未验证 提交 1d502fb4 编写于 作者: F Feng Ni 提交者: GitHub

[cherry-pick][doc] fix smalldet doc and readme (#7776)

* fix smalldet docs, test=document_fix

* fix smalldet configs and readme, test=document_fix
上级 2fb498ad
...@@ -13,7 +13,7 @@ PaddleDetection团队提供了针对行人的基于PP-YOLOE的检测模型,用 ...@@ -13,7 +13,7 @@ PaddleDetection团队提供了针对行人的基于PP-YOLOE的检测模型,用
|PP-YOLOE-l| CrowdHuman | 48.0 | 81.9 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_36e_crowdhuman.pdparams) | [配置文件](./ppyoloe_crn_l_36e_crowdhuman.yml) | |PP-YOLOE-l| CrowdHuman | 48.0 | 81.9 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_36e_crowdhuman.pdparams) | [配置文件](./ppyoloe_crn_l_36e_crowdhuman.yml) |
|PP-YOLOE-s| 业务数据集 | 53.2 | - | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_36e_pphuman.pdparams) | [配置文件](./ppyoloe_crn_s_36e_pphuman.yml) | |PP-YOLOE-s| 业务数据集 | 53.2 | - | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_36e_pphuman.pdparams) | [配置文件](./ppyoloe_crn_s_36e_pphuman.yml) |
|PP-YOLOE-l| 业务数据集 | 57.8 | - | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_36e_pphuman.pdparams) | [配置文件](./ppyoloe_crn_l_36e_pphuman.yml) | |PP-YOLOE-l| 业务数据集 | 57.8 | - | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_36e_pphuman.pdparams) | [配置文件](./ppyoloe_crn_l_36e_pphuman.yml) |
|PP-YOLOE+_t-aux(320)| 业务数据集 | 45.7 | 81.2 | [下载链接](https://paddledet.bj.bcebos.com/models/pyoloe_plus_crn_t_auxhead_320_60e_pphuman.pdparams) | [配置文件](./ppyoloe_plus_crn_t_auxhead_320_60e_pphuman.yml) | |PP-YOLOE+_t-aux(320)| 业务数据集 | 45.7 | 81.2 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_t_auxhead_320_60e_pphuman.pdparams) | [配置文件](./ppyoloe_plus_crn_t_auxhead_320_60e_pphuman.yml) |
**注意:** **注意:**
......
...@@ -20,7 +20,7 @@ PaddleDetection团队提供了针对自动驾驶场景的基于PP-YOLOE的检测 ...@@ -20,7 +20,7 @@ PaddleDetection团队提供了针对自动驾驶场景的基于PP-YOLOE的检测
|PP-YOLOE-s| PPVehicle9cls | 9 | 35.3 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_s_36e_ppvehicle9cls.pdparams) | [配置文件](./mot_ppyoloe_s_36e_ppvehicle9cls.yml) | |PP-YOLOE-s| PPVehicle9cls | 9 | 35.3 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_s_36e_ppvehicle9cls.pdparams) | [配置文件](./mot_ppyoloe_s_36e_ppvehicle9cls.yml) |
|PP-YOLOE-l| PPVehicle | 1 | 63.9 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_l_36e_ppvehicle.pdparams) | [配置文件](./mot_ppyoloe_l_36e_ppvehicle.yml) | |PP-YOLOE-l| PPVehicle | 1 | 63.9 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_l_36e_ppvehicle.pdparams) | [配置文件](./mot_ppyoloe_l_36e_ppvehicle.yml) |
|PP-YOLOE-s| PPVehicle | 1 | 61.3 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_s_36e_ppvehicle.pdparams) | [配置文件](./mot_ppyoloe_s_36e_ppvehicle.yml) | |PP-YOLOE-s| PPVehicle | 1 | 61.3 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_s_36e_ppvehicle.pdparams) | [配置文件](./mot_ppyoloe_s_36e_ppvehicle.yml) |
|PP-YOLOE+_t-aux(320)| PPVehicle | 1 | 53.5 | [下载链接](https://paddledet.bj.bcebos.com/models/pipeline/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.pdparams) | [配置文件](./ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.yml) | |PP-YOLOE+_t-aux(320)| PPVehicle | 1 | 53.5 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.pdparams) | [配置文件](./ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.yml) |
**注意:** **注意:**
......
# 小目标数据集下载汇总
## 目录
- [数据集准备](#数据集准备)
- [VisDrone-DET](#VisDrone-DET)
- [DOTA水平框](#DOTA水平框)
- [Xview](#Xview)
- [用户自定义数据集](#用户自定义数据集)
## 数据集准备
### VisDrone-DET
VisDrone-DET是一个无人机航拍场景的小目标数据集,整理后的COCO格式VisDrone-DET数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone.zip),切图后的COCO格式数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone_sliced.zip),检测其中的**10类**,包括 `pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10)`,原始数据集[下载链接](https://github.com/VisDrone/VisDrone-Dataset)
具体使用和下载请参考[visdrone](../visdrone)
### DOTA水平框
DOTA是一个大型的遥感影像公开数据集,这里使用**DOTA-v1.0**水平框数据集,切图后整理的COCO格式的DOTA水平框数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/dota_sliced.zip),检测其中的**15类**
包括 `plane(0), baseball-diamond(1), bridge(2), ground-track-field(3), small-vehicle(4), large-vehicle(5), ship(6), tennis-court(7),basketball-court(8), storage-tank(9), soccer-ball-field(10), roundabout(11), harbor(12), swimming-pool(13), helicopter(14)`
图片及原始数据集[下载链接](https://captain-whu.github.io/DOAI2019/dataset.html)
### Xview
Xview是一个大型的航拍遥感检测数据集,目标极小极多,切图后整理的COCO格式数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/xview_sliced.zip),检测其中的**60类**
具体类别为:
<details>
`Fixed-wing Aircraft(0),
Small Aircraft(1),
Cargo Plane(2),
Helicopter(3),
Passenger Vehicle(4),
Small Car(5),
Bus(6),
Pickup Truck(7),
Utility Truck(8),
Truck(9),
Cargo Truck(10),
Truck w/Box(11),
Truck Tractor(12),
Trailer(13),
Truck w/Flatbed(14),
Truck w/Liquid(15),
Crane Truck(16),
Railway Vehicle(17),
Passenger Car(18),
Cargo Car(19),
Flat Car(20),
Tank car(21),
Locomotive(22),
Maritime Vessel(23),
Motorboat(24),
Sailboat(25),
Tugboat(26),
Barge(27),
Fishing Vessel(28),
Ferry(29),
Yacht(30),
Container Ship(31),
Oil Tanker(32),
Engineering Vehicle(33),
Tower crane(34),
Container Crane(35),
Reach Stacker(36),
Straddle Carrier(37),
Mobile Crane(38),
Dump Truck(39),
Haul Truck(40),
Scraper/Tractor(41),
Front loader/Bulldozer(42),
Excavator(43),
Cement Mixer(44),
Ground Grader(45),
Hut/Tent(46),
Shed(47),
Building(48),
Aircraft Hangar(49),
Damaged Building(50),
Facility(51),
Construction Site(52),
Vehicle Lot(53),
Helipad(54),
Storage Tank(55),
Shipping container lot(56),
Shipping Container(57),
Pylon(58),
Tower(59)
`
</details>
,原始数据集[下载链接](https://challenge.xviewdataset.org/)
### 用户自定义数据集
用户自定义数据集准备请参考[DET数据集标注工具](../../docs/tutorials/data/DetAnnoTools.md)[DET数据集准备教程](../../docs/tutorials/data/PrepareDetDataSet.md)去准备。
此差异已折叠。
...@@ -50,3 +50,9 @@ EvalDataset: ...@@ -50,3 +50,9 @@ EvalDataset:
image_dir: val_images_640_025 image_dir: val_images_640_025
anno_path: val_640_025.json anno_path: val_640_025.json
dataset_dir: dataset/visdrone_sliced dataset_dir: dataset/visdrone_sliced
# EvalDataset:
# !COCODataSet
# image_dir: VisDrone2019-DET-val
# anno_path: val.json
# dataset_dir: dataset/visdrone
# VisDrone-DET 小目标检测模型 # VisDrone-DET 小目标检测模型
PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基于PP-YOLOE的检测模型,用户可以下载模型进行使用。整理后的COCO格式VisDrone-DET数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone.zip),检测其中的10类,包括 `pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10)`,原始数据集[下载链接](https://github.com/VisDrone/VisDrone-Dataset) PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基于PP-YOLOE的检测模型,用户可以下载模型进行使用。整理后的COCO格式VisDrone-DET数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone.zip),检测其中的10类,包括 `pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10)`,原始数据集[下载链接](https://github.com/VisDrone/VisDrone-Dataset)其他相关小目标数据集可参照 [DataDownload.md](../DataDownload.md)
**注意:** **注意:**
- VisDrone-DET数据集包括**train集6471张,val集548张,test_dev集1610张**,test-challenge集1580张(未开放检测框标注),前三者均有开放检测框标注。 - VisDrone-DET数据集包括**train集6471张,val集548张,test_dev集1610张**,test-challenge集1580张(未开放检测框标注),前三者均有开放检测框标注。
...@@ -30,26 +30,66 @@ PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基 ...@@ -30,26 +30,66 @@ PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基
- **P2**表示增加P2层(1/4下采样层)的特征,共输出4个PPYOLOEHead。 - **P2**表示增加P2层(1/4下采样层)的特征,共输出4个PPYOLOEHead。
- **Alpha**表示对CSPResNet骨干网络增加可一个学习权重参数Alpha参与训练。 - **Alpha**表示对CSPResNet骨干网络增加可一个学习权重参数Alpha参与训练。
- **largesize**表示使用**以1600尺度为基础的多尺度训练****1920尺度预测**,相应的训练batch_size也减小,以速度来换取高精度。 - **largesize**表示使用**以1600尺度为基础的多尺度训练****1920尺度预测**,相应的训练batch_size也减小,以速度来换取高精度。
- MatlabAPI测试是使用官网评测工具[VisDrone2018-DET-toolkit](https://github.com/VisDrone/VisDrone2018-DET-toolkit)
<details>
<summary> 快速开始 </summary>
```shell
# 训练
python -m paddle.distributed.launch --log_dir=logs/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l_80e_visdrone.yml --amp --eval
# 评估
python tools/eval.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l_80e_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_visdrone.pdparams
# 预测
python tools/infer.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l_80e_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_visdrone.pdparams --infer_img=demo/visdrone_0000315_01601_d_0000509.jpg --draw_threshold=0.25
```
</details>
## 子图训练,原图评估和拼图评估: ## 子图训练,原图评估和拼图评估:
| 模型 | 数据集 | SLICE_SIZE | OVERLAP_RATIO | 类别数 | mAP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | 下载链接 | 配置文件 | | 模型 | 数据集 | SLICE_SIZE | OVERLAP_RATIO | 类别数 | mAP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | 下载链接 | 配置文件 |
|:---------|:---------------:|:---------------:|:---------------:|:------:|:-----------------------:|:-------------------:|:---------:| :-----: | |:---------|:---------------:|:---------------:|:---------------:|:------:|:-----------------------:|:-------------------:|:---------:| :-----: |
|PP-YOLOE-l(原图评估)| VisDrone-DET| 640 | 0.25 | 10 | 29.7 | 48.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](../ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) | |PP-YOLOE-l(子图直接评估)| VisDrone-DET| 640 | 0.25 | 10 | 38.5(子图val) | 60.2 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](./ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) |
|PP-YOLOE-l (拼图评估)| VisDrone-DET| 640 | 0.25 | 10 | 37.2 | 59.4 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](../ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) | |PP-YOLOE-l(原图直接评估)| VisDrone-DET| 640 | 0.25 | 10 | 29.7(原图val) | 48.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](../ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) |
|PP-YOLOE-l (切图拼图评估)| VisDrone-DET| 640 | 0.25 | 10 | 37.3(原图val) | 59.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](../ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) |
**注意:** **注意:**
- 上表中的模型均为使用**切图后的子图**训练,评估预测时分为两种,**直接使用原图**评估预测,和**使用子图自动拼成原图**评估预测,AP精度均为**原图验证集**上评估的结果。。 - 上表中的模型均为使用**切图后的子图**训练,评估预测时分为两种,**直接使用原图**评估预测,和**使用子图自动拼成原图**评估预测,AP精度均为**原图验证集**上评估的结果。。
- **SLICE_SIZE**表示使用SAHI工具切图后子图的边长大小,**OVERLAP_RATIO**表示切图的子图之间的重叠率。 - **SLICE_SIZE**表示使用SAHI工具切图后子图的边长大小,**OVERLAP_RATIO**表示切图的子图之间的重叠率。
- VisDrone-DET的模型与[切图模型](../README.md#切图模型)表格中的VisDrone-DET是**同一个模型权重**,但此处AP精度是在**原图验证集**上评估的结果。 - VisDrone-DET的模型与[切图模型](../README.md#切图模型)表格中的VisDrone-DET是**同一个模型权重**,但此处AP精度是在**原图验证集**上评估的结果,需要提前修改`ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml`里的`EvalDataset`的默认的子图验证集路径为以下**原图验证集路径**
```
EvalDataset:
!COCODataSet
image_dir: VisDrone2019-DET-val
anno_path: val.json
dataset_dir: dataset/visdrone
```
<details>
<summary> 快速开始 </summary>
```shell
# 训练
python -m paddle.distributed.launch --log_dir=logs/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml --amp --eval
# 子图直接评估
python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams
# 原图直接评估,注意需要提前修改此yml中的 `EvalDataset` 的默认的子图验证集路径 为 原图验证集路径:
python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams
# 切图拼图评估,加上 --slice_infer,注意是使用的带 _slice_infer 后缀的yml配置文件
python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025_slice_infer.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --slice_infer
# 切图拼图预测,加上 --slice_infer
python tools/infer.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --infer_img=demo/visdrone_0000315_01601_d_0000509.jpg --draw_threshold=0.25 --slice_infer
```
</details>
## 注意事项: ## 注意事项:
- PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率。 - PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率。
- 具体使用教程请参考[ppyoloe](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/ppyoloe#getting-start) - 具体使用教程请参考[ppyoloe](../../ppyoloe#getting-start)
- MatlabAPI测试是使用官网评测工具[VisDrone2018-DET-toolkit](https://github.com/VisDrone/VisDrone2018-DET-toolkit) - MatlabAPI测试是使用官网评测工具[VisDrone2018-DET-toolkit](https://github.com/VisDrone/VisDrone2018-DET-toolkit)
- 切图训练模型的配置文件及训练相关流程请参照[README](../README.cn)
## PP-YOLOE+_SOD 部署模型 ## PP-YOLOE+_SOD 部署模型
...@@ -89,16 +129,16 @@ python tools/export_model.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l ...@@ -89,16 +129,16 @@ python tools/export_model.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l
paddle2onnx --model_dir output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx paddle2onnx --model_dir output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx
# 推理单张图片 # 推理单张图片
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_mode=trt_fp16
# 推理文件夹下的所有图片 # 推理文件夹下的所有图片
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_dir=demo/ --device=gpu --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_dir=demo/ --device=gpu --run_mode=trt_fp16
# 单张图片普通测速 # 单张图片普通测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True
# 单张图片TensorRT FP16测速 # 单张图片TensorRT FP16测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True --run_mode=trt_fp16
``` ```
3.运行以下命令导出**不带NMS的模型和ONNX**,并使用TensorRT FP16进行推理和测速,以及**ONNX下FP16测速** 3.运行以下命令导出**不带NMS的模型和ONNX**,并使用TensorRT FP16进行推理和测速,以及**ONNX下FP16测速**
...@@ -111,16 +151,16 @@ python tools/export_model.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l ...@@ -111,16 +151,16 @@ python tools/export_model.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l
paddle2onnx --model_dir output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx paddle2onnx --model_dir output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx
# 推理单张图片 # 推理单张图片
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_mode=trt_fp16
# 推理文件夹下的所有图片 # 推理文件夹下的所有图片
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_dir=demo/ --device=gpu --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_dir=demo/ --device=gpu --run_mode=trt_fp16
# 单张图片普通测速 # 单张图片普通测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True
# 单张图片TensorRT FP16测速 # 单张图片TensorRT FP16测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True --run_mode=trt_fp16
# 单张图片ONNX TensorRT FP16测速 # 单张图片ONNX TensorRT FP16测速
/usr/local/TensorRT-8.0.3.4/bin/trtexec --onnx=ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx --workspace=4096 --avgRuns=10 --shapes=input:1x3x1920x1920 --fp16 /usr/local/TensorRT-8.0.3.4/bin/trtexec --onnx=ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx --workspace=4096 --avgRuns=10 --shapes=input:1x3x1920x1920 --fp16
......
...@@ -2,10 +2,10 @@ ...@@ -2,10 +2,10 @@
## 目录 ## 目录
- [目标检测数据说明](#目标检测数据说明) - [目标检测数据说明](#目标检测数据说明)
- [准备训练数据](#准备训练数据) - [准备训练数据](#准备训练数据)
- [VOC数据数据](#VOC数据数据) - [VOC数据](#VOC数据)
- [VOC数据集下载](#VOC数据集下载) - [VOC数据集下载](#VOC数据集下载)
- [VOC数据标注文件介绍](#VOC数据标注文件介绍) - [VOC数据标注文件介绍](#VOC数据标注文件介绍)
- [COCO数据数据](#COCO数据数据) - [COCO数据](#COCO数据)
- [COCO数据集下载](#COCO数据下载) - [COCO数据集下载](#COCO数据下载)
- [COCO数据标注文件介绍](#COCO数据标注文件介绍) - [COCO数据标注文件介绍](#COCO数据标注文件介绍)
- [用户数据准备](#用户数据准备) - [用户数据准备](#用户数据准备)
...@@ -36,8 +36,8 @@ ...@@ -36,8 +36,8 @@
PaddleDetection默认支持[COCO](http://cocodataset.org)[Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/)[WIDER-FACE](http://shuoyang1213.me/WIDERFACE/) 数据源。 PaddleDetection默认支持[COCO](http://cocodataset.org)[Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/)[WIDER-FACE](http://shuoyang1213.me/WIDERFACE/) 数据源。
同时还支持自定义数据源,包括: 同时还支持自定义数据源,包括:
(1) 自定义数据数据转换成VOC数据; (1) 自定义数据转换成VOC数据;
(2) 自定义数据数据转换成COCO数据; (2) 自定义数据转换成COCO数据;
(3) 自定义新的数据源,增加自定义的reader。 (3) 自定义新的数据源,增加自定义的reader。
...@@ -47,7 +47,7 @@ cd PaddleDetection/ ...@@ -47,7 +47,7 @@ cd PaddleDetection/
ppdet_root=$(pwd) ppdet_root=$(pwd)
``` ```
#### VOC数据数据 #### VOC数据
VOC数据是[Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) 比赛使用的数据。Pascal VOC比赛不仅包含图像分类分类任务,还包含图像目标检测、图像分割等任务,其标注文件中包含多个任务的标注内容。 VOC数据是[Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) 比赛使用的数据。Pascal VOC比赛不仅包含图像分类分类任务,还包含图像目标检测、图像分割等任务,其标注文件中包含多个任务的标注内容。
VOC数据集指的是Pascal VOC比赛使用的数据。用户自定义的VOC数据,xml文件中的非必须字段,请根据实际情况选择是否标注或是否使用默认值。 VOC数据集指的是Pascal VOC比赛使用的数据。用户自定义的VOC数据,xml文件中的非必须字段,请根据实际情况选择是否标注或是否使用默认值。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册