize = 0; + (*config).layerConfig.set_type("pool3d"); + (*config).layerConfig.set_num_filters(NUM_FILTERS); + + int kw = FILTER_SIZE, kh = FILTER_SIZE_Y, kd = FILTER_SIZE_Z; + int pw = 0, ph = 0, pd = 0; + int sw = 2, sh = 2, sd = 2; + + pool->set_pool_type(poolType); + pool->set_pool_type("avg"); + pool->set_channels(CHANNELS); + pool->set_size_x(kw); + pool->set_size_y(kh); + pool->set_size_z(kd); + pool->set_padding(0); + pool->set_padding_y(0); + pool->set_padding_z(0); + pool->set_stride(sw); + pool->set_stride_y(sh); + pool->set_stride_z(sd); + pool->set_start(0); + int ow = outputSize(pool->img_size(), kw, pw, sw, /* caffeMode */ false); + int oh = outputSize(pool->img_size_y(), kh, ph, sh, /* caffeMode */ false); + int od = outputSize(pool->img_size_z(), kd, pd, sd, /* caffeMode */ false); + pool->set_output_x(ow); + pool->set_output_y(oh); + pool->set_output_z(od); +} + +void testPool3DLayer(const string& poolType, bool trans, bool useGpu) { + TestConfig config; + config.inputDefs.push_back({INPUT_DATA, "layer_0", 11664, 0}); + LayerInputConfig* input = config.layerConfig.add_inputs(); + PoolConfig* pool = input->mutable_pool_conf(); + + const int IMAGE_SIZE = 9; + const int IMAGE_SIZE_Y = 9; + const int IMAGE_SIZE_Z = 9; + + pool->set_img_size(IMAGE_SIZE); + pool->set_img_size_y(IMAGE_SIZE_Y); + pool->set_img_size_z(IMAGE_SIZE_Z); + + setPool3DConfig(&config, pool, poolType); + config.layerConfig.set_size(pool->output_x() * pool->output_y() * + pool->channels()); + + testLayerGrad(config, "pool3d", 100, trans, useGpu); +} + +TEST(Layer, Pool3DLayer) { + testPool3DLayer("avg", /* trans= */ false, /* useGpu= */ false); + testPool3DLayer("max", /* trans= */ false, /* useGpu= */ false); +#ifndef PADDLE_ONLY_CPU + testPool3DLayer("avg", /* trans= */ false, /* useGpu= */ true); + testPool3DLayer("max", /* trans= */ false, /* useGpu= */ true); +#endif +} + void testSppLayer(const string& poolType, const int pyramidHeight, bool trans, @@ -2007,6 +2116,159 @@ TEST(Layer, RowL2NormLayer) { } } +void test3DConvLayer(const string& type, bool trans, bool useGpu) { + // filter size + const int NUM_FILTERS = 6; + // const int CHANNELS = 3; + const int FILTER_SIZE = 3; + const int FILTER_SIZE_Y = 3; + const int FILTER_SIZE_Z = 3; + + // input image + const int CHANNELS = 3; + const int IMAGE_SIZE = 9; + const int IMAGE_SIZE_Y = 9; + const int IMAGE_SIZE_Z = 9; + + TestConfig config; + config.biasSize = NUM_FILTERS; + config.layerConfig.set_type(type); + config.layerConfig.set_num_filters(NUM_FILTERS); + config.layerConfig.set_partial_sum(1); + config.layerConfig.set_shared_biases(true); + + // Setting up conv3D-trans layer + LayerInputConfig* input = config.layerConfig.add_inputs(); + ConvConfig* conv = input->mutable_conv_conf(); + + conv->set_channels(CHANNELS); + conv->set_filter_size(FILTER_SIZE); + conv->set_filter_size_y(FILTER_SIZE_Y); + conv->set_filter_size_z(FILTER_SIZE_Z); + conv->set_padding(0); + conv->set_padding_y(0); + conv->set_padding_z(0); + conv->set_stride(2); + conv->set_stride_y(2); + conv->set_stride_z(2); + conv->set_img_size(IMAGE_SIZE); + conv->set_img_size_y(IMAGE_SIZE_Y); + conv->set_img_size_z(IMAGE_SIZE_Z); + conv->set_output_x(outputSize(conv->img_size(), + conv->filter_size(), + conv->padding(), + conv->stride(), + /* caffeMode */ true)); + conv->set_output_y(outputSize(conv->img_size_y(), + conv->filter_size_y(), + conv->padding_y(), + conv->stride_y(), + /* caffeMode */ true)); + conv->set_output_z(outputSize(conv->img_size_z(), + conv->filter_size_z(), + conv->padding_z(), + conv->stride_z(), + /* caffeMode */ true)); + + config.layerConfig.set_size(conv->output_x() * conv->output_y() * + conv->output_z() * NUM_FILTERS); + conv->set_groups(1); + conv->set_filter_channels(conv->channels() / conv->groups()); + config.inputDefs.push_back( + {INPUT_DATA, + "layer_0", + CHANNELS * IMAGE_SIZE * IMAGE_SIZE_Y * IMAGE_SIZE_Z, + conv->filter_channels() * FILTER_SIZE * FILTER_SIZE_Y * FILTER_SIZE_Z * + NUM_FILTERS}); + + testLayerGrad(config, "conv3D", 10, trans, useGpu); + // Use small batch_size and useWeight=true to test biasGrad + testLayerGrad(config, "conv3D", 2, trans, useGpu, true, 0.02); +} + +TEST(Layer, test3DConvLayer) { + test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ false); +#ifndef PADDLE_ONLY_CPU + test3DConvLayer("conv3d", /* trans= */ false, /* useGpu= */ true); +#endif +} + +void test3DDeConvLayer(const string& type, bool trans, bool useGpu) { + // filter size + const int NUM_FILTERS = 6; + // const int CHANNELS = 3; + const int FILTER_SIZE = 3; + const int FILTER_SIZE_Y = 3; + const int FILTER_SIZE_Z = 3; + + // input image + const int CHANNELS = 3; + const int IMAGE_SIZE = 4; + const int IMAGE_SIZE_Y = 6; + const int IMAGE_SIZE_Z = 6; + + // Setting up conv-trans layer + TestConfig config; + config.biasSize = NUM_FILTERS; + config.layerConfig.set_type("deconv3d"); + config.layerConfig.set_num_filters(NUM_FILTERS); + config.layerConfig.set_partial_sum(1); + config.layerConfig.set_shared_biases(true); + + LayerInputConfig* input = config.layerConfig.add_inputs(); + ConvConfig* conv = input->mutable_conv_conf(); + + conv->set_channels(CHANNELS); + conv->set_filter_size(FILTER_SIZE); + conv->set_filter_size_y(FILTER_SIZE_Y); + conv->set_filter_size_z(FILTER_SIZE_Z); + conv->set_padding(0); + conv->set_padding_y(0); + conv->set_padding_z(0); + conv->set_stride(2); + conv->set_stride_y(2); + conv->set_stride_z(2); + conv->set_img_size(IMAGE_SIZE); + conv->set_img_size_y(IMAGE_SIZE_Y); + conv->set_img_size_z(IMAGE_SIZE_Z); + conv->set_output_x(imageSize(conv->img_size(), + conv->filter_size(), + conv->padding(), + conv->stride(), + true)); + conv->set_output_y(imageSize(conv->img_size_y(), + conv->filter_size_y(), + conv->padding_y(), + conv->stride_y(), + true)); + conv->set_output_z(imageSize(conv->img_size_z(), + conv->filter_size_z(), + conv->padding_z(), + conv->stride_z(), + true)); + config.layerConfig.set_size(conv->output_x() * conv->output_y() * + conv->output_z() * NUM_FILTERS); + conv->set_groups(1); + conv->set_filter_channels(conv->channels() / conv->groups()); + config.inputDefs.push_back( + {INPUT_DATA, + "layer_0", + CHANNELS * IMAGE_SIZE * IMAGE_SIZE_Y * IMAGE_SIZE_Z, + conv->filter_channels() * FILTER_SIZE * FILTER_SIZE_Y * FILTER_SIZE_Z * + NUM_FILTERS}); + + testLayerGrad(config, "deconv3D", 10, trans, useGpu); + // Use small batch_size and useWeight=true to test biasGrad + testLayerGrad(config, "deconv3D", 2, trans, useGpu, true, 0.02); +} + +TEST(Layer, test3DDeConvLayer) { + test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ false); +#ifndef PADDLE_ONLY_CPU + test3DDeConvLayer("deconv3d", /* trans= */ false, /* useGpu= */ true); +#endif +} + TEST(Layer, ScaleShiftLayer) { const size_t batchSize = 16; const size_t size = 32; diff --git a/paddle/gserver/tests/test_SeqSliceLayerGrad.cpp b/paddle/gserver/tests/test_SeqSliceLayerGrad.cpp new file mode 100644 index 0000000000000000000000000000000000000000..e1d4ae16176433b898ba88dd60550e44b4fe37be --- /dev/null +++ b/paddle/gserver/tests/test_SeqSliceLayerGrad.cpp @@ -0,0 +1,225 @@ +/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include "ModelConfig.pb.h" +#include "paddle/gserver/layers/DataLayer.h" +#include "paddle/trainer/Trainer.h" + +#include "LayerGradUtil.h" +#include "paddle/testing/TestUtil.h" + +using namespace paddle; // NOLINT +using namespace std; // NOLINT + +DECLARE_int32(gpu_id); +DECLARE_bool(thread_local_rand_use_global_seed); + +const int MAX_SEQ_NUM = 17; +const int MAX_SEQ_LEN = 23; +const int MAX_BEAM_SIZE = 13; + +const size_t SEED = (size_t)(time(NULL)); + +vector randSampling(real range, int n) { + CHECK_GE(range, n); + vector num(range); + iota(begin(num), end(num), 0.); + if (range == n) return num; + + random_shuffle(begin(num), end(num)); + num.resize(n); + sort(begin(num), end(num)); + return num; +} + +void genSeqInfo(vector& seqStartPos, vector& subSeqStartPos) { + seqStartPos.resize(1, 0); + subSeqStartPos.resize(1, 0); + + srand(SEED); + int seqNum = 1 + (rand() % MAX_SEQ_NUM); + for (int i = 0; i < seqNum; ++i) { + int subSeqNum = 1 + (rand() % MAX_SEQ_NUM); + for (int j = 0; j < subSeqNum; ++j) + subSeqStartPos.push_back(subSeqStartPos.back() + + (1 + (rand() % MAX_SEQ_LEN))); + seqStartPos.push_back(subSeqStartPos.back()); + } +} + +/* + generate start indices according to sequence start positions. + */ +void genStarts(vector& seqStartPos, + vector>& starts, + size_t beamSize) { + starts.clear(); + starts.resize(seqStartPos.size() - 1, vector(beamSize, -1.)); + + for (size_t i = 0; i < seqStartPos.size() - 1; ++i) { + int seqLen = seqStartPos[i + 1] - seqStartPos[i]; + vector randStarts = + randSampling(seqLen, min(seqLen, static_cast(beamSize))); + copy(begin(randStarts), end(randStarts), begin(starts[i])); + } +} + +/* + generate end indices according to sequence start positions and start indices. + */ +void genEnds(vector& seqStartPos, + vector>& starts, + vector>& ends, + size_t beamSize) { + CHECK_EQ(seqStartPos.size() - 1, starts.size()); + ends.clear(); + ends.resize(seqStartPos.size() - 1, vector(beamSize, -1.)); + + for (size_t i = 0; i < starts.size(); ++i) { + for (size_t j = 0; j < starts[i].size(); ++j) { + int seqLen = seqStartPos[i + 1] - seqStartPos[i]; + CHECK_GE(seqLen - 1, starts[i][j]); + if (starts[i][j] == -1.) break; + if (starts[i][j] == (seqLen - 1)) { + ends[i][j] = starts[i][j]; + } else { + ends[i][j] = starts[i][j] + randSampling(seqLen - starts[i][j], 1)[0]; + } + } + } +} + +void genTestData(vector& seqStartPos, + vector& subSeqStartPos, + vector>& starts, + vector>& ends, + bool hasSubseq) { + size_t beamSize = 1 + (rand() % MAX_BEAM_SIZE); + genSeqInfo(seqStartPos, subSeqStartPos); + + genStarts(hasSubseq ? subSeqStartPos : seqStartPos, starts, beamSize); + genEnds(hasSubseq ? subSeqStartPos : seqStartPos, starts, ends, beamSize); +} + +template +void flatten2dVector(vector>& inVec, vector& outVec) { + size_t totalSize{0}; + for (auto const& items : inVec) totalSize += items.size(); + outVec.reserve(totalSize); + + for (auto& items : inVec) + move(items.begin(), items.end(), back_inserter(outVec)); +} + +void testSeqSliceLayer(bool hasSubseq, + bool useGpu, + vector& seqStartPos, + vector& subSeqStartPos, + vector>& starts, + vector>& ends) { + // layer size is not crutial for this layer, + // so here use a small layer size in the unittest. + const size_t layerSize{4}; + TestConfig config; + config.layerConfig.set_type("seq_slice"); + config.layerConfig.set_size(layerSize); + + // add the first input + MatrixPtr seqInputPtr = + Matrix::create(hasSubseq ? subSeqStartPos.back() : seqStartPos.back(), + layerSize, + false, + false); + seqInputPtr->randomizeUniform(); + + if (hasSubseq) { + config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, + "seq_input", + seqInputPtr, + seqStartPos, + subSeqStartPos}); + } else { + config.inputDefs.push_back( + {INPUT_SELF_DEFINE_DATA, "seq_input", seqInputPtr, seqStartPos}); + } + config.layerConfig.add_inputs(); + + // add start indices + if (starts.size()) { + vector startsToVec; + flatten2dVector(starts, startsToVec); + + MatrixPtr startMatrixPtr = + Matrix::create(starts.size(), starts[0].size(), false, false); + startMatrixPtr->copyFrom(startsToVec.data(), startsToVec.size()); + + config.inputDefs.push_back( + {INPUT_SELF_DEFINE_DATA, "starts", startMatrixPtr}); + config.layerConfig.add_inputs(); + config.layerConfig.set_select_first(true); + } + + // add end indices + if (ends.size()) { + vector endsToVec; + flatten2dVector(ends, endsToVec); + + MatrixPtr endMatrixPtr = + Matrix::create(ends.size(), ends[0].size(), false, false); + endMatrixPtr->copyFrom(endsToVec.data(), endsToVec.size()); + + config.inputDefs.push_back({INPUT_SELF_DEFINE_DATA, "ends", endMatrixPtr}); + config.layerConfig.add_inputs(); + config.layerConfig.set_select_first(false); + } + + testLayerGrad(config, "seq_slice", /*batchSize*/ 100, false, useGpu, false); +} + +TEST(Layer, SeqSliceLayer) { + vector seqStartPos; + vector subSeqStartPos; + vector> starts; + vector> ends; + + std::vector mode = {false}; +#ifndef PADDLE_ONLY_CPU + mode.push_back(true); +#endif + genSeqInfo(seqStartPos, subSeqStartPos); + for (bool hasSubseq : {true, false}) { + LOG(INFO) << "hasSubSeq : " << hasSubseq; + genTestData(seqStartPos, subSeqStartPos, starts, ends, hasSubseq); + for (bool useGpu : mode) { + vector> tmp; + testSeqSliceLayer( + hasSubseq, useGpu, seqStartPos, subSeqStartPos, tmp, ends); + testSeqSliceLayer( + hasSubseq, useGpu, seqStartPos, subSeqStartPos, starts, tmp); + testSeqSliceLayer( + hasSubseq, useGpu, seqStartPos, subSeqStartPos, starts, ends); + } + } +} + +int main(int argc, char** argv) { + initMain(argc, argv); + hl_start(); + hl_init(FLAGS_gpu_id); + FLAGS_thread_local_rand_use_global_seed = true; + srand(1); + testing::InitGoogleTest(&argc, argv); + return RUN_ALL_TESTS(); +} diff --git a/paddle/math/Allocator.h b/paddle/math/Allocator.h index 666a8b8368e3e2ebc522902c176d7491d2920d2a..94ef561f066a127496e2849a419835e175c526d7 100644 --- a/paddle/math/Allocator.h +++ b/paddle/math/Allocator.h @@ -48,7 +48,13 @@ public: */ virtual void* alloc(size_t size) { void* ptr; +#ifdef PADDLE_USE_MKLDNN + // refer to https://github.com/01org/mkl-dnn/blob/master/include/mkldnn.hpp + // memory alignment + CHECK_EQ(posix_memalign(&ptr, 4096ul, size), 0); +#else CHECK_EQ(posix_memalign(&ptr, 32ul, size), 0); +#endif CHECK(ptr) << "Fail to allocate CPU memory: size=" << size; return ptr; } diff --git a/paddle/math/CMakeLists.txt b/paddle/math/CMakeLists.txt index bf28092e82b778dc904c5a2e271f76261cf5f6b6..68b5296228cd733dc3cb7ca0f762e0a69187dbff 100644 --- a/paddle/math/CMakeLists.txt +++ b/paddle/math/CMakeLists.txt @@ -14,6 +14,17 @@ # file(GLOB MATH_HEADERS . *.h) file(GLOB MATH_SOURCES . *.cpp) + +if(NOT WITH_MKLDNN) + set(DNN_HEADER "${CMAKE_CURRENT_SOURCE_DIR}/MKLDNNMatrix.h") + set(DNN_SOURCE "${CMAKE_CURRENT_SOURCE_DIR}/MKLDNNMatrix.cpp") + list(REMOVE_ITEM MATH_HEADERS "${DNN_HEADER}") + list(REMOVE_ITEM MATH_SOURCES "${DNN_SOURCE}") + message(STATUS "Skip compiling with MKLDNNMatrix") +else() + message(STATUS "Compile with MKLDNNMatrix") +endif() + set(MATH_SOURCES "${PADDLE_SOURCE_DIR}/paddle/math/BaseMatrix.cu" "${PADDLE_SOURCE_DIR}/paddle/math/TrainingAlgorithmOp.cu" diff --git a/paddle/math/MKLDNNMatrix.cpp b/paddle/math/MKLDNNMatrix.cpp new file mode 100644 index 0000000000000000000000000000000000000000..0a355e2644cce572ce90ecf5c9d2a5b7b395bc61 --- /dev/null +++ b/paddle/math/MKLDNNMatrix.cpp @@ -0,0 +1,144 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLDNNMatrix.h" + +using namespace mkldnn; // NOLINT + +namespace paddle { + +MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m, memory::primitive_desc pd) { + memory::desc md = pd.desc(); + size_t ndims = md.data.ndims; + int* dims = md.data.dims; + CHECK(ndims > 0) << "Input dims should not be empty"; + size_t cnts = 1; + for (size_t i = 0; i < ndims; ++i) { + cnts *= dims[i]; + } + + if (m == nullptr) { + size_t height = dims[0]; + size_t width = cnts / dims[0]; + m = Matrix::create(height, width, false, false); + } + + CHECK(m) << " Matrix should not be empty"; + CpuMatrixPtr cpuMatrix = std::dynamic_pointer_cast(m); + CHECK(cpuMatrix) << "Only support create from CPU matrix yet"; + + CHECK_EQ(cnts, m->getElementCnt()) << "Count size does not match"; + return std::make_shared( + m->getData(), m->getHeight(), m->getWidth(), pd); +} + +MKLDNNMatrixPtr MKLDNNMatrix::create(MatrixPtr m, + memory::dims dims, + memory::format fmt, + engine& eg, + mkldnn::memory::data_type dtype) { + return create(m, memory::primitive_desc(memory::desc(dims, dtype, fmt), eg)); +} + +void MKLDNNMatrix::reorderDataFrom(const MKLDNNMatrixPtr& m, + memory::format srcFmt, + memory::dims targetDim) { + memory::format dstFmt = getFormat(); + if (srcFmt == dstFmt) { + return; + } + CHECK_EQ(getElementCnt(), m->getElementCnt()) << "size should equal"; + reorderOnce(getData(), m->getData(), srcFmt, dstFmt, targetDim); +} + +void MKLDNNMatrix::reorderDataTo(const MKLDNNMatrixPtr& m, + memory::format dstFmt, + memory::dims targetDim) { + memory::format srcFmt = getFormat(); + if (srcFmt == dstFmt) { + return; + } + CHECK_EQ(getElementCnt(), m->getElementCnt()) << "size should equal"; + reorderOnce(getData(), m->getData(), srcFmt, dstFmt, targetDim); +} + +void MKLDNNMatrix::reorderOnce(void* srcData, + void* dstData, + memory::format srcFmt, + memory::format dstFmt, + memory::dims dm) { + CHECK(srcData); + CHECK(dstData); + MatrixPtr tmpSrc; + if (dstData == srcData) { + // inplace data + size_t sz = 1; + for (size_t i = 0; i < dm.size(); ++i) { + sz *= dm[i]; + } + tmpSrc = Matrix::create(sz, 1, false, false); + tmpSrc->copyFrom((real*)srcData, sz); + srcData = tmpSrc->getData(); + } + + auto dtype = this->getDtype(); + auto srcMD = memory::desc(dm, dtype, srcFmt); + auto dstMD = memory::desc(dm, dtype, dstFmt); + + auto eg = this->getEngine(); + auto src = memory(memory::primitive_desc(srcMD, eg), srcData); + auto dst = memory(memory::primitive_desc(dstMD, eg), dstData); + + auto r = reorder(src, dst); + stream(stream::kind::eager).submit({r}).wait(); +} + +void MKLDNNMatrix::downSpatial() { + int fmt = getFormat(); + if (!(fmt == memory::format::nchw || fmt == memory::format::oihw)) { + // only support nchw and oihw yet, later can support more like nhwc, ihwo + return; + } + + // TODO(TJ): change H(height) and W(width) if support nhwc or more + const int H = 2, W = 3; + memory::dims srcDims = getDims(); + if (srcDims[H] != 1 || srcDims[W] != 1) { + // can not down spatial + return; + } + + memory::dims dstDims = memory::dims{srcDims[0], srcDims[1]}; + memory::format dstFmt; + switch (fmt) { + case memory::format::nchw: + dstFmt = memory::format::nc; + break; + case memory::format::oihw: + dstFmt = memory::format::oi; + break; + default: + LOG(FATAL) << "unsupported format"; + } + memory::desc md = memory::desc(dstDims, getDtype(), dstFmt); + memory::primitive_desc pd = memory::primitive_desc(md, getEngine()); + mkldnn_primitive_t result; + mkldnn::error::wrap_c_api( + mkldnn_primitive_create(&result, pd.get(), nullptr, nullptr), + "could not create a memory primitive"); + reset(result); + set_data_handle(getData()); +} + +} // namespace paddle diff --git a/paddle/math/MKLDNNMatrix.h b/paddle/math/MKLDNNMatrix.h new file mode 100644 index 0000000000000000000000000000000000000000..e50f698b495713e6f15ab7a12a7ee7487662040f --- /dev/null +++ b/paddle/math/MKLDNNMatrix.h @@ -0,0 +1,148 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "Matrix.h" +#include "mkldnn.hpp" +#include "paddle/parameter/Parameter.h" + +namespace paddle { + +class MKLDNNMatrix; +typedef std::shared_ptr MKLDNNMatrixPtr; + +/** + * @brief MKLDNN Matrix. + * + */ +class MKLDNNMatrix : public CpuMatrix, public mkldnn::memory { +public: + MKLDNNMatrix(real* data, + size_t height, + size_t width, + mkldnn::memory::primitive_desc pd) + : CpuMatrix(data, height, width, false), mkldnn::memory(pd, data) {} + + ~MKLDNNMatrix() {} + + /** + * Create MKLDNNMatrix from a MatrixPtr and memory primitive_desc + */ + static MKLDNNMatrixPtr create(MatrixPtr m, mkldnn::memory::primitive_desc pd); + + /** + * Create MKLDNNMatrix from a MatrixPtr and memory details info + */ + static MKLDNNMatrixPtr create( + MatrixPtr m, + mkldnn::memory::dims dims, + mkldnn::memory::format fmt, + mkldnn::engine& eg, + mkldnn::memory::data_type dtype = mkldnn::memory::data_type::f32); + +public: + /** + * Reorder this MKLDNNMatrix from other format. + * Support inplace reorder. + * @note: this function would only reorder the data layout. + * will NOT change this original dim or format info + */ + void reorderDataFrom(const MKLDNNMatrixPtr& m, + memory::format srcFmt, + memory::dims targetDim); + + /** + * Reorder this MKLDNNMatrix to other format. + * Support inplace reorder. + * @note: this function would only reorder the data layout. + * will NOT change the dst dim or format info + */ + void reorderDataTo(const MKLDNNMatrixPtr& m, + memory::format dstFmt, + memory::dims targetDim); + + /** + * Dimensionality reduction. + * Change format "nchw --> nc" or "oihw --> oi" if the h and w are both 1 + */ + void downSpatial(); + + /** + * Update the memory data handle. + * Caution: This will not check the buffer size of the data, + * it should be coverd by user. + */ + void updateData(void* data) { set_data_handle(data); } + + /** + * Get primitive descriptor. + */ + mkldnn::memory::primitive_desc getPrimitiveDesc() { + return this->get_primitive_desc(); + } + + /** + * Get memory descriptor. + */ + mkldnn::memory::desc getMemoryDesc() { return getPrimitiveDesc().desc(); } + + /** + * Get dimensions. + */ + mkldnn::memory::dims getDims() { + mkldnn::memory::desc md = getMemoryDesc(); + const int* src = md.data.dims; + int ndims = md.data.ndims; + mkldnn::memory::dims dst; + dst.resize(ndims); + for (int i = 0; i < ndims; ++i) { + dst[i] = src[i]; + } + return dst; + } + + /** + * Get format. + */ + mkldnn::memory::format getFormat() { + return (mkldnn::memory::format)(getMemoryDesc().data.format); + } + + /** + * Get memory data type. + */ + mkldnn::memory::data_type getDtype() { + return (mkldnn::memory::data_type)(getMemoryDesc().data.data_type); + } + + /** + * Get engine. + */ + mkldnn::engine getEngine() { return getPrimitiveDesc().get_engine(); } + +protected: + /** + * Do reorder once. + * Can support inplace. + */ + void reorderOnce(void* srcData, + void* dstData, + memory::format srcFmt, + memory::format dstFmt, + memory::dims dm); +}; + +} // namespace paddle diff --git a/paddle/math/Matrix.cpp b/paddle/math/Matrix.cpp index fbf3accc9a5b89e8ce997dc11f94e46265cf1927..82d598d885bd698f5a36c7b45f1f56c21c2dc915 100644 --- a/paddle/math/Matrix.cpp +++ b/paddle/math/Matrix.cpp @@ -1191,6 +1191,221 @@ void GpuMatrix::avgPoolBackward(Matrix& outGrad, outGrad.getStride()); } +void GpuMatrix::maxPool3DForward(Matrix& inputMat, + Matrix& maxPoolIdx, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + CHECK(inputMat.useGpu_) << "Matrix type are not correct"; + + real* inputData = inputMat.getData(); + real* maxPoolIdxData = maxPoolIdx.getData(); + size_t num = inputMat.getHeight(); + size_t width = imgSizeW; + size_t height = imgSizeH; + size_t depth = imgSizeD; + CHECK(depth * height * width * channels == inputMat.getWidth()); + CHECK(height_ == inputMat.getHeight()); + CHECK(width_ == outputD * outputH * outputW * channels); + + hl_maxpool3D_forward(num, + inputData, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + getData(), + maxPoolIdxData, + getStride()); +} + +void GpuMatrix::maxPool3DBackward(Matrix& outGrad, + Matrix& maxPoolIdx, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + CHECK(outGrad.useGpu_ && maxPoolIdx.useGpu_) << "Matrix type are not equal"; + + real* outDiff = outGrad.getData(); + real* maxPoolIdxData = maxPoolIdx.getData(); + size_t frameNum = getHeight(); + size_t channels = outGrad.getWidth() / outputD / outputH / outputW; + size_t width = imgSizeW; + size_t height = imgSizeH; + size_t depth = imgSizeD; + CHECK(depth * height * width * channels == getWidth()); + CHECK(width_ == depth * width * height * channels); + CHECK(outGrad.getHeight() == maxPoolIdx.getHeight() && + outGrad.getWidth() == maxPoolIdx.getWidth()); + + hl_maxpool3D_backward(frameNum, + outDiff, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + scaleTargets, + scaleOutput, + getData(), + maxPoolIdxData, + outGrad.getStride()); +} + +void GpuMatrix::avgPool3DForward(Matrix& inputMat, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + CHECK(inputMat.useGpu_) << "Matrix type are not equal"; + + real* inputData = inputMat.getData(); + size_t frameNum = inputMat.getHeight(); + size_t height = imgSizeH; + size_t width = imgSizeW; + size_t depth = imgSizeD; + CHECK(depth * height * width * channels == inputMat.getWidth()); + CHECK(height_ == inputMat.getHeight()); + CHECK(width_ == outputD * outputH * outputW * channels); + + hl_avgpool3D_forward(frameNum, + inputData, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + getData(), + getStride()); +} + +void GpuMatrix::avgPool3DBackward(Matrix& outGrad, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + CHECK(outGrad.useGpu_) << "Matrix type are not equal"; + + real* outDiff = outGrad.getData(); + size_t frameNum = outGrad.getHeight(); + size_t channels = outGrad.getWidth() / outputD / outputH / outputW; + size_t height = imgSizeH; + size_t width = imgSizeW; + size_t depth = imgSizeD; + CHECK(depth * height * width * channels == width_); + CHECK(height_ == outGrad.getHeight()); + CHECK(outGrad.getWidth() == outputD * outputH * outputW * channels); + + hl_avgpool3D_backward(frameNum, + outDiff, + channels, + depth, + height, + width, + outputD, + outputH, + outputW, + sizeZ, + sizeY, + sizeX, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + scaleTargets, + scaleOutput, + getData(), + outGrad.getStride()); +} + void GpuMatrix::maxSequenceForward(Matrix& input, const IVector& sequence, IVector& index) { @@ -1390,6 +1605,72 @@ void GpuMatrix::multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label) { output_d, grad_d, mat_d, height_, width_); } +void GpuMatrix::vol2Col(real* dataSrc, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW) { + hl_matrix_vol2Col(dataSrc, + channels, + depth, + height, + width, + filterD, + filterH, + filterW, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + getData()); +} + +void GpuMatrix::col2Vol(real* dataDst, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real alpha, + real beta) { + hl_matrix_col2Vol(dataDst, + channels, + depth, + height, + width, + filterD, + filterH, + filterW, + strideD, + strideH, + strideW, + paddingD, + paddingH, + paddingW, + getData(), + alpha, + beta); +} + /** * CpuMatrix */ @@ -1931,6 +2212,276 @@ void CpuMatrix::avgPoolBackward(Matrix& input, } } +void CpuMatrix::maxPool3DForward(Matrix& inputMat, + Matrix& maxPoolIdx, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + real* inputData = inputMat.getData(); + real* outData = getData(); + real* maxPoolIdxData = maxPoolIdx.getData(); + size_t num = inputMat.getHeight(); + size_t inWidth = imgSizeW; + size_t inHeight = imgSizeH; + size_t inDepth = imgSizeD; + CHECK(inHeight * inWidth * inDepth == inputMat.getWidth() / channels); + CHECK_EQ(num, this->getHeight()); + CHECK_EQ(channels * outputH * outputW * outputD, this->getWidth()); + size_t outStride = getStride(); + + /* initialize the data_ */ + for (size_t i = 0; i < height_; i++) { + for (size_t j = 0; j < width_; j++) { + outData[(i)*outStride + j] = -(real)FLT_MAX; + maxPoolIdxData[(i)*outStride + j] = -1; + } + } + + /* pool max one by one */ + for (size_t n = 0; n < num; ++n) { // frame by frame + if (!isContiguous()) { + outData = getData() + n * outStride; + maxPoolIdxData = maxPoolIdx.getData() + n * outStride; + } + for (size_t c = 0; c < channels; ++c) { // channel by channel + for (size_t pd = 0; pd < outputD; ++pd) { + for (size_t ph = 0; ph < outputH; ++ph) { + for (size_t pw = 0; pw < outputW; ++pw) { + int dstart = pd * strideD - paddingD; + int hstart = ph * strideH - paddingH; + int wstart = pw * strideW - paddingW; + int dend = std::min(dstart + sizeZ, inDepth); + int hend = std::min(hstart + sizeY, inHeight); + int wend = std::min(wstart + sizeX, inWidth); + dstart = std::max(dstart, 0); + hstart = std::max(hstart, 0); + wstart = std::max(wstart, 0); + int maxIdx = -1; + real maxOutData = outData[(pd * outputH + ph) * outputW + pw]; + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + if (maxOutData < + inputData[(d * inHeight + h) * inWidth + w]) { + maxOutData = inputData[(d * inHeight + h) * inWidth + w]; + maxIdx = (d * inHeight + h) * inWidth + w; + } + } + } + } + outData[(pd * outputH + ph) * outputW + pw] = maxOutData; + maxPoolIdxData[(pd * outputH + ph) * outputW + pw] = maxIdx; + } + } + } + // compute offset + inputData += inDepth * inHeight * inWidth; + outData += outputD * outputH * outputW; + maxPoolIdxData += outputD * outputH * outputW; + } + } +} + +void CpuMatrix::maxPool3DBackward(Matrix& outGrad, + Matrix& maxPoolIdx, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + size_t num = getHeight(); + size_t channels = size_t(width_ / imgSizeD / imgSizeH / imgSizeW); + CHECK(maxPoolIdx.getHeight() == outGrad.getHeight() && + maxPoolIdx.getWidth() == outGrad.getWidth()); + + real* tgtGrad = getData(); + real* otGrad = outGrad.getData(); + real* maxPoolIdxData = maxPoolIdx.getData(); + size_t outStride = outGrad.getStride(); + + for (size_t n = 0; n < num; ++n) { + if (!outGrad.isContiguous()) { + otGrad = outGrad.getData() + n * outStride; + maxPoolIdxData = maxPoolIdx.getData() + n * outStride; + } + for (size_t c = 0; c < channels; ++c) { + for (size_t pd = 0; pd < outputD; ++pd) { + for (size_t ph = 0; ph < outputH; ++ph) { + for (size_t pw = 0; pw < outputW; ++pw) { + const size_t index = (pd * outputH + ph) * outputW + pw; + const size_t tgtIdx = static_cast(maxPoolIdxData[index]); + tgtGrad[tgtIdx] = + scaleTargets * tgtGrad[tgtIdx] + scaleOutput * otGrad[index]; + } + } + } + // offset + tgtGrad += imgSizeD * imgSizeH * imgSizeW; + otGrad += outputD * outputH * outputW; + maxPoolIdxData += outputD * outputH * outputW; + } + } +} + +void CpuMatrix::avgPool3DForward(Matrix& input, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + // The main loop + size_t num = input.getHeight(); + size_t inDepth = imgSizeD; + size_t inHeight = imgSizeH; + size_t inWidth = imgSizeW; + CHECK(inDepth * inHeight * inWidth * channels == input.getWidth()); + CHECK(outputD * outputH * outputW * channels * num == height_ * width_); + real* tgtData = getData(); + real* inData = input.getData(); + + for (size_t n = 0; n < num; ++n) { + if (!isContiguous()) { + tgtData = data_ + n * getStride(); + } + for (size_t c = 0; c < channels; ++c) { + for (size_t pd = 0; pd < outputD; ++pd) { + for (size_t ph = 0; ph < outputH; ++ph) { + for (size_t pw = 0; pw < outputW; ++pw) { + int dstart = pd * strideD - paddingD; + int hstart = ph * strideH - paddingH; + int wstart = pw * strideW - paddingW; + int dend = std::min(dstart + sizeZ, inDepth + paddingD); + int hend = std::min(hstart + sizeY, inHeight + paddingH); + int wend = std::min(wstart + sizeX, inWidth + paddingW); + int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart); + dstart = std::max(dstart, 0); + hstart = std::max(hstart, 0); + wstart = std::max(wstart, 0); + dend = std::min(dend, static_cast(inDepth)); + hend = std::min(hend, static_cast(inHeight)); + wend = std::min(wend, static_cast(inWidth)); + + CHECK(poolSize); + tgtData[(pd * outputH + ph) * outputW + pw] = 0; // clear + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + tgtData[(pd * outputH + ph) * outputW + pw] += + inData[(d * inHeight + h) * inWidth + w]; + } + } + } + tgtData[(pd * outputH + ph) * outputW + pw] /= poolSize; + } + } + } + // compute offset + inData += inDepth * inHeight * inWidth; + tgtData += outputD * outputH * outputW; + } + } +} + +void CpuMatrix::avgPool3DBackward(Matrix& input, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + size_t num = input.getHeight(); + size_t channels = input.getWidth() / outputD / outputH / outputW; + CHECK(imgSizeD * imgSizeH * imgSizeW * channels == getWidth()); + real* inData = input.getData(); + real* outData = getData(); + + for (size_t n = 0; n < num; ++n) { + if (!input.isContiguous()) { + inData = input.getData() + n * input.getStride(); + } + for (size_t c = 0; c < channels; ++c) { + for (size_t pd = 0; pd < outputD; ++pd) { + for (size_t ph = 0; ph < outputH; ++ph) { + for (size_t pw = 0; pw < outputW; ++pw) { + int dstart = pd * strideD - paddingD; + int hstart = ph * strideH - paddingH; + int wstart = pw * strideW - paddingW; + int dend = std::min(dstart + sizeZ, imgSizeD + paddingD); + int hend = std::min(hstart + sizeY, imgSizeH + paddingH); + int wend = std::min(wstart + sizeX, imgSizeW + paddingW); + int poolSize = (dend - dstart) * (hend - hstart) * (wend - wstart); + dstart = std::max(dstart, 0); + hstart = std::max(hstart, 0); + wstart = std::max(wstart, 0); + dend = std::min(dend, static_cast(imgSizeD)); + hend = std::min(hend, static_cast(imgSizeH)); + wend = std::min(wend, static_cast(imgSizeW)); + CHECK(poolSize); + for (int d = dstart; d < dend; ++d) { + for (int h = hstart; h < hend; ++h) { + for (int w = wstart; w < wend; ++w) { + outData[(d * imgSizeH + h) * imgSizeW + w] += + inData[(pd * outputH + ph) * outputW + pw] / poolSize; + } + } + } + } + } + } + // offset + outData += imgSizeD * imgSizeH * imgSizeW; + inData += outputD * outputH * outputW; + } + } +} + /** * Input: one or more sequences. Each sequence contains some instances. * Output: output size is the number of input sequences (NOT input instances). @@ -3981,6 +4532,95 @@ void CpuMatrix::bilinearBackward(const Matrix& out, } } +void CpuMatrix::vol2Col(real* data, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW) { + real* outData = getData(); + int outHeight = (height + 2 * paddingH - filterH) / strideH + 1; + int outWidth = (width + 2 * paddingW - filterW) / strideW + 1; + int outDepth = (depth + 2 * paddingD - filterD) / strideD + 1; + + int channelsCol = channels * filterD * filterH * filterW; + for (int c = 0; c < channelsCol; ++c) { + int wOffset = c % filterW; + int hOffset = (c / filterW) % filterH; + int dOffset = (c / filterW / filterH) % filterD; + int cIn = c / filterW / filterH / filterD; + for (int d = 0; d < outDepth; ++d) { + for (int h = 0; h < outHeight; ++h) { + for (int w = 0; w < outWidth; ++w) { + int dPad = d * strideD - paddingD + dOffset; + int hPad = h * strideH - paddingH + hOffset; + int wPad = w * strideW - paddingW + wOffset; + + if (hPad >= 0 && hPad < height && wPad >= 0 && wPad < width && + dPad >= 0 && dPad < depth) + outData[((c * outDepth + d) * outHeight + h) * outWidth + w] = + data[((cIn * depth + dPad) * height + hPad) * width + wPad]; + else + outData[((c * outDepth + d) * outHeight + h) * outWidth + w] = 0; + } + } + } + } +} + +void CpuMatrix::col2Vol(real* trg, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real alpha, + real beta) { + real* src = getData(); + int outDepth = (depth + 2 * paddingD - filterD) / strideD + 1; + int outHeight = (height + 2 * paddingH - filterH) / strideH + 1; + int outWidth = (width + 2 * paddingW - filterW) / strideW + 1; + int channelsCol = channels * filterD * filterH * filterW; + for (int c = 0; c < channelsCol; ++c) { + int wOffset = c % filterW; + int hOffset = (c / filterW) % filterH; + int dOffset = (c / filterW / filterH) % filterD; + int cIm = c / filterW / filterH / filterD; + for (int d = 0; d < outDepth; ++d) { + for (int h = 0; h < outHeight; ++h) { + for (int w = 0; w < outWidth; ++w) { + int dPad = d * strideD - paddingD + dOffset; + int hPad = h * strideH - paddingH + hOffset; + int wPad = w * strideW - paddingW + wOffset; + if (hPad >= 0 && hPad < height && wPad >= 0 && wPad < width && + dPad >= 0 && dPad < depth) + trg[((cIm * depth + dPad) * height + hPad) * width + wPad] = + alpha * + src[((c * outDepth + d) * outHeight + h) * outWidth + w] + + beta * + trg[((cIm * depth + dPad) * height + hPad) * width + wPad]; + } + } + } + } +} + //////////////////////////////////////////////////////////////// // functions executed via cpu // //////////////////////////////////////////////////////////////// diff --git a/paddle/math/Matrix.h b/paddle/math/Matrix.h index bb802bbb2c75289a45d987b22ad41ce8b1e95c98..431d4e071072317c8fdfdc4f0d13e7cd4e3d062b 100644 --- a/paddle/math/Matrix.h +++ b/paddle/math/Matrix.h @@ -928,15 +928,102 @@ public: size_t paddingW) { LOG(FATAL) << "Not implemeted"; } - /** - * Input: one or more sequences. Each sequence contains some instances. - * - * Output: output size is the number of input sequences (NOT input - * instances). - * - * output[i] is set to max_input[i]. + * Pooling 3D forward operation, pick out the largest element + * in the sizeX of value */ + virtual void maxPool3DForward(Matrix& inputMat, + Matrix& maxPoolIdx, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + LOG(FATAL) << "Not implemeted"; + } + + virtual void maxPool3DBackward(Matrix& outGrad, + Matrix& maxPoolIdx, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + LOG(FATAL) << "Not implemeted"; + } + + virtual void avgPool3DForward(Matrix& input, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW) { + LOG(FATAL) << "Not implemeted"; + } + + virtual void avgPool3DBackward(Matrix& input, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput) { + LOG(FATAL) << "Not implemeted"; + } + + /** + * Input: one or more sequences. Each sequence contains some instances. + * + * Output: output size is the number of input sequences (NOT input + * instances). + * + * output[i] is set to max_input[i]. + */ virtual void maxSequenceForward(Matrix& input, const IVector& sequence, IVector& index) { @@ -1039,6 +1126,42 @@ public: LOG(FATAL) << "Not implemented"; } + virtual void vol2Col(real* data, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW) { + LOG(FATAL) << "Not implemeted"; + } + + virtual void col2Vol(real* trg, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real alpha, + real beta) { + LOG(FATAL) << "Not implemeted"; + } + virtual void bilinearForward(const Matrix& in, const size_t inImgH, const size_t inImgW, @@ -1348,6 +1471,82 @@ public: size_t paddingH, size_t paddingW); + void maxPool3DForward(Matrix& inputMat, + Matrix& maxPoolIdx, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW); + + void maxPool3DBackward(Matrix& outGrad, + Matrix& maxPoolIdx, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput); + + void avgPool3DForward(Matrix& input, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW); + + void avgPool3DBackward(Matrix& input, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput); + void maxSequenceForward(Matrix& input, const IVector& sequence, IVector& index); @@ -1374,6 +1573,38 @@ public: const real ratioH, const real ratioW); + void vol2Col(real* data, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW); + + void col2Vol(real* trg, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real alpha, + real beta); + void multiBinaryLabelCrossEntropy(Matrix& output, Matrix& label); void multiBinaryLabelCrossEntropyBp(Matrix& output, Matrix& label); @@ -1507,6 +1738,82 @@ public: size_t paddingH, size_t paddingW); + void maxPool3DForward(Matrix& inputMat, + Matrix& maxPoolIdx, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW); + + void maxPool3DBackward(Matrix& outGrad, + Matrix& maxPoolIdx, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput); + + void avgPool3DForward(Matrix& input, + size_t channels, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW); + + void avgPool3DBackward(Matrix& input, + size_t imgSizeD, + size_t imgSizeH, + size_t imgSizeW, + size_t outputD, + size_t outputH, + size_t outputW, + size_t sizeZ, + size_t sizeY, + size_t sizeX, + size_t strideD, + size_t strideH, + size_t strideW, + size_t paddingD, + size_t paddingH, + size_t paddingW, + real scaleTargets, + real scaleOutput); + void maxSequenceForward(Matrix& input, const IVector& sequence, IVector& index); @@ -1715,6 +2022,38 @@ public: const real ratioH, const real ratioW); + void vol2Col(real* data, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW); + + void col2Vol(real* trg, + int channels, + int depth, + int height, + int width, + int filterD, + int filterH, + int filterW, + int strideD, + int strideH, + int strideW, + int paddingD, + int paddingH, + int paddingW, + real alpha, + real beta); + template void operator=(const ExpressionType& expr) { TensorCpuApply(*this, expr); diff --git a/paddle/math/tests/test_matrixCompare.cpp b/paddle/math/tests/test_matrixCompare.cpp index d77478f345df97b37b214b5978f51ce47c1d791c..103f06acc57d7a23f019f5e713f6cacf2179e9e0 100644 --- a/paddle/math/tests/test_matrixCompare.cpp +++ b/paddle/math/tests/test_matrixCompare.cpp @@ -18,6 +18,7 @@ limitations under the License. */ #include #include "TensorCheck.h" +#include "paddle/math/MathUtils.h" #include "paddle/math/Matrix.h" #include "paddle/math/SparseMatrix.h" #include "paddle/testing/TestUtil.h" @@ -1203,4 +1204,497 @@ TEST(Matrix, warpCTC) { } } +void testMaxPool3DFwdBwd(int numSamples, + int channels, + int imgSizeD, + int imgSizeH, + int imgSizeW, + int ksizeD, + int ksizeH, + int ksizeW, + int strideD, + int strideH, + int strideW, + int padD, + int padH, + int padW) { + int outD = outputSize(imgSizeD, ksizeD, padD, strideD, true); + int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true); + int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true); + + int inWidth = channels * imgSizeD * imgSizeH * imgSizeW; + MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false); + MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true); + + int outWidth = channels * outD * outH * outW; + MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false); + MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true); + MatrixPtr maxIdx = CpuMatrix::create(numSamples, outWidth, false, false); + MatrixPtr maxIdxGpu = GpuMatrix::create(numSamples, outWidth, false, true); + + input->randomizeUniform(); + target->randomizeUniform(); + inputGpu->copyFrom(*input); + targetGpu->copyFrom(*target); + + target->maxPool3DForward(*input, + *maxIdx, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW); + targetGpu->maxPool3DForward(*inputGpu, + *maxIdxGpu, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW); + MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false); + targetCheck->copyFrom(*targetGpu); + checkMatrixEqual(target, targetCheck); + + MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false); + MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true); + MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false); + MatrixPtr targetGpuGrad = + GpuMatrix::create(numSamples, outWidth, false, true); + + inputGrad->randomizeUniform(); + targetGrad->randomizeUniform(); + inputGpuGrad->copyFrom(*inputGrad); + targetGpuGrad->copyFrom(*targetGrad); + + inputGrad->maxPool3DBackward(*targetGrad, + *maxIdx, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW, + 1.0, + 1.0); + inputGpuGrad->maxPool3DBackward(*targetGpuGrad, + *maxIdxGpu, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW, + 1.0, + 1.0); + MatrixPtr targetBwdCheck = + CpuMatrix::create(numSamples, inWidth, false, false); + targetBwdCheck->copyFrom(*inputGpuGrad); + checkMatrixEqual(inputGrad, targetBwdCheck); +} + +void testAvgPool3DFwdBwd(int numSamples, + int channels, + int imgSizeD, + int imgSizeH, + int imgSizeW, + int ksizeD, + int ksizeH, + int ksizeW, + int strideD, + int strideH, + int strideW, + int padD, + int padH, + int padW) { + int outD = outputSize(imgSizeD, ksizeD, padD, strideD, true); + int outH = outputSize(imgSizeH, ksizeH, padH, strideH, true); + int outW = outputSize(imgSizeW, ksizeW, padW, strideW, true); + + int inWidth = imgSizeD * imgSizeH * imgSizeW * channels; + MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false); + MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true); + + int outWidth = channels * outD * outH * outW; + MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false); + MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true); + + input->randomizeUniform(); + target->randomizeUniform(); + inputGpu->copyFrom(*input); + targetGpu->copyFrom(*target); + + target->avgPool3DForward(*input, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW); + + targetGpu->avgPool3DForward(*inputGpu, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW); + + TensorCheckErr(*target, *targetGpu); + + MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false); + MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true); + MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false); + MatrixPtr targetGpuGrad = + GpuMatrix::create(numSamples, outWidth, false, true); + + inputGrad->randomizeUniform(); + targetGrad->randomizeUniform(); + inputGpuGrad->copyFrom(*inputGrad); + targetGpuGrad->copyFrom(*targetGrad); + + inputGrad->avgPool3DBackward(*targetGrad, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW, + 1.0, + 1.0); + + inputGpuGrad->avgPool3DBackward(*targetGpuGrad, + imgSizeD, + imgSizeH, + imgSizeW, + outD, + outH, + outW, + ksizeD, + ksizeH, + ksizeW, + strideD, + strideH, + strideW, + padD, + padH, + padW, + 1.0, + 1.0); + TensorCheckErr(*inputGrad, *inputGpuGrad); +} + +// TODO(yi): I noticed many such blindly combinatorial tests in this +// file. They are no help to locate defects at all. +TEST(Matrix, Pool3DFwdBwd) { + for (auto numSamples : {1, 3}) { + for (auto channels : {3}) { + for (auto imgSizeD : {9, 16}) { + for (auto imgSizeH : {9, 32}) { + for (auto imgSizeW : {9, 32}) { + for (auto sizeX : {3}) { + for (auto sizeY : {3}) { + for (auto sizeZ : {3}) { + for (auto sD : {2}) { + for (auto sH : {2}) { + for (auto sW : {2}) { + for (auto pD : {0, (sizeZ - 1) / 2}) { + for (auto pH : {0, (sizeY - 1) / 2}) { + for (auto pW : {0, (sizeX - 1) / 2}) { + VLOG(3) << " numSamples=" << numSamples + << " channels=" << channels + << " imgSizeD=" << imgSizeD + << " imgSizeH=" << imgSizeH + << " imgSizeW=" << imgSizeW + << " sizeX=" << sizeX + << " sizeY=" << sizeY + << " sizeZ=" << sizeZ << " strideD=" << sD + << " strideH=" << sH << " strideW=" << sW + << " padingD=" << pD << " padingH=" << pH + << " padingW=" << pW; + + testMaxPool3DFwdBwd(numSamples, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + sizeX, + sizeY, + sizeZ, + sD, + sH, + sW, + pD, + pH, + pW); + testAvgPool3DFwdBwd(numSamples, + channels, + imgSizeD, + imgSizeH, + imgSizeW, + sizeX, + sizeY, + sizeZ, + sD, + sH, + sW, + pD, + pH, + pW); + } + } + } + } + } + } + } + } + } + } + } + } + } + } + + // for (auto numSamples : {1, 3}) { + // for (auto channels : {1, 3}) { + // for (auto imgSizeD : {9,16}) { + // for (auto imgSizeH : {9, 32}) { + // for (auto imgSizeW : {9, 32}) { + // for (auto sizeX : {2, 3}) { + // for (auto sizeY : {2, 3}) { + // for (auto sizeZ : {2,3}){ + // for (auto sD : {1, 2}) { + // for (auto sH : {1, 2}) { + // for (auto sW : {1, 2}) { + // for (auto pD : {0, (sizeZ - 1) / 2}){ + // for (auto pH : {0, (sizeY - 1) / 2}) { + // for (auto pW : {0, (sizeX - 1) / 2}) { + // VLOG(3) << " numSamples=" << numSamples + // << " channels=" << channels + // << " imgSizeD=" << imgSizeD + // << " imgSizeH=" << imgSizeH + // << " imgSizeW=" << imgSizeW + // << " sizeX=" << sizeX + // << " sizeY=" << sizeY + // << " sizeZ=" << sizeZ + // << " strideD=" << sD + // << " strideH=" << sH + // << " strideW=" << sW + // << " padingD=" << pD + // << " padingH=" << pH + // << " padingW=" << pW; + // + // testMaxPool3DFwdBwd(numSamples, + // channels, + // imgSizeD, + // imgSizeH, + // imgSizeW, + // sizeX, + // sizeY, + // sizeZ, + // sD, + // sH, + // sW, + // pD, + // pH, + // pW); + // testAvgPool3DFwdBwd(numSamples, + // channels, + // imgSizeD, + // imgSizeH, + // imgSizeW, + // sizeX, + // sizeY, + // sizeZ, + // sD, + // sH, + // sW, + // pD, + // pH, + // pW); + // } + // } + // } + // } + // } + // } + // } + // } + // } + // } + // } + // } + // } + // } +} + +void testMatrixCol2Vol(int depth, int height, int width) { + int channel = 3; + int filterX = 3, filterY = 4, filterZ = 5; + int strideX = 2, strideY = 2, strideZ = 2; + int padX = 1, padY = 1, padZ = 1; + + MatrixPtr cpuImage = + std::make_shared(channel, depth * height * width); + MatrixPtr gpuImage = + std::make_shared(channel, depth * height * width); + cpuImage->randomizeUniform(); + gpuImage->copyFrom(*cpuImage); + + int outD = outputSize(depth, filterZ, padZ, strideZ, true); + int outH = outputSize(height, filterY, padY, strideY, true); + int outW = outputSize(width, filterX, padX, strideX, true); + + int colBufHeight = channel * filterZ * filterY * filterX; + int colBufWidth = outD * outH * outW; + MatrixPtr cpuColBuf = std::make_shared(colBufHeight, colBufWidth); + MatrixPtr gpuColBuf = std::make_shared(colBufHeight, colBufWidth); + cpuColBuf->vol2Col(cpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX); + gpuColBuf->vol2Col(gpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX); + TensorCheckEqual(*cpuColBuf, *gpuColBuf); + + cpuColBuf->randomizeUniform(); + gpuColBuf->copyFrom(*cpuColBuf); + cpuColBuf->col2Vol(cpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX, + 1.0, + 1.0); + gpuColBuf->col2Vol(gpuImage->getData(), + channel, + depth, + height, + width, + filterZ, + filterY, + filterX, + strideZ, + strideY, + strideX, + padZ, + padY, + padX, + 1.0, + 1.0); + TensorCheckErr(*cpuImage, *gpuImage); +} + +TEST(Matrix, col2Vol) { + for (auto depth : {9, 16, 64}) { + for (auto height : {9, 11, 128}) { + for (auto width : {9, 32, 128}) { + VLOG(3) << "depth=" << depth << " height=" << height + << " width=" << width; + testMatrixCol2Vol(depth, height, width); + } + } + } +} + #endif diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index a7c89787e43df6173791bc54b3faffc034867f7d..f0fd12f1b5276d033ea086c60c80616fb1be7585 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -42,9 +42,12 @@ function(op_library TARGET) endfunction() add_subdirectory(math) + cc_test(gather_test SRCS gather_test.cc DEPS tensor) +op_library(gather_op SRCS gather_op.cc gather_op.cu) cc_test(scatter_test SRCS scatter_test.cc DEPS tensor) +op_library(scatter_op SRCS scatter_op.cc scatter_op.cu) cc_library(net_op SRCS net_op.cc DEPS op_registry) cc_test(net_op_test SRCS net_op_test.cc DEPS net_op) @@ -66,5 +69,7 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu) op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc DEPS framework_proto tensor op_registry operator net_op) -op_library(uniform_random_op - SRCS uniform_random_op.cc uniform_random_op.cu) +op_library(uniform_random_op SRCS uniform_random_op.cc uniform_random_op.cu) +op_library(lookup_table_op SRCS lookup_table_op.cc lookup_table_op.cu) +op_library(scale_op SRCS scale_op.cc scale_op.cu DEPS net_op) +op_library(minus_op SRCS minus_op.cc minus_op.cu DEPS scale_op) diff --git a/paddle/operators/fill_zeros_like_op.h b/paddle/operators/fill_zeros_like_op.h index fd380ca8514b0ac50f39613368a4836bd485668b..969998ce2eae02b8ad057c6259703e51559bf98a 100644 --- a/paddle/operators/fill_zeros_like_op.h +++ b/paddle/operators/fill_zeros_like_op.h @@ -26,7 +26,7 @@ class FillZerosLikeKernel : public framework::OpKernel { auto* output = context.Output("Dst"); output->mutable_data(context.GetPlace()); auto t = framework::EigenVector::Flatten(*output); - t.device(context.GetEigenDevice()) = t.constant(T(0)); + t.device(context.GetEigenDevice()) = t.constant(static_cast(0)); } }; diff --git a/paddle/operators/gather.h b/paddle/operators/gather.h index d6e6990394e46ba06c4bacfe33ca522f3ff1413a..92fb51ec17709bc6f8abb2f516a9240fb5dc3a77 100644 --- a/paddle/operators/gather.h +++ b/paddle/operators/gather.h @@ -17,6 +17,7 @@ limitations under the License. */ #include #include "paddle/framework/ddim.h" +#include "paddle/framework/eigen.h" #include "paddle/framework/tensor.h" #include "paddle/platform/place.h" @@ -25,13 +26,13 @@ namespace operators { // Implementation of CPU copy template -void CPUGather(const T* params, const int* indices, const int slice_size, +void CPUGather(const T* src, const int* indices, const int slice_size, const int index_size, T* output) { const size_t slice_bytes = slice_size * sizeof(T); for (int i = 0; i < index_size; ++i) { int index_ = indices[i]; - memcpy(output + i * slice_size, params + index_ * slice_size, slice_bytes); + memcpy(output + i * slice_size, src + index_ * slice_size, slice_bytes); } } @@ -55,7 +56,7 @@ void Gather(const platform::Place& place, const paddle::framework::Tensor* src, int index_size = index->dims()[0]; auto src_dims = src->dims(); - paddle::framework::DDim output_dims(src_dims); + framework::DDim output_dims(src_dims); output_dims[0] = index_size; // slice size diff --git a/paddle/operators/gather_op.cc b/paddle/operators/gather_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..123bed296c462c30bddd3bfbd530098fdbfe4856 --- /dev/null +++ b/paddle/operators/gather_op.cc @@ -0,0 +1,72 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/gather_op.h" +#include "paddle/framework/ddim.h" + +namespace paddle { +namespace operators { + +class GatherOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + int batch_size = ctx.Input("Index")->dims()[0]; + PADDLE_ENFORCE_GE(batch_size, 0, "Batch size must be >0"); + framework::DDim output_dims(ctx.Input("X")->dims()); + output_dims[0] = batch_size; + ctx.Output("Out")->Resize(output_dims); + } +}; + +class GatherGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto X_grad = ctx.Output(framework::GradVarName("X")); + auto X = ctx.Input("X"); + + X_grad->Resize(X->dims()); + } +}; + +class GatherOpMaker : public framework::OpProtoAndCheckerMaker { + public: + GatherOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The source input of gather op"); + AddInput("Index", "The index input of gather op"); + AddOutput("Out", "The output of add op"); + AddComment(R"DOC( +Gather Operator by selecting from the first axis, + +Out = X[Index] +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(gather, ops::GatherOp, ops::GatherOpMaker, gather_grad, + ops::GatherGradOp); +REGISTER_OP_CPU_KERNEL(gather, + ops::GatherOpKernel); +REGISTER_OP_CPU_KERNEL( + gather_grad, + ops::GatherGradientOpKernel); diff --git a/paddle/operators/gather_op.cu b/paddle/operators/gather_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..3f04a7b3f8142106917975cd1e0413fa1633a298 --- /dev/null +++ b/paddle/operators/gather_op.cu @@ -0,0 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/gather_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(gather, + ops::GatherOpKernel); diff --git a/paddle/operators/gather_op.h b/paddle/operators/gather_op.h new file mode 100644 index 0000000000000000000000000000000000000000..381854f301870beadb72d9e9b4eb17ff199960fb --- /dev/null +++ b/paddle/operators/gather_op.h @@ -0,0 +1,53 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "gather.h" +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "scatter.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class GatherOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + auto *X = ctx.Input("X"); + auto *Index = ctx.Input("Index"); + auto *Y = ctx.Output("Out"); + + Y->mutable_data(ctx.GetPlace()); + Gather(ctx.GetPlace(), X, Index, Y); + } +}; + +template +class GatherGradientOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + auto *Index = ctx.Input("Index"); + auto *dX = ctx.Output(framework::GradVarName("X")); + auto *dO = ctx.Input(framework::GradVarName("Out")); + + dX->mutable_data(ctx.GetPlace()); + ScatterUpdate(ctx.GetPlace(), dO, Index, dX); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/lookup_table_op.cc b/paddle/operators/lookup_table_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..94d40890a765413e88a35a6ad995ca97ac84dcda --- /dev/null +++ b/paddle/operators/lookup_table_op.cc @@ -0,0 +1,72 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/lookup_table_op.h" + +namespace paddle { +namespace operators { + +class LookupTableOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &context) const override { + auto table_t = context.Input("W"); + auto ids_t = context.Input("Ids"); + auto output_t = context.Output("Out"); + + output_t->Resize({ids_t->dims()[0], table_t->dims()[1]}); + } +}; + +class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker { + public: + LookupTableOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("W", + "An input represents embedding tensors," + " which is a learnable parameter."); + AddInput("Ids", + "An input with type int32 or int64" + "contains the ids to be looked up in W."); + AddOutput("Out", "The lookup results, which have the same type with W."); + AddComment( + "This operator is used to perform lookups on the parameter W," + "then concatenated into a dense tensor."); + } +}; + +class LookupTableOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &context) const override { + auto table = context.Input("W"); + auto d_table = context.Output(framework::GradVarName("W")); + d_table->Resize(table->dims()); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(lookup_table, ops::LookupTableOp, ops::LookupTableOpMaker, + lookup_table_grad, ops::LookupTableOpGrad); + +REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel); +REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel); diff --git a/paddle/operators/lookup_table_op.cu b/paddle/operators/lookup_table_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..27eee3436af8107cef2aa3577ea238be49edf1af --- /dev/null +++ b/paddle/operators/lookup_table_op.cu @@ -0,0 +1,116 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "paddle/platform/assert.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +__global__ void LookupTable(T* output, const T* table, const int32_t* ids, + const int N, const int K, const int D) { + int idx = threadIdx.x; + int idy = blockIdx.x + threadIdx.y * GridDimX; + + while (idy < K) { + int id = ids[idy]; + PADDLE_ASSERT(id >= 0); + PADDLE_ASSERT(id < N); + T* out = output + idy * D; + const T* tab = table + id * D; + for (int i = idx; i < D; i += BlockDimX) { + out[i] = tab[i]; + } + idy += BlockDimY * GridDimX; + } +} + +template +__global__ void LookupTableGrad(T* table, const T* output, const int32_t* ids, + const int N, const int K, const int D) { + int idx = threadIdx.x; + int idy = blockIdx.x + threadIdx.y * GridDimX; + + while (idy < K) { + int id = ids[idy]; + PADDLE_ASSERT(id >= 0); + PADDLE_ASSERT(id < N); + const T* out = output + idy * D; + T* tab = table + id * D; + for (int i = idx; i < D; i += BlockDimX) { + paddle::platform::CudaAtomicAdd(&tab[i], out[i]); + } + idy += BlockDimY * GridDimX; + } +} + +template +class LookupTableCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto table_t = context.Input("W"); + auto ids_t = context.Input("Ids"); + auto output_t = context.Output("Out"); + + size_t N = table_t->dims()[0]; + size_t D = table_t->dims()[1]; + size_t K = product(ids_t->dims()); + auto ids = ids_t->data(); + auto table = table_t->data(); + auto output = output_t->mutable_data(context.GetPlace()); + + dim3 threads(128, 8); + dim3 grids(8, 1); + LookupTable<<>>(output, table, ids, N, K, D); + } +}; + +template +class LookupTableGradCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto ids_t = context.Input("Ids"); + auto d_output_t = context.Input(framework::GradVarName("Out")); + auto d_table_t = context.Output(framework::GradVarName("W")); + + int N = d_table_t->dims()[0]; + int D = d_table_t->dims()[1]; + int K = product(ids_t->dims()); + const int32_t* ids = ids_t->data(); + const T* d_output = d_output_t->data(); + T* d_table = d_table_t->mutable_data(context.GetPlace()); + + auto t = framework::EigenVector::Flatten(*d_table_t); + t.device(context.GetEigenDevice()) = + t.constant(static_cast(0)); + + dim3 threads(128, 8); + dim3 grids(8, 1); + LookupTableGrad<<>>(d_table, d_output, ids, N, + K, D); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(lookup_table, ops::LookupTableCUDAKernel); +REGISTER_OP_GPU_KERNEL(lookup_table_grad, + ops::LookupTableGradCUDAKernel); diff --git a/paddle/operators/lookup_table_op.h b/paddle/operators/lookup_table_op.h new file mode 100644 index 0000000000000000000000000000000000000000..4da8079b91624c3510cae89fd599a7035a4c7477 --- /dev/null +++ b/paddle/operators/lookup_table_op.h @@ -0,0 +1,75 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class LookupTableKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto table_t = context.Input("W"); // float tensor + auto ids_t = context.Input("Ids"); // int tensor + auto output_t = context.Output("Out"); // float tensor + + size_t N = table_t->dims()[0]; + size_t D = table_t->dims()[1]; + auto ids = ids_t->data(); + auto table = table_t->data(); + auto output = output_t->mutable_data(context.GetPlace()); + for (size_t i = 0; i < product(ids_t->dims()); ++i) { + PADDLE_ENFORCE_LT(ids[i], N); + PADDLE_ENFORCE_GE(ids[i], 0); + memcpy(output + i * D, table + ids[i] * D, D * sizeof(T)); + } + } +}; + +template +class LookupTableGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto ids_t = context.Input("Ids"); + auto d_output_t = context.Input(framework::GradVarName("Out")); + auto d_table_t = context.Output(framework::GradVarName("W")); + + size_t N = d_table_t->dims()[0]; + size_t D = d_table_t->dims()[1]; + auto ids = ids_t->data(); + const T* d_output = d_output_t->data(); + T* d_table = d_table_t->mutable_data(context.GetPlace()); + + auto t = framework::EigenVector::Flatten(*d_table_t); + t.device(context.GetEigenDevice()) = + t.constant(static_cast(0)); + + for (size_t i = 0; i < product(ids_t->dims()); ++i) { + PADDLE_ENFORCE_LT(ids[i], N); + PADDLE_ENFORCE_GE(ids[i], 0); + for (size_t j = 0; j < D; ++j) { + d_table[ids[i] * D + j] += d_output[i * D + j]; + } + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/minus_op.cc b/paddle/operators/minus_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..1eee9644babbdfac68821ca774845ad8ebbd5aee --- /dev/null +++ b/paddle/operators/minus_op.cc @@ -0,0 +1,87 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/minus_op.h" +#include "paddle/operators/net_op.h" + +namespace paddle { +namespace operators { + +class MinusOp : public framework::OperatorWithKernel { + public: + MinusOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto *left_tensor = ctx.Input("X"); + auto *right_tensor = ctx.Input("Y"); + + PADDLE_ENFORCE_EQ( + framework::product(left_tensor->dims()), + framework::product(right_tensor->dims()), + "Minus operator must take two tensor with same num of elements"); + ctx.Output("Out")->Resize(left_tensor->dims()); + } +}; + +class MinusOpMaker : public framework::OpProtoAndCheckerMaker { + public: + MinusOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The left tensor of minus operator.").NotInGradient(); + AddInput("Y", "The right tensor of minus operator.").NotInGradient(); + AddOutput("Out", "The output tensor of minus operator.").NotInGradient(); + + AddComment(R"DOC(Minus Operator + +Equation: Out = X - Y +)DOC"); + } +}; +template +class MinusGradOp : public NetOp { + public: + MinusGradOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : NetOp(type, inputs, outputs, attrs) { + auto out_grad = Input(framework::GradVarName("Out")); + auto x_grad = Output(framework::GradVarName("X")); + auto y_grad = Output(framework::GradVarName("Y")); + + // x_grad = out_grad + AppendOp(framework::OpRegistry::CreateOp("identity", {{"X", {out_grad}}}, + {{"Out", {x_grad}}}, {})); + + framework::AttributeMap scale_attr; + scale_attr["scale"] = static_cast(-1); + AppendOp(framework::OpRegistry::CreateOp("scale", {{"X", {out_grad}}}, + {{"Out", {y_grad}}}, scale_attr)); + CompleteAddOp(false); + } +}; + +} // namespace operators +} // namespace paddle + +USE_OP(scale); +USE_OP_ITSELF(identity); +namespace ops = paddle::operators; +REGISTER_OP(minus, ops::MinusOp, ops::MinusOpMaker, minus_grad, + ops::MinusGradOp); +REGISTER_OP_CPU_KERNEL(minus, + ops::MinusKernel); diff --git a/paddle/operators/minus_op.cu b/paddle/operators/minus_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..a8375cc6301b2c1a917299c3933b03226bb72907 --- /dev/null +++ b/paddle/operators/minus_op.cu @@ -0,0 +1,18 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/minus_op.h" + +REGISTER_OP_GPU_KERNEL( + minus, paddle::operators::MinusKernel); diff --git a/paddle/operators/minus_op.h b/paddle/operators/minus_op.h new file mode 100644 index 0000000000000000000000000000000000000000..6310a4fd5141516cff4fc7acbe1d17913a1b5506 --- /dev/null +++ b/paddle/operators/minus_op.h @@ -0,0 +1,39 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class MinusKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* left_tensor = context.Input("X"); + auto* right_tensor = context.Input("Y"); + auto* out_tensor = context.Output("Out"); + + out_tensor->mutable_data(context.GetPlace()); + auto& dev = context.GetEigenDevice(); + framework::EigenVector::Flatten(*out_tensor).device(dev) = + framework::EigenVector::Flatten(*left_tensor) - + framework::EigenVector::Flatten(*right_tensor); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/net_op.cc b/paddle/operators/net_op.cc index a7d710511093dfbe13a13b1222b0230bba0398bd..78b5e2767842312722fac3509e843a05fe194559 100644 --- a/paddle/operators/net_op.cc +++ b/paddle/operators/net_op.cc @@ -31,10 +31,13 @@ void NetOp::CompleteAddOp(bool calc) { for (auto& op : ops_) { for (auto& ipt : op->Inputs()) { for (auto& var_name : ipt.second) { - if (!Contains(output_set, var_name)) { // Not other op's output - input_set.insert(var_name); - } else { + // If input variable has been in output set, then it will be + // added into intermediate_outputs_. Otherwise, it will be + // added into input set. + if (Contains(output_set, var_name)) { intermediate_outputs_.insert(var_name); + } else { + input_set.insert(var_name); } } } @@ -68,10 +71,15 @@ std::string NetOp::DebugString() const { bool NetOp::IsNetOp() const { return true; } std::vector NetOp::OutputVars(bool has_intermediate) const { + std::vector all; + for (auto& pair : this->outputs_) { + for (auto& var_name : pair.second) { + all.push_back(var_name); + } + } if (has_intermediate) { - return this->outputs_.at(kAll); + return all; } - auto& all = this->outputs_.at(kAll); std::vector ret_val; for (auto& each : all) { if (!Contains(intermediate_outputs_, each)) { @@ -81,9 +89,8 @@ std::vector NetOp::OutputVars(bool has_intermediate) const { return ret_val; } -NetOp::NetOp(const std::string& type, - const framework::OperatorBase::VarNameMap& inputs, - const framework::OperatorBase::VarNameMap& outputs, +NetOp::NetOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : framework::OperatorBase(type, inputs, outputs, attrs) {} diff --git a/paddle/operators/net_op.h b/paddle/operators/net_op.h index 3d3f996ef52b6c1136425ca9de0f60e7e155458f..fcd8134b2c19cae6a4d006a4cd6fe32d2d627c34 100644 --- a/paddle/operators/net_op.h +++ b/paddle/operators/net_op.h @@ -38,8 +38,10 @@ class NetOp : public framework::OperatorBase { public: static const char kAll[]; NetOp() : framework::OperatorBase("plain_net", {}, {}, {}) {} - NetOp(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const framework::AttributeMap& attrs); + + NetOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs); NetOp(const NetOp& o) : framework::OperatorBase(o.type_, {}, {}, o.attrs_) { this->ops_.reserve(o.ops_.size()); diff --git a/paddle/operators/net_op_test.cc b/paddle/operators/net_op_test.cc index 99019754a965e5e7aeb74c6bfc10c9646289651b..f2e98ee7a1e14ee739abba01e97608845ce557f4 100644 --- a/paddle/operators/net_op_test.cc +++ b/paddle/operators/net_op_test.cc @@ -79,7 +79,7 @@ TEST(NetOp, Clone) { ASSERT_NE(new_net_op, nullptr); ASSERT_TRUE(new_net_op->IsNetOp()); auto* new_net = static_cast(new_net_op.get()); - ASSERT_EQ(2, new_net->ops_.size()); + ASSERT_EQ(2UL, new_net->ops_.size()); ASSERT_EQ(new_net->ops_[0]->Type(), "empty"); ASSERT_EQ(new_net->ops_[1]->Type(), "empty2"); } diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index 78ce0ba3c0fa4fe380e49a848c2434fe593cd00b..16bd249cb3d989c695ec9378f09d48833d70be58 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -131,8 +131,8 @@ const rnn::ArgumentName RecurrentGradientOp::kArgName{ "memories", "pre_memories", "boot_memories@grad"}; RecurrentOp::RecurrentOp(const std::string& type, - const framework::OperatorBase::VarNameMap& inputs, - const framework::OperatorBase::VarNameMap& outputs, + const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) { rnn::InitArgument(kArgName, &arg_, *this); @@ -223,8 +223,8 @@ void RecurrentGradientAlgorithm::InferShape(const Scope& scope) const { } RecurrentGradientOp::RecurrentGradientOp( - const std::string& type, const framework::OperatorBase::VarNameMap& inputs, - const framework::OperatorBase::VarNameMap& outputs, + const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs) : OperatorBase(type, inputs, outputs, attrs) { rnn::InitArgument(kArgName, &arg_, *this); diff --git a/paddle/operators/recurrent_op.h b/paddle/operators/recurrent_op.h index bcfa817de8242153b164fa091309f19a6ad8a246..1033d657a3a8f96c8b3dae8dd93d3f1f6840b59b 100644 --- a/paddle/operators/recurrent_op.h +++ b/paddle/operators/recurrent_op.h @@ -114,8 +114,9 @@ class RecurrentGradientAlgorithm { class RecurrentOp : public framework::OperatorBase { public: - RecurrentOp(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, const framework::AttributeMap& attrs); + RecurrentOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs); RecurrentOp(const RecurrentOp& o) : framework::OperatorBase( @@ -150,8 +151,9 @@ class RecurrentOp : public framework::OperatorBase { class RecurrentGradientOp : public framework::OperatorBase { public: - RecurrentGradientOp(const std::string& type, const VarNameMap& inputs, - const VarNameMap& outputs, + RecurrentGradientOp(const std::string& type, + const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, const framework::AttributeMap& attrs); RecurrentGradientOp(const RecurrentGradientOp& o) diff --git a/paddle/operators/rowwise_add_op.cu b/paddle/operators/rowwise_add_op.cu index cbc61ad3e117fc79a674ca21831d3fec59d1ec5b..4a57f64c890ce99d6060faec6a4a01b107403344 100644 --- a/paddle/operators/rowwise_add_op.cu +++ b/paddle/operators/rowwise_add_op.cu @@ -18,3 +18,6 @@ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL( rowwise_add, ops::RowwiseAddKernel); +REGISTER_OP_GPU_KERNEL( + rowwise_add_grad, + ops::RowwiseAddGradKernel); diff --git a/paddle/operators/scale_op.cc b/paddle/operators/scale_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..8e96a74c94ab7ff4d8c3266695e5157aff67905b --- /dev/null +++ b/paddle/operators/scale_op.cc @@ -0,0 +1,105 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/scale_op.h" +#include "paddle/operators/net_op.h" + +namespace paddle { +namespace operators { + +class ScaleOp : public framework::OperatorWithKernel { + public: + ScaleOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto *in = ctx.Input("X"); + auto *out = ctx.Output("Out"); + out->Resize(in->dims()); + } +}; + +template +class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "The input tensor of scale operator.").NotInGradient(); + AddOutput("Out", "The output tensor of scale operator.").NotInGradient(); + AddComment(R"DOC(Scale operator + +The equation is: Out = scale*X +)DOC"); + AddAttr("scale", "scale of scale operator.").SetDefault(1.0); + } +}; + +// Identity Op's gradient is identity op, too. +// Grad(Out=scale(X)) => Grad(X) = scale(Grad(Out)) +template +class ScaleGradOp : public NetOp { + public: + ScaleGradOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : NetOp(type, inputs, outputs, attrs) { + AppendOp(framework::OpRegistry::CreateOp( + "scale", {{"X", {Input(framework::GradVarName("Out"))}}}, + {{"Out", {Output(framework::GradVarName("X"))}}}, + {{"scale", GetAttr("scale")}})); + CompleteAddOp(false); + } +}; + +// identity is a alias of scale op. This is also a example for creating a alias +// operator. +template +class IdentityOpMaker : public framework::OpProtoAndCheckerMaker { + public: + IdentityOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "input tensor of identity op"); + AddOutput("Out", "output tensor of identity op"); + AddComment("identity operator. Just a alias of scale op which scale = 1.0"); + } +}; + +template +class IdentityOp : public NetOp { + public: + IdentityOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : NetOp(type, inputs, outputs, attrs) { + AppendOp(framework::OpRegistry::CreateOp( + "scale", {{"X", {Input("X")}}}, {{"Out", {Output("Out")}}}, + {{"scale", static_cast(1)}})); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OP(scale, ops::ScaleOp, ops::ScaleOpMaker, scale_grad, + ops::ScaleGradOp); +REGISTER_OP_CPU_KERNEL(scale, + ops::ScaleKernel); +REGISTER_OP_WITHOUT_GRADIENT(identity, ops::IdentityOp, + ops::IdentityOpMaker); diff --git a/paddle/operators/scale_op.cu b/paddle/operators/scale_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..63efbe0da8a90dd237d2d692076075339179acf6 --- /dev/null +++ b/paddle/operators/scale_op.cu @@ -0,0 +1,18 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/scale_op.h" + +REGISTER_OP_GPU_KERNEL( + scale, paddle::operators::ScaleKernel); diff --git a/paddle/operators/scale_op.h b/paddle/operators/scale_op.h new file mode 100644 index 0000000000000000000000000000000000000000..aea64f1b0428ffe79ba8d90cf79dbfd2b5ef36f4 --- /dev/null +++ b/paddle/operators/scale_op.h @@ -0,0 +1,40 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once + +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { +template +class ScaleKernel : public framework::OpKernel { + public: + virtual void Compute(const framework::ExecutionContext& context) const { + auto* tensor = context.Output("Out"); + auto* in = context.Input("X"); + tensor->mutable_data(in->place()); + + auto scale = static_cast(context.op_.GetAttr("scale")); + + auto eigen_out = framework::EigenVector::Flatten(*tensor); + auto eigen_in = framework::EigenVector::Flatten(*in); + auto& dev = context.GetEigenDevice(); + eigen_out.device(dev) = scale * eigen_in; + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/scatter_op.cc b/paddle/operators/scatter_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..f901edefa22dc9a252e87116df756d04767a7162 --- /dev/null +++ b/paddle/operators/scatter_op.cc @@ -0,0 +1,86 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/scatter_op.h" +#include "paddle/framework/ddim.h" + +namespace paddle { +namespace operators { + +class ScatterOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + PADDLE_ENFORCE_EQ(ctx.Input("Index")->dims().size(), 1, + "Update Index should be 1-D."); + PADDLE_ENFORCE_EQ(ctx.Input("Ref")->dims().size(), + ctx.Input("Updates")->dims().size(), + "Reference and Updates should have the same shape size"); + PADDLE_ENFORCE_EQ(ctx.Input("Updates")->dims()[0], + ctx.Input("Index")->dims()[0], + "Updates and Index should have same batch-size."); + framework::DDim data_dim(ctx.Input("Updates")->dims()); + for (int i = 1; i < data_dim.size(); ++i) + PADDLE_ENFORCE_EQ(data_dim[i], ctx.Input("Updates")->dims()[i]); + ctx.Output("Out")->Resize(ctx.Input("Ref")->dims()); + } +}; + +class ScatterGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + protected: + void InferShape(const framework::InferShapeContext &ctx) const override { + auto *dUpdates = ctx.Output(framework::GradVarName("Updates")); + auto *Updates = ctx.Input("Updates"); + auto *dRef = ctx.Output(framework::GradVarName("Ref")); + auto *Ref = ctx.Input("Ref"); + + dRef->Resize(Ref->dims()); + dUpdates->Resize(Updates->dims()); + } +}; + +class ScatterOpMaker : public framework::OpProtoAndCheckerMaker { + public: + ScatterOpMaker(framework::OpProto *proto, + framework::OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Ref", "The source input of scatter op"); + AddInput("Index", + "The index input of scatter op where Ref will be updated"); + AddInput("Updates", "The updated value of updates op"); + AddOutput("Out", "The output of add op"); + AddComment(R"DOC( +Scatter Operator by selecting from the first axis, + +Out = Ref +Out[Index] = Ref[Index] + Updates +)DOC"); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(scatter, ops::ScatterOp, ops::ScatterOpMaker, scatter_grad, + ops::ScatterGradOp); +REGISTER_OP_CPU_KERNEL(scatter, + ops::ScatterOpKernel); +REGISTER_OP_CPU_KERNEL( + scatter_grad, + ops::ScatterGradientOpKernel); diff --git a/paddle/operators/scatter_op.cu b/paddle/operators/scatter_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..6716b478833ff3adb6112cdb1ee25b7f1744ea1f --- /dev/null +++ b/paddle/operators/scatter_op.cu @@ -0,0 +1,20 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/scatter_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_GPU_KERNEL(scatter, + ops::ScatterOpKernel); diff --git a/paddle/operators/scatter_op.h b/paddle/operators/scatter_op.h new file mode 100644 index 0000000000000000000000000000000000000000..e9595638a86a4a4536ddad4e6f20fd80a54b1608 --- /dev/null +++ b/paddle/operators/scatter_op.h @@ -0,0 +1,60 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "gather.h" +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" +#include "scatter.h" + +namespace paddle { +namespace operators { + +using Tensor = framework::Tensor; + +template +class ScatterOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + auto *Ref = ctx.Input("Ref"); + auto *Index = ctx.Input("Index"); + auto *Updates = ctx.Input("Updates"); + auto *Out = ctx.Output("Out"); + + // In place output: Out = Ref, Out[Index] += Updates + Out->ShareDataWith(*Ref); + // Apply ScatterUpdate: Out[index] += Updates[:] + ScatterUpdate(ctx.GetPlace(), Updates, Index, Out); + } +}; + +template +class ScatterGradientOpKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &ctx) const override { + auto *dRef = ctx.Output(framework::GradVarName("Ref")); + auto *dUpdates = ctx.Output(framework::GradVarName("Updates")); + auto *Index = ctx.Input("Index"); + auto *dOut = ctx.Input(framework::GradVarName("Out")); + + // In place gradient: dRef = dO + dRef->ShareDataWith(*dOut); + dUpdates->mutable_data(ctx.GetPlace()); + // Gradient by Gather: dUpdates += dO[Index] + Gather(ctx.GetPlace(), dOut, Index, dUpdates); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/parameter/Argument.cpp b/paddle/parameter/Argument.cpp index 0547ac93cd183afbcede41d280c6b4b16ed7dab1..8dbef0b22e7b2f14c62586f86e686356b6e9c68e 100644 --- a/paddle/parameter/Argument.cpp +++ b/paddle/parameter/Argument.cpp @@ -186,6 +186,7 @@ void Argument::resizeAndCopyFrom(const Argument& src, resizeAndCopy(strs, src.strs, useGpu, stream); frameWidth = src.frameWidth; frameHeight = src.frameHeight; + frameDepth = src.frameDepth; } int32_t Argument::resizeAndCopyFrom(const Argument& src, @@ -206,6 +207,7 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src, dataId = src.dataId; frameWidth = src.frameWidth; frameHeight = src.frameHeight; + frameDepth = src.frameDepth; if (!src.sequenceStartPositions) { // non-sequence input, copy samples directly @@ -276,17 +278,21 @@ int32_t Argument::resizeAndCopyFrom(const Argument& src, void Argument::concat(const std::vector& args, const std::vector& selectRows, const std::vector& seqStartPos, + const std::vector& copySize, bool useGpu, hl_stream_t stream, PassType passType) { CHECK(!subSequenceStartPositions) << "undefined behavior for subsequence positions"; - size_t batchSize = selectRows.size(); + size_t batchSize = 0; + for (size_t i = 0; i < copySize.size(); ++i) + batchSize += copySize[i] * (seqStartPos[i + 1] - seqStartPos[i]); + auto copyArg = [batchSize, stream](MatrixPtr& dst, MatrixPtr src, - int startRow, - int pos, + int desStartRow, + int srcStartRow, int size, bool useGpu) { if (!src) { @@ -300,14 +306,14 @@ void Argument::concat(const std::vector& args, dst->resize(batchSize, width); } - MatrixPtr tmpMatrix = dst->subMatrix(startRow, size); - tmpMatrix->copyFrom(*src->subMatrix(pos, size), stream); + MatrixPtr tmpMatrix = dst->subMatrix(desStartRow, size); + tmpMatrix->copyFrom(*src->subMatrix(srcStartRow, size), stream); }; auto copyIds = [batchSize, stream](IVectorPtr& dst, const IVectorPtr& src, - int startRow, - int pos, + int desStartRow, + int srcStartRow, int size, bool useGpu) { if (!src) { @@ -315,13 +321,14 @@ void Argument::concat(const std::vector& args, return; } IVector::resizeOrCreate(dst, batchSize, useGpu); - dst->subVec(startRow, size)->copyFrom(*src->subVec(pos, size), stream); + dst->subVec(desStartRow, size) + ->copyFrom(*src->subVec(srcStartRow, size), stream); }; auto copyStrs = [batchSize, stream](SVectorPtr& dst, const SVectorPtr& src, - int startRow, - int pos, + int desStartRow, + int srcStartRow, int size, bool useGpu) { if (!src) { @@ -333,30 +340,31 @@ void Argument::concat(const std::vector& args, } else { dst->resize(batchSize); } - std::copy( - src->begin() + pos, src->begin() + pos + size, dst->begin() + startRow); + std::copy(src->begin() + srcStartRow, + src->begin() + srcStartRow + size, + dst->begin() + desStartRow); }; dataId = args[0].dataId; CHECK_NE(seqStartPos.size(), 0UL); - size_t sampleNum = seqStartPos.size() - 1; - for (size_t i = 0; i < sampleNum; ++i) { + int desStartRow = 0; + for (size_t i = 0; i < copySize.size(); ++i) { int startPos = seqStartPos[i]; int endPos = seqStartPos[i + 1]; CHECK_GE(args.size(), static_cast(endPos - startPos)); for (int j = startPos; j < endPos; ++j) { const Argument& arg = args[j - startPos]; - CHECK_EQ(arg.dataId, dataId) << "Arguments in concat should have" - << " same dataId"; - const int copySize = 1; - const int rowIdx = selectRows[j]; - copyArg(in, arg.in, j, rowIdx, copySize, useGpu); - copyArg(value, arg.value, j, rowIdx, copySize, useGpu); + CHECK_EQ(arg.dataId, dataId) << "Arguments to concatenate should have " + << "the same dataId."; + const int srcStartRow = selectRows[j]; + copyArg(in, arg.in, desStartRow, srcStartRow, copySize[i], useGpu); + copyArg(value, arg.value, desStartRow, srcStartRow, copySize[i], useGpu); if (passType != PASS_TEST) { - copyArg(grad, arg.grad, j, rowIdx, copySize, useGpu); + copyArg(grad, arg.grad, desStartRow, srcStartRow, copySize[i], useGpu); } - copyIds(ids, arg.ids, j, rowIdx, copySize, useGpu); - copyStrs(strs, arg.strs, j, rowIdx, copySize, useGpu); + copyIds(ids, arg.ids, desStartRow, srcStartRow, copySize[i], useGpu); + copyStrs(strs, arg.strs, desStartRow, srcStartRow, copySize[i], useGpu); + desStartRow += copySize[i]; } } ICpuGpuVector::resizeOrCreate( @@ -670,19 +678,29 @@ void Argument::reorganizeSeqInfo( const ICpuGpuVectorPtr seqStartPos, const ICpuGpuVectorPtr subSeqStartPos, std::vector>& reorganizedSeqInfo) { - int* seqStarts = seqStartPos->getMutableData(false); - int* subSeqStarts = subSeqStartPos->getMutableData(false); + CHECK(seqStartPos); + reorganizedSeqInfo.clear(); int seqNum = seqStartPos->getSize() - 1; - reorganizedSeqInfo.resize(seqNum, std::vector()); - int seqIdx = 0; - for (size_t i = 0; i < subSeqStartPos->getSize(); ++i) { - reorganizedSeqInfo[seqIdx].push_back(subSeqStarts[i]); - if (subSeqStarts[i] == seqStarts[seqIdx + 1]) { - seqIdx++; - if (seqIdx == seqNum) return; + int* seqStarts = seqStartPos->getMutableData(false); + + if (subSeqStartPos) { + int* subSeqStarts = subSeqStartPos->getMutableData(false); + reorganizedSeqInfo.resize(seqNum, std::vector()); + int seqIdx = 0; + for (size_t i = 0; i < subSeqStartPos->getSize(); ++i) { reorganizedSeqInfo[seqIdx].push_back(subSeqStarts[i]); + if (subSeqStarts[i] == seqStarts[seqIdx + 1]) { + seqIdx++; + if (seqIdx == seqNum) return; + reorganizedSeqInfo[seqIdx].push_back(subSeqStarts[i]); + } } + } else { + reorganizedSeqInfo.resize(1, std::vector(seqNum + 1, 0)); + memcpy(reorganizedSeqInfo[0].data(), + seqStarts, + sizeof(int) * seqStartPos->getSize()); } } diff --git a/paddle/parameter/Argument.h b/paddle/parameter/Argument.h index d8d7a4398f99a2794c5d25528a7d582f5ed629ba..7b59199dded5b3f5d030e389d8bfcac1668fd127 100644 --- a/paddle/parameter/Argument.h +++ b/paddle/parameter/Argument.h @@ -1,11 +1,8 @@ /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. - Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at - http://www.apache.org/licenses/LICENSE-2.0 - Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @@ -35,6 +32,7 @@ struct Argument { strs(nullptr), frameHeight(0), frameWidth(0), + frameDepth(0), sequenceStartPositions(nullptr), subSequenceStartPositions(nullptr), cpuSequenceDims(nullptr), @@ -64,6 +62,7 @@ struct Argument { allCount = argument.allCount; frameHeight = argument.frameHeight; frameWidth = argument.frameWidth; + frameDepth = argument.frameDepth; dataId = argument.dataId; } @@ -76,6 +75,7 @@ struct Argument { // A dataBatch includes batchSize frames, one frame maybe not only vector size_t frameHeight; size_t frameWidth; + size_t frameDepth; // If NULL, each position is treated independently. // Otherwise, its size should be #NumberOfSequences + 1. @@ -136,8 +136,10 @@ struct Argument { } size_t getFrameHeight() const { return frameHeight; } size_t getFrameWidth() const { return frameWidth; } + size_t getFrameDepth() const { return frameDepth; } void setFrameHeight(size_t h) { frameHeight = h; } void setFrameWidth(size_t w) { frameWidth = w; } + void setFrameDepth(size_t d) { frameDepth = d; } int64_t getNumSequences() const { return sequenceStartPositions ? sequenceStartPositions->getSize() - 1 @@ -240,6 +242,7 @@ struct Argument { void concat(const std::vector& args, const std::vector& selectRows, const std::vector& seqStartPos, + const std::vector& copySize, bool useGpu, hl_stream_t stream, PassType passType); diff --git a/paddle/parameter/Parameter.h b/paddle/parameter/Parameter.h index 321f4275d8e68d7d3fbbc19acf0afacf689474e5..04f12efaac15a21ef54ae71074b6d474e2b66c04 100644 --- a/paddle/parameter/Parameter.h +++ b/paddle/parameter/Parameter.h @@ -281,7 +281,11 @@ public: /** * @brief Set the format in header. */ - void setHeaderFormat(int32_t fmt) { headerFormat_ = fmt; } + void setHeaderFormat(int32_t fmt) { + CHECK(isHeaderFormatSupported(fmt)) << "Unsupported format version: " + << fmt; + headerFormat_ = fmt; + } /** * @brief Parameter Update Hook. diff --git a/paddle/platform/cuda_helper.h b/paddle/platform/cuda_helper.h new file mode 100644 index 0000000000000000000000000000000000000000..6feec0d7f8bd5d32d9e5eedee962fcbeff655f1c --- /dev/null +++ b/paddle/platform/cuda_helper.h @@ -0,0 +1,51 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include + +namespace paddle { +namespace platform { + +#define CUDA_ATOMIC_WRAPPER(op, T) \ + __device__ __forceinline__ T CudaAtomic##op(T* address, const T val) + +#define USE_CUDA_ATOMIC(op, T) \ + CUDA_ATOMIC_WRAPPER(op, T) { return atomic##op(address, val); } + +// For atomicAdd. +USE_CUDA_ATOMIC(Add, float); + +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 600 +USE_CUDA_ATOMIC(Add, double); +#else +CUDA_ATOMIC_WRAPPER(Add, double) { + unsigned long long int* address_as_ull = + reinterpret_cast(address); + unsigned long long int old = *address_as_ull, assumed; + + do { + assumed = old; + old = atomicCAS(address_as_ull, assumed, + __double_as_longlong(val + __longlong_as_double(assumed))); + + // Note: uses integer comparison to avoid hang in case of NaN + } while (assumed != old); + + return __longlong_as_double(old); +} +#endif + +} // namespace platform +} // namespace paddle diff --git a/paddle/pserver/LightNetwork.cpp b/paddle/pserver/LightNetwork.cpp index 8616fd2d5aef666f16533fe062f3f40a7a2b202d..4203f2616456244df616ee2109436ab7caef9741 100644 --- a/paddle/pserver/LightNetwork.cpp +++ b/paddle/pserver/LightNetwork.cpp @@ -22,7 +22,6 @@ limitations under the License. */ #include #include -#include #include #include diff --git a/paddle/pybind/CMakeLists.txt b/paddle/pybind/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..37e186a408ff5f560b5878e3e51ea81ca5810bc7 --- /dev/null +++ b/paddle/pybind/CMakeLists.txt @@ -0,0 +1,22 @@ +if(WITH_PYTHON) +cc_library(paddle_pybind SHARED + SRCS pybind.cc + DEPS pybind python backward + sgd_op + gather_op + scatter_op + add_op + mul_op + rowwise_add_op + sigmoid_op + softmax_op + mean_op + cross_entropy_op + recurrent_op + uniform_random_op + gaussian_random_op + fill_zeros_like_op + lookup_table_op + scale_op + minus_op) +endif(WITH_PYTHON) diff --git a/paddle/framework/pybind.cc b/paddle/pybind/pybind.cc similarity index 91% rename from paddle/framework/pybind.cc rename to paddle/pybind/pybind.cc index de119e9e062bffa5e95929671c69001047772cf3..3bc150ccb7af2885439cc2344aa0db9ba3b1ca03 100644 --- a/paddle/framework/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -18,11 +18,11 @@ limitations under the License. */ #include "paddle/framework/backward.h" #include "paddle/framework/op_registry.h" -#include "paddle/framework/tensor_py.h" #include "paddle/operators/net_op.h" #include "paddle/operators/recurrent_op.h" #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" +#include "paddle/pybind/tensor_py.h" #include "paddle/string/to_string.h" #include "pybind11/numpy.h" #include "pybind11/pybind11.h" @@ -42,6 +42,12 @@ USE_OP(fill_zeros_like); USE_OP_ITSELF(recurrent_op); USE_OP(gaussian_random); USE_OP(uniform_random); +USE_OP(lookup_table); +USE_OP(scale); +USE_OP_ITSELF(identity); +USE_OP(minus); +USE_CPU_ONLY_OP(gather); +USE_CPU_ONLY_OP(scatter); namespace paddle { namespace framework { @@ -131,26 +137,24 @@ All parameter, weight, gradient are variables in Paddle. py::return_value_policy::reference) .def("find_var", &Scope::FindVar, py::return_value_policy::reference) .def(py::init<>()) - .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); }, + .def("new_scope", + [](Scope &self) -> Scope * { return &self.NewScope(); }, py::return_value_policy::reference) .def("drop_kids", &Scope::DropKids); //! @note: Be careful! PyBind will return std::string as an unicode, not //! Python str. If you want a str object, you should cast them in Python. m.def("get_all_op_protos", []() -> std::vector { - auto &op_info_map = OpRegistry::op_info_map(); std::vector ret_values; - for (auto it = op_info_map.begin(); it != op_info_map.end(); ++it) { - const OpProto *proto = it->second.proto_; - if (proto == nullptr) { - continue; - } - PADDLE_ENFORCE(proto->IsInitialized(), "OpProto must all be initialized"); + + OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type, + const OpInfo &info) { + if (!info.HasOpProtoAndChecker()) return; std::string str; - PADDLE_ENFORCE(proto->SerializeToString(&str), + PADDLE_ENFORCE(info.Proto().SerializeToString(&str), "Serialize OpProto Error. This could be a bug of Paddle."); - ret_values.push_back(py::bytes(str)); - } + ret_values.emplace_back(str); + }); return ret_values; }); m.def_submodule( @@ -222,8 +226,10 @@ All parameter, weight, gradient are variables in Paddle. retv->SetType("plain_net"); return retv; }) - .def("append_op", [](operators::NetOp &self, - const OperatorBase &op) { self.AppendOp(op); }) + .def("append_op", + [](operators::NetOp &self, const OperatorBase &op) { + self.AppendOp(op); + }) .def("complete_add_op", &operators::NetOp::CompleteAddOp) .def("complete_add_op", [](std::shared_ptr &self) { self->CompleteAddOp(); @@ -243,10 +249,9 @@ All parameter, weight, gradient are variables in Paddle. auto rnn_op = OpRegistry::CreateOp(desc); return static_cast(rnn_op.release()); }) - .def("set_stepnet", [](operators::RecurrentOp &self, - const operators::NetOp &net) -> void { - self.set_stepnet(net.Clone()); - }); + .def("set_stepnet", + [](operators::RecurrentOp &self, const operators::NetOp &net) + -> void { self.set_stepnet(net.Clone()); }); m.def("unique_integer", UniqueIntegerGenerator); diff --git a/paddle/framework/tensor_py.h b/paddle/pybind/tensor_py.h similarity index 92% rename from paddle/framework/tensor_py.h rename to paddle/pybind/tensor_py.h index 4e1ab77b157fe1adaeac55c271c056236f2d40de..39ba60b4dc7ebe3f39a0aa4023b34540b340a841 100644 --- a/paddle/framework/tensor_py.h +++ b/paddle/pybind/tensor_py.h @@ -63,8 +63,11 @@ struct CastToPyBufferImpl { } return py::buffer_info( dst_tensor.mutable_data(dst_tensor.holder_->place()), - sizeof(CUR_TYPE), py::format_descriptor::format(), - (size_t)framework::arity(dst_tensor.dims()), dims_outside, strides); + sizeof(CUR_TYPE), + py::format_descriptor::format(), + (size_t)framework::arity(dst_tensor.dims()), + dims_outside, + strides); } else { constexpr bool less = I + 1 < std::tuple_size>::value; return CastToPyBufferImpl()(tensor); @@ -107,8 +110,8 @@ void PyCUDATensorSetFromArray( self.Resize(framework::make_ddim(dims)); auto *dst = self.mutable_data(place); - paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(), - cudaMemcpyHostToDevice); + paddle::platform::GpuMemcpySync( + dst, array.data(), sizeof(T) * array.size(), cudaMemcpyHostToDevice); } #endif diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index 2941662f349baf57d1fe8188e88ce21d5de07750..17986420220fec173bbf3ecff240d4c504f8adbd 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -38,7 +38,7 @@ Configuring cmake in /paddle/build ... -DWITH_SWIG_PY=${WITH_SWIG_PY:-ON} -DCUDNN_ROOT=/usr/ -DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF} - -DWITH_TESTING=${WITH_TESTING:-OFF} + -DWITH_TESTING=${WITH_TESTING:-ON} -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ======================================== EOF @@ -56,19 +56,18 @@ cmake .. \ -DWITH_C_API=${WITH_C_API:-OFF} \ -DWITH_PYTHON=${WITH_PYTHON:-ON} \ -DCUDNN_ROOT=/usr/ \ - -DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-OFF} \ - -DWITH_TESTING=${WITH_TESTING:-OFF} \ + -DWITH_STYLE_CHECK=${WITH_STYLE_CHECK:-ON} \ + -DWITH_TESTING=${WITH_TESTING:-ON} \ -DCMAKE_EXPORT_COMPILE_COMMANDS=ON cat </dev/null || true -mkdir -p /paddle/build_android -cd /paddle/build_android +BUILD_ROOT=/paddle/build_android +DEST_ROOT=/paddle/install -THIRD_PARTY_PATH=/paddle/third_party_android/$ANDROID_ABI +rm -rf $BUILD_ROOT 2>/dev/null || true +mkdir -p $BUILD_ROOT +cd $BUILD_ROOT + +THIRD_PARTY_PATH=/paddle/third_party_android$SUFFIX/$ANDROID_ABI if [ $ANDROID_ABI == "armeabi-v7a" ]; then cmake -DCMAKE_SYSTEM_NAME=Android \ @@ -18,7 +21,7 @@ if [ $ANDROID_ABI == "armeabi-v7a" ]; then -DCMAKE_CXX_COMPILER=$ANDROID_ARM_STANDALONE_TOOLCHAIN/bin/arm-linux-androideabi-clang++ \ -DHOST_C_COMPILER=/usr/bin/gcc \ -DHOST_CXX_COMPILER=/usr/bin/g++ \ - -DCMAKE_INSTALL_PREFIX=/paddle/install \ + -DCMAKE_INSTALL_PREFIX=$DEST_ROOT \ -DTHIRD_PARTY_PATH=$THIRD_PARTY_PATH \ -DCMAKE_BUILD_TYPE=Release \ -DUSE_EIGEN_FOR_BLAS=ON \ @@ -35,9 +38,10 @@ elif [ $ANDROID_ABI == "arm64-v8a" ]; then -DCMAKE_CXX_COMPILER=$ANDROID_ARM64_STANDALONE_TOOLCHAIN/bin/aarch64-linux-android-clang++ \ -DHOST_C_COMPILER=/usr/bin/gcc \ -DHOST_CXX_COMPILER=/usr/bin/g++ \ - -DCMAKE_INSTALL_PREFIX=/paddle/install \ + -DCMAKE_INSTALL_PREFIX=$DEST_ROOT \ -DTHIRD_PARTY_PATH=$THIRD_PARTY_PATH \ -DCMAKE_BUILD_TYPE=Release \ + -DUSE_EIGEN_FOR_BLAS=OFF \ -DWITH_C_API=ON \ -DWITH_SWIG_PY=OFF \ .. @@ -58,5 +62,5 @@ else echo "Invalid ANDROID_ABI: $ANDROID_ABI" fi -make VERBOSE=1 -make install +make VERBOSE=1 -j2 +make install -j2 diff --git a/proto/ModelConfig.proto b/proto/ModelConfig.proto index 4f3d5bf3f6cb96c97285f40e3a3d100c2af47ad5..4ddf023780c704cb10c51ee9e5d7cb63420f9d73 100644 --- a/proto/ModelConfig.proto +++ b/proto/ModelConfig.proto @@ -82,6 +82,15 @@ message ConvConfig { // if not set, use img_size optional uint32 img_size_y = 14; + + optional uint32 dilation = 15 [ default = 1 ]; + optional uint32 dilation_y = 16 [ default = 1 ]; + + optional uint32 filter_size_z = 17 [ default = 1 ]; + optional uint32 padding_z = 18 [ default = 1 ]; + optional uint32 stride_z = 19 [ default = 1 ]; + optional uint32 output_z = 20 [ default = 1 ]; + optional uint32 img_size_z = 21 [ default = 1 ]; } message PoolConfig { @@ -124,6 +133,12 @@ message PoolConfig { // if not set, use padding optional uint32 padding_y = 13; + + optional uint32 size_z = 14 [ default = 1 ]; + optional uint32 stride_z = 15 [ default = 1 ]; + optional uint32 output_z = 16 [ default = 1 ]; + optional uint32 img_size_z = 17 [ default = 1 ]; + optional uint32 padding_z = 18 [ default = 1 ]; } message SppConfig { @@ -496,6 +511,11 @@ message LayerConfig { optional int32 axis = 54 [ default = 2 ]; repeated uint32 offset = 55; repeated uint32 shape = 56; + + // for HuberRegressionLoss + optional double delta = 57 [ default = 1.0 ]; + + optional uint64 depth = 58 [ default = 1 ]; } message EvaluatorConfig { diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 8d71629faa332fc1e099001950c25e879cbedff3..152a56190c1ffddbf9590ed8f71308ceb88403f4 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -338,7 +338,8 @@ def RecurrentLayerGroupWithoutOutLinksBegin(name, in_links_count += 1 layer_name = MakeLayerNameInParentSubmodel(name) layer = g_layer_map[layer_name] - ScatterAgentLayer(name=name, size=layer.size) + ScatterAgentLayer( + name=name, size=layer.size, width=layer.width, height=layer.height) pair = g_current_submodel.in_links.add() pair.layer_name = layer_name @@ -869,18 +870,52 @@ class Conv(Cfg): caffe_mode=True, filter_size_y=None, padding_y=None, - stride_y=None): + stride_y=None, + dilation=None, + dilation_y=None): self.add_keys(locals()) if filter_size_y is None: self.filter_size_y = filter_size if padding_y is None: self.padding_y = padding + if dilation_y is None: + self.dilation_y = dilation if stride_y is None: self.stride_y = stride if output_x is not None: config_assert(output_x <= 0) +# please refer to the comments in proto/ModelConfig.proto +@config_class +class Conv3D(Cfg): + def __init__(self, + filter_size, + channels, + padding=None, + stride=None, + groups=None, + filter_channels=None, + output_x=None, + img_size=None, + caffe_mode=True, + filter_size_y=None, + padding_y=None, + stride_y=None, + filter_size_z=None, + padding_z=None, + stride_z=None): + self.add_keys(locals()) + self.filter_size_y = filter_size_y if filter_size_y else filter_size + self.filter_size_z = filter_size_z if filter_size_z else filter_size + self.padding_y = padding_y if padding_y else padding + self.padding_z = padding_z if padding_z else padding + self.stride_y = stride_y if stride_y else stride + self.stride_z = stride_z if stride_z else stride + if output_x is not None: + config_assert(output_x <= 0) + + @config_class class BilinearInterp(Cfg): def __init__(self, out_size_x=None, out_size_y=None, channels=None): @@ -903,6 +938,31 @@ class Pool(Cfg): self.add_keys(locals()) +@config_class +class Pool3d(Cfg): + def __init__( + self, + pool_type, + channels, + size_x, + size_y=None, + size_z=None, + start=None, + stride=None, # 1 by defalut in protobuf + stride_y=None, + stride_z=None, + padding=None, # 0 by defalut in protobuf + padding_y=None, + padding_z=None): + self.add_keys(locals()) + self.filter_size_y = size_y if size_y else size_x + self.filter_size_z = size_z if size_z else size_x + self.padding_y = padding_y if padding_y else padding + self.padding_z = padding_z if padding_z else padding + self.stride_y = stride_y if stride_y else stride + self.stride_z = stride_z if stride_z else stride + + @config_class class SpatialPyramidPool(Cfg): def __init__(self, pool_type, pyramid_height, channels): @@ -1167,6 +1227,20 @@ def get_img_size(input_layer_name, channels): return img_size, img_size_y +def get_img3d_size(input_layer_name, channels): + input = g_layer_map[input_layer_name] + img_pixels = input.size / channels + img_size = input.width + img_size_y = input.height + img_size_z = input.depth + + config_assert( + img_size * img_size_y * img_size_z == img_pixels, + "Input layer %s: Incorrect input image size %d * %d * %d for input image pixels %d" + % (input_layer_name, img_size, img_size_y, img_size_z, img_pixels)) + return img_size, img_size_y, img_size_z + + def parse_bilinear(bilinear, input_layer_name, bilinear_conf): parse_image(bilinear, input_layer_name, bilinear_conf.image_conf) bilinear_conf.out_size_x = bilinear.out_size_x @@ -1204,6 +1278,45 @@ def parse_pool(pool, input_layer_name, pool_conf, ceil_mode): pool_conf.stride_y, not ceil_mode) +def parse_pool3d(pool, input_layer_name, pool_conf, ceil_mode): + pool_conf.pool_type = pool.pool_type + config_assert(pool.pool_type in ['max-projection', 'avg-projection'], + "pool-type %s is not in " + "['max-projection', 'avg-projection']" % pool.pool_type) + + pool_conf.channels = pool.channels + + pool_conf.size_x = pool.size_x + pool_conf.stride = pool.stride + pool_conf.padding = pool.padding + + pool_conf.size_y = default(pool.size_y, pool_conf.size_x) + pool_conf.size_z = default(pool.size_z, pool_conf.size_x) + pool_conf.stride_y = default(pool.stride_y, pool_conf.stride) + pool_conf.stride_z = default(pool.stride_z, pool_conf.stride) + pool_conf.padding_y = default(pool.padding_y, pool_conf.padding) + pool_conf.padding_z = default(pool.padding_z, pool_conf.padding) + + pool_conf.img_size, pool_conf.img_size_y, pool_conf.img_size_z = \ + get_img3d_size(input_layer_name, pool.channels) + + config_assert(not pool.start, "start is deprecated in pooling.") + + if pool.padding is not None: + pool_conf.padding = pool.padding + pool_conf.padding_y = default(pool.padding_y, pool_conf.padding) + pool_conf.padding_z = default(pool.padding_z, pool_conf.padding) + pool_conf.output_x = cnn_output_size(pool_conf.img_size, pool_conf.size_x, + pool_conf.padding, pool_conf.stride, + not ceil_mode) + pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y, + pool_conf.padding_y, + pool_conf.stride_y, not ceil_mode) + pool_conf.output_z = cnn_output_size(pool_conf.img_size_z, pool_conf.size_z, + pool_conf.padding_z, + pool_conf.stride_z, not ceil_mode) + + def parse_spp(spp, input_layer_name, spp_conf): parse_image(spp, input_layer_name, spp_conf.image_conf) spp_conf.pool_type = spp.pool_type @@ -1277,6 +1390,50 @@ def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False): conv_conf.stride_y, conv_conf.caffe_mode) +#caffe_mode: compute the output size using floor instead of ceil, +# which is consistent of caffe and CuDNN's convention. +def parse_conv3d(conv, input_layer_name, conv_conf, num_filters, trans=False): + conv_conf.filter_size = conv.filter_size + conv_conf.filter_size_y = conv.filter_size_y + conv_conf.filter_size_z = conv.filter_size_z + conv_conf.channels = conv.channels + conv_conf.padding = conv.padding + conv_conf.padding_y = conv.padding_y + conv_conf.padding_z = conv.padding_z + conv_conf.stride = conv.stride + conv_conf.stride_y = conv.stride_y + conv_conf.stride_z = conv.stride_z + conv_conf.groups = conv.groups + conv_conf.caffe_mode = conv.caffe_mode + + if not trans: + conv_conf.filter_channels = conv.channels / conv.groups + conv_conf.img_size, conv_conf.img_size_y, conv_conf.img_size_z = \ + get_img3d_size(input_layer_name, conv.channels) + conv_conf.output_x = cnn_output_size( + conv_conf.img_size, conv_conf.filter_size, conv_conf.padding, + conv_conf.stride, conv_conf.caffe_mode) + conv_conf.output_y = cnn_output_size( + conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y, + conv_conf.stride_y, conv_conf.caffe_mode) + conv_conf.output_z = cnn_output_size( + conv_conf.img_size_z, conv_conf.filter_size_z, conv_conf.padding_z, + conv_conf.stride_z, conv_conf.caffe_mode) + else: + conv_conf.filter_channels = num_filters / conv.groups + conv_conf.output_x, conv_conf.output_y, conv_conf.output_z = \ + get_img3d_size(input_layer_name, conv.channels) + conv_conf.img_size = cnn_image_size( + conv_conf.output_x, conv_conf.filter_size, conv_conf.padding, + conv_conf.stride, conv_conf.caffe_mode) + conv_conf.img_size_y = cnn_image_size( + conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y, + conv_conf.stride_y, conv_conf.caffe_mode) + conv_conf.img_size_z = cnn_image_size( + conv_conf.output_z, conv_conf.filter_size_z, conv_conf.padding_z, + conv_conf.stride_z, conv_conf.caffe_mode) + + def parse_block_expand(block_expand, input_layer_name, block_expand_conf): block_expand_conf.channels = block_expand.channels block_expand_conf.stride_x = block_expand.stride_x @@ -1580,6 +1737,9 @@ class LayerBase(object): self.config.height = height self.config.width = width + def set_layer_depth(self, depth): + self.config.depth = depth + def set_cnn_layer(self, input_layer_name, height, @@ -1602,6 +1762,21 @@ class MultiClassCrossEntropySelfNormCostLayer(LayerBase): self.config.softmax_selfnorm_alpha = softmax_selfnorm_alpha +@config_layer('cross_entropy_over_beam') +class CrossEntropyOverBeamLayer(LayerBase): + def __init__(self, name, inputs, **xargs): + config_assert(len(inputs) % 3 == 0, "Error input number.") + super(CrossEntropyOverBeamLayer, self).__init__( + name, 'cross_entropy_over_beam', 0, inputs, **xargs) + input_num = len(inputs) / 3 + for i in range(input_num): + input_layer = self.get_input_layer(i * 3) + config_assert(input_layer.size == 1, ( + "Inputs for this layer are made up of " + "several triples, in which the first one is scores over " + "all candidate paths, whose size should be equal to 1.")) + + @config_layer('fc') class FCLayer(LayerBase): layer_type = 'fc' @@ -1783,11 +1958,19 @@ class DetectionOutputLayer(LayerBase): @config_layer('data') class DataLayer(LayerBase): - def __init__(self, name, size, height=None, width=None, device=None): + def __init__(self, + name, + size, + depth=None, + height=None, + width=None, + device=None): super(DataLayer, self).__init__( name, 'data', size, inputs=[], device=device) if height and width: self.set_layer_height_width(height, width) + if depth: + self.set_layer_depth(depth) ''' @@ -1902,7 +2085,7 @@ class ConvLayerBase(LayerBase): def calc_parameter_size(self, conv_conf): return self.config.num_filters * conv_conf.filter_channels \ - * (conv_conf.filter_size * conv_conf.filter_size_y) + * (conv_conf.filter_size * conv_conf.filter_size_y) @config_layer('exconv') @@ -1986,6 +2169,87 @@ class ConvTransLayer(ConvTransLayerBase): layer_type = 'cudnn_convt' +@config_layer('conv_3d') +class Conv3DLayerBase(LayerBase): + def __init__(self, + name, + inputs=[], + bias=True, + num_filters=None, + shared_biases=True, + **xargs): + super(Conv3DLayerBase, self).__init__( + name, self.layer_type, 0, inputs=inputs, **xargs) + + if num_filters is not None: + self.config.num_filters = num_filters + + # need to specify layer in config + self.config.type = self.layer_type + + trans = False + if self.config.type == "deconv3d": + trans = True + + if shared_biases is not None: + self.config.shared_biases = shared_biases + + for input_index in xrange(len(self.inputs)): + input_layer = self.get_input_layer(input_index) + conv_conf = self.config.inputs[input_index].conv_conf + parse_conv3d( + self.inputs[input_index].conv, + input_layer.name, + conv_conf, + num_filters, + trans=trans + ) # for z-axis pad:0, strid:1, filter_size:1, img_size:1 + psize = self.calc_parameter_size(conv_conf) + self.create_input_parameter(input_index, psize) + if trans: + self.set_cnn_layer(name, conv_conf.img_size_z, + conv_conf.img_size_y, conv_conf.img_size, + self.config.num_filters) + else: + self.set_cnn_layer(name, conv_conf.output_z, conv_conf.output_y, + conv_conf.output_x, self.config.num_filters) + + psize = self.config.size + if shared_biases: + psize = self.config.num_filters + self.create_bias_parameter(bias, psize, [psize, 1]) + + def calc_parameter_size(self, conv_conf): + return self.config.num_filters * conv_conf.filter_channels \ + * (conv_conf.filter_size * conv_conf.filter_size_y \ + * conv_conf.filter_size_z) + + def set_cnn_layer(self, + input_layer_name, + depth, + height, + width, + channels, + is_print=True): + size = depth * height * width * channels + self.set_layer_size(size) + self.set_layer_height_width(height, width) + self.set_layer_depth(depth) + if is_print: + print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" % + (input_layer_name, channels, depth, height, width, size)) + + +@config_layer('conv3d') +class Conv3DLayer(Conv3DLayerBase): + layer_type = 'conv3d' + + +@config_layer('deconv3d') +class Conv3DLayer(Conv3DLayerBase): + layer_type = 'deconv3d' + + @config_layer('norm') class NormLayer(LayerBase): def __init__(self, name, inputs, **xargs): @@ -2015,6 +2279,35 @@ class PoolLayer(LayerBase): pool_conf.channels) +@config_layer('pool3d') +class Pool3DLayer(LayerBase): + def __init__(self, name, inputs, ceil_mode=True, **xargs): + super(Pool3DLayer, self).__init__( + name, 'pool3d', 0, inputs=inputs, **xargs) + for input_index in xrange(len(self.inputs)): + input_layer = self.get_input_layer(input_index) + pool_conf = self.config.inputs[input_index].pool_conf + parse_pool3d(self.inputs[input_index].pool, input_layer.name, + pool_conf, ceil_mode) + self.set_cnn_layer(name, pool_conf.output_z, pool_conf.output_y, + pool_conf.output_x, pool_conf.channels) + + def set_cnn_layer(self, + input_layer_name, + depth, + height, + width, + channels, + is_print=True): + size = depth * height * width * channels + self.set_layer_size(size) + self.set_layer_height_width(height, width) + self.set_layer_depth(depth) + if is_print: + print("output for %s: c = %d, d = %d, h = %d, w = %d, size = %d" % + (input_layer_name, channels, depth, height, width, size)) + + @config_layer('spp') class SpatialPyramidPoolLayer(LayerBase): def __init__(self, name, inputs, **xargs): @@ -2197,8 +2490,8 @@ class MaxOutLayer(LayerBase): maxout_conf = self.config.inputs[0].maxout_conf parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf) out_channels = maxout_conf.image_conf.channels / maxout_conf.groups - self.set_cnn_layer(name, g_layer_map[input_layer.name].height, - g_layer_map[input_layer.name].width, out_channels) + self.set_cnn_layer(name, maxout_conf.image_conf.img_size_y, + maxout_conf.image_conf.img_size, out_channels) @config_layer('row_conv') @@ -2263,13 +2556,14 @@ def define_cost(class_name, cost_type): define_cost('MultiClassCrossEntropy', 'multi-class-cross-entropy') +define_cost('CrossEntropyOverBeamCostLayer', 'cross_entropy_over_beam') define_cost('RankingCost', 'rank-cost') define_cost('AucValidation', 'auc-validation') define_cost('PnpairValidation', 'pnpair-validation') define_cost('SumOfSquaresCostLayer', 'square_error') define_cost('MultiBinaryLabelCrossEntropy', 'multi_binary_label_cross_entropy') define_cost('SoftBinaryClassCrossEntropy', 'soft_binary_class_cross_entropy') -define_cost('HuberTwoClass', 'huber') +define_cost('HuberTwoClassification', 'huber_classification') define_cost('SumCost', 'sum_cost') define_cost('SmoothL1Cost', 'smooth_l1') @@ -2331,6 +2625,17 @@ class LambdaCost(LayerBase): self.config.max_sort_size = max_sort_size +@config_layer('huber_regression') +class HuberRegressionLoss(LayerBase): + def __init__(self, name, inputs, delta=1., coeff=1., device=None): + super(HuberRegressionLoss, self).__init__( + name, 'huber_regression', 1, inputs=inputs, device=device) + config_assert( + len(self.inputs) == 2, 'HuberRegression must have 2 inputs') + self.config.delta = delta + self.config.coeff = coeff + + @config_layer('nce') class NCELayer(LayerBase): def __init__(self, @@ -2405,9 +2710,11 @@ class GatherAgentLayer(LayerBase): @config_layer('scatter_agent') class ScatterAgentLayer(LayerBase): - def __init__(self, name, size, device=None): + def __init__(self, name, size, width=None, height=None, device=None): super(ScatterAgentLayer, self).__init__( name, 'scatter_agent', size, inputs=[], device=device) + if height and width: + self.set_layer_height_width(height, width) @config_layer('multiplex') @@ -2691,6 +2998,49 @@ class SubSequenceLayer(LayerBase): self.create_bias_parameter(bias, size) +@config_layer('seq_slice') +class SeqSliceLayer(LayerBase): + def __init__(self, name, inputs, starts, ends, bias=False, **xargs): + if isinstance(inputs, list): + assert len(inputs) == 1, ('the first input of sequence slice layer ' + 'is a single sequence input.') + else: + inputs = [inputs] + + if starts is not None: + if isinstance(starts, list): + assert len(starts) == 1, ( + 'the start indices for sequence slice layer cannot ' + 'be a list having more than one element.') + starts = starts[0] + inputs.append(starts) + + if ends is not None: + if isinstance(ends, list): + assert len(ends) == 1, ( + 'the end indices for sequence slice layer cannot ' + 'be a list having more than one element.') + ends = ends[0] + inputs.append(ends) + assert len(inputs) >= 2, ( + 'the sequence slice layer has at least two inputs.') + + super(SeqSliceLayer, self).__init__( + name, 'seq_slice', 0, inputs=inputs, **xargs) + + input_layer0 = self.get_input_layer(0) + size = input_layer0.size + self.set_layer_size(size) + + if len(inputs) == 3: + assert ( + self.get_input_layer(1).size == self.get_input_layer(2).size), ( + 'If start and end indices are both given to' + 'sequence slice layer, they should have the same width.') + elif len(inputs) == 2: + self.config.select_first = (starts is not None) + + @config_layer('sub_nested_seq') class SubNestedSequenceLayer(LayerBase): def __init__(self, name, inputs, selected_indices, bias=False, **xargs): diff --git a/python/paddle/trainer/recurrent_units.py b/python/paddle/trainer/recurrent_units.py old mode 100755 new mode 100644 diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py old mode 100755 new mode 100644 index c9e3ded65cb8fc8d00d3decac6af2aff2b67a37d..fdf4136aa512b09ab9a1a6d9cf387229d7984804 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -11,16 +11,17 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. - import functools import collections import inspect +import paddle.trainer.config_parser as cp from paddle.trainer.config_parser import * from .activations import LinearActivation, SigmoidActivation, TanhActivation, \ ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation from .evaluators import * -from .poolings import MaxPooling, AvgPooling, BasePoolingType +from .poolings import MaxPooling, AvgPooling, BasePoolingType, \ + CudnnAvgPooling, CudnnMaxPooling from .attrs import * from .default_decorators import * @@ -104,11 +105,14 @@ __all__ = [ 'nce_layer', 'cross_entropy_with_selfnorm', 'cross_entropy', + 'BeamInput', + 'cross_entropy_over_beam', 'multi_binary_label_cross_entropy', 'sum_cost', 'rank_cost', 'lambda_cost', - 'huber_cost', + 'huber_regression_cost', + 'huber_classification_cost', 'block_expand_layer', 'maxout_layer', 'out_prod_layer', @@ -132,8 +136,11 @@ __all__ = [ 'sub_nested_seq_layer', 'clip_layer', 'slice_projection', + 'seq_slice_layer', 'kmax_sequence_score_layer', + 'img_pool3d_layer', 'scale_shift_layer', + 'img_conv3d_layer', ] @@ -162,6 +169,7 @@ class LayerType(object): EXCONVTRANS_LAYER = 'exconvt' CUDNNCONV_LAYER = 'cudnn_conv' POOL_LAYER = 'pool' + POOL3D_LAYER = 'pool3d' BATCH_NORM_LAYER = 'batch_norm' NORM_LAYER = 'norm' SUM_TO_ONE_NORM_LAYER = 'sum_to_one_norm' @@ -215,11 +223,16 @@ class LayerType(object): CRF_DECODING_LAYER = 'crf_decoding' NCE_LAYER = 'nce' + CONV3D_LAYER = 'conv3d' + DECONV3D_LAYER = 'deconv3d' + RANK_COST = 'rank-cost' LAMBDA_COST = 'lambda_cost' - HUBER = 'huber' + HUBER_REGRESSION = 'huber_regression' + HUBER_CLASSIFICATION = 'huber_classification' CROSS_ENTROPY = 'multi-class-cross-entropy' CROSS_ENTROPY_WITH_SELFNORM = 'multi_class_cross_entropy_with_selfnorm' + CROSS_ENTROPY_OVER_BEAM = 'cross_entropy_over_beam' SOFT_BIN_CLASS_CROSS_ENTROPY = 'soft_binary_class_cross_entropy' MULTI_BIN_LABEL_CROSS_ENTROPY = 'multi_binary_label_cross_entropy' SUM_COST = 'sum_cost' @@ -229,6 +242,7 @@ class LayerType(object): CROP_LAYER = 'crop' SUB_NESTED_SEQ = 'sub_nested_seq' CLIP_LAYER = 'clip' + SEQ_SLICE = 'seq_slice' KMAX_SEQ_SCORE = 'kmax_seq_score' SCALE_SHIFT_LAYER = 'scale_shift' @@ -330,6 +344,14 @@ class LayerOutput(object): self.outputs = outputs self.reverse = reverse + @property + def width(self): + return cp.g_layer_map[self.full_name].width + + @property + def height(self): + return cp.g_layer_map[self.full_name].height + def set_input(self, input): """ Set the input for a memory layer. Can only be used for memory layer @@ -880,7 +902,8 @@ def mixed_layer(size=0, @layer_support() -def data_layer(name, size, height=None, width=None, layer_attr=None): +def data_layer(name, size, depth=None, height=None, width=None, + layer_attr=None): """ Define DataLayer For NeuralNetwork. @@ -907,11 +930,20 @@ def data_layer(name, size, height=None, width=None, layer_attr=None): type=LayerType.DATA, name=name, size=size, + depth=depth, height=height, width=width, **ExtraLayerAttribute.to_kwargs(layer_attr)) - return LayerOutput(name, LayerType.DATA, size=size) + if depth is None: + depth = 1 + num_filters = None + if height is not None and width is not None: + num_filters = size / (width * height * depth) + assert num_filters * width * height * depth == size, \ + "size=%s width=%s height=%s depth=%s" % (size, width, height, depth) + + return LayerOutput(name, LayerType.DATA, size=size, num_filters=num_filters) @wrap_name_default("embedding") @@ -2324,6 +2356,7 @@ def img_conv_layer(input, groups=1, stride=1, padding=0, + dilation=1, bias_attr=None, param_attr=None, shared_biases=True, @@ -2331,6 +2364,7 @@ def img_conv_layer(input, filter_size_y=None, stride_y=None, padding_y=None, + dilation_y=None, trans=False, layer_type=None): """ @@ -2395,6 +2429,11 @@ def img_conv_layer(input, :type padding: int|tuple|list :param padding_y: The y dimension of the padding. :type padding_y: int + :param dilation: The x dimension of the dilation. Or input a tuple for two + image dimension + :type dilation: int|tuple|list + :param dilation_y: The y dimension of the dilation. + :type dilation_y: int :param bias_attr: Convolution bias attribute. None means default bias. False means no bias. :type bias_attr: ParameterAttribute|False @@ -2442,6 +2481,13 @@ def img_conv_layer(input, else: padding_y = padding + if dilation_y is None: + if isinstance(dilation, collections.Sequence): + assert len(dilation) == 2 + dilation, dilation_y = dilation + else: + dilation_y = dilation + if param_attr.attr.get('initial_smart'): # special initial for conv layers. init_w = (2.0 / (filter_size**2 * num_channels))**0.5 @@ -2451,6 +2497,8 @@ def img_conv_layer(input, param_attr.attr["initial_smart"] = False if layer_type: + if dilation > 1 or dilation_y > 1: + assert layer_type in ["cudnn_conv", "cudnn_convt"] if trans: assert layer_type in ["exconvt", "cudnn_convt"] else: @@ -2466,11 +2514,13 @@ def img_conv_layer(input, conv=Conv( filter_size=filter_size, padding=padding, + dilation=dilation, stride=stride, channels=num_channels, groups=groups, filter_size_y=filter_size_y, padding_y=padding_y, + dilation_y=dilation_y, stride_y=stride_y), **param_attr.attr), active_type=act.name, @@ -2576,11 +2626,14 @@ def img_pool_layer(input, elif isinstance(pool_type, AvgPooling): pool_type.name = 'avg' + assert type(pool_type) in [AvgPooling, MaxPooling, CudnnAvgPooling, + CudnnMaxPooling], \ + "only (Cudnn)AvgPooling, (Cudnn)MaxPooling are supported" + type_name = pool_type.name + '-projection' \ if ( isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \ else pool_type.name - pool_size_y = pool_size if pool_size_y is None else pool_size_y stride_y = stride if stride_y is None else stride_y padding_y = padding if padding_y is None else padding_y @@ -2612,6 +2665,146 @@ def img_pool_layer(input, size=l.config.size) +@wrap_name_default("pool3d") +@layer_support() +def img_pool3d_layer(input, + pool_size, + name=None, + num_channels=None, + pool_type=None, + stride=1, + padding=0, + layer_attr=None, + pool_size_y=None, + stride_y=None, + padding_y=None, + pool_size_z=None, + stride_z=None, + padding_z=None, + ceil_mode=True): + """ + Image pooling Layer. + + The details of pooling layer, please refer ufldl's pooling_ . + + .. _pooling: http://ufldl.stanford.edu/tutorial/supervised/Pooling/ + + - ceil_mode=True: + + .. math:: + + w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride)) + h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) + d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z)) + + - ceil_mode=False: + + .. math:: + + w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride)) + h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) + d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z)) + + The example usage is: + + .. code-block:: python + + maxpool = img_pool3d_layer(input=conv, + pool_size=3, + num_channels=8, + stride=1, + padding=1, + pool_type=MaxPooling()) + + :param padding: pooling padding width. + :type padding: int|tuple|list + :param name: name of pooling layer + :type name: basestring. + :param input: layer's input + :type input: LayerOutput + :param pool_size: pooling window width + :type pool_size: int|tuple|list + :param num_channels: number of input channel. + :type num_channels: int + :param pool_type: pooling type. MaxPooling or AvgPooling. Default is + MaxPooling. + :type pool_type: BasePoolingType + :param stride: stride width of pooling. + :type stride: int|tuple|list + :param layer_attr: Extra Layer attribute. + :type layer_attr: ExtraLayerAttribute + :param ceil_mode: Wether to use ceil mode to calculate output height and with. + Defalut is True. If set false, Otherwise use floor. + + :type ceil_mode: bool + :return: LayerOutput object. + :rtype: LayerOutput + """ + if num_channels is None: + assert input.num_filters is not None + num_channels = input.num_filters + + if pool_type is None: + pool_type = MaxPooling() + elif isinstance(pool_type, AvgPooling): + pool_type.name = 'avg' + + type_name = pool_type.name + '-projection' \ + if ( + isinstance(pool_type, AvgPooling) or isinstance(pool_type, MaxPooling)) \ + else pool_type.name + + if isinstance(pool_size, collections.Sequence): + assert len(pool_size) == 3 + pool_size, pool_size_y, pool_size_z = pool_size + else: + pool_size_y = pool_size + pool_size_z = pool_size + + if isinstance(stride, collections.Sequence): + assert len(stride) == 3 + stride, stride_y, stride_z = stride + else: + stride_y = stride + stride_z = stride + + if isinstance(padding, collections.Sequence): + assert len(padding) == 3 + padding, padding_y, padding_y = padding + else: + padding_y = padding + padding_z = padding + + l = Layer( + name=name, + type=LayerType.POOL3D_LAYER, + inputs=[ + Input( + input.name, + pool=Pool3d( + pool_type=type_name, + channels=num_channels, + size_x=pool_size, + start=None, + stride=stride, + padding=padding, + size_y=pool_size_y, + stride_y=stride_y, + padding_y=padding_y, + size_z=pool_size_z, + stride_z=stride_z, + padding_z=padding_z)) + ], + ceil_mode=ceil_mode, + **ExtraLayerAttribute.to_kwargs(layer_attr)) + return LayerOutput( + name, + LayerType.POOL_LAYER, + parents=[input], + num_filters=num_channels, + size=l.config.size) + + @wrap_name_default("spp") @layer_support() def spp_layer(input, @@ -4030,8 +4223,12 @@ def __cost_input__(input, label, weight=None): """ inputs and parents for cost layers. """ - ipts = [Input(input.name), Input(label.name)] - parents = [input, label] + if isinstance(input, LayerOutput): + input = [input] + if isinstance(label, LayerOutput): + label = [label] + ipts = [Input(ipt.name) for ipt in (input + label)] + parents = [ipt for ipt in (input + label)] if weight is not None: assert weight.size == 1 ipts.append(Input(weight.name)) @@ -4204,8 +4401,7 @@ def conv_operator(img, num_channels = img.num_filters assert isinstance(filter, LayerOutput) - if filter.size is not None: - filter.size = filter_size * filter_size_y * num_filters * num_channels + assert filter.size is not None opCls = ConvTransOperator if trans else ConvOperator @@ -4916,7 +5112,6 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None): :return: LayerOutput object. :rtype: LayerOutput """ - assert input.layer_type == LayerType.CONV_LAYER assert isinstance(input.activation, LinearActivation) assert groups > 1 if num_channels is None: @@ -5020,17 +5215,6 @@ def warp_ctc_layer(input, building process, PaddlePaddle will clone the source codes, build and install it to :code:`third_party/install/warpctc` directory. - To use warp_ctc layer, you need to specify the path of :code:`libwarpctc.so`, - using following methods: - - 1. Set it in :code:`paddle.init` (python api) or :code:`paddle_init` (c api), - such as :code:`paddle.init(use_gpu=True, - warpctc_dir=your_paddle_source_dir/third_party/install/warpctc/lib)`. - - 2. Set environment variable LD_LIBRARY_PATH on Linux or DYLD_LIBRARY_PATH - on Mac OS. For instance, :code:`export - LD_LIBRARY_PATH=your_paddle_source_dir/third_party/install/warpctc/lib:$LD_LIBRARY_PATH`. - More details of CTC can be found by referring to `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks