未验证 提交 1d502fb4 编写于 作者: F Feng Ni 提交者: GitHub

[cherry-pick][doc] fix smalldet doc and readme (#7776)

* fix smalldet docs, test=document_fix

* fix smalldet configs and readme, test=document_fix
上级 2fb498ad
...@@ -13,7 +13,7 @@ PaddleDetection团队提供了针对行人的基于PP-YOLOE的检测模型,用 ...@@ -13,7 +13,7 @@ PaddleDetection团队提供了针对行人的基于PP-YOLOE的检测模型,用
|PP-YOLOE-l| CrowdHuman | 48.0 | 81.9 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_36e_crowdhuman.pdparams) | [配置文件](./ppyoloe_crn_l_36e_crowdhuman.yml) | |PP-YOLOE-l| CrowdHuman | 48.0 | 81.9 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_36e_crowdhuman.pdparams) | [配置文件](./ppyoloe_crn_l_36e_crowdhuman.yml) |
|PP-YOLOE-s| 业务数据集 | 53.2 | - | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_36e_pphuman.pdparams) | [配置文件](./ppyoloe_crn_s_36e_pphuman.yml) | |PP-YOLOE-s| 业务数据集 | 53.2 | - | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_36e_pphuman.pdparams) | [配置文件](./ppyoloe_crn_s_36e_pphuman.yml) |
|PP-YOLOE-l| 业务数据集 | 57.8 | - | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_36e_pphuman.pdparams) | [配置文件](./ppyoloe_crn_l_36e_pphuman.yml) | |PP-YOLOE-l| 业务数据集 | 57.8 | - | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_36e_pphuman.pdparams) | [配置文件](./ppyoloe_crn_l_36e_pphuman.yml) |
|PP-YOLOE+_t-aux(320)| 业务数据集 | 45.7 | 81.2 | [下载链接](https://paddledet.bj.bcebos.com/models/pyoloe_plus_crn_t_auxhead_320_60e_pphuman.pdparams) | [配置文件](./ppyoloe_plus_crn_t_auxhead_320_60e_pphuman.yml) | |PP-YOLOE+_t-aux(320)| 业务数据集 | 45.7 | 81.2 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_t_auxhead_320_60e_pphuman.pdparams) | [配置文件](./ppyoloe_plus_crn_t_auxhead_320_60e_pphuman.yml) |
**注意:** **注意:**
......
...@@ -20,7 +20,7 @@ PaddleDetection团队提供了针对自动驾驶场景的基于PP-YOLOE的检测 ...@@ -20,7 +20,7 @@ PaddleDetection团队提供了针对自动驾驶场景的基于PP-YOLOE的检测
|PP-YOLOE-s| PPVehicle9cls | 9 | 35.3 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_s_36e_ppvehicle9cls.pdparams) | [配置文件](./mot_ppyoloe_s_36e_ppvehicle9cls.yml) | |PP-YOLOE-s| PPVehicle9cls | 9 | 35.3 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_s_36e_ppvehicle9cls.pdparams) | [配置文件](./mot_ppyoloe_s_36e_ppvehicle9cls.yml) |
|PP-YOLOE-l| PPVehicle | 1 | 63.9 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_l_36e_ppvehicle.pdparams) | [配置文件](./mot_ppyoloe_l_36e_ppvehicle.yml) | |PP-YOLOE-l| PPVehicle | 1 | 63.9 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_l_36e_ppvehicle.pdparams) | [配置文件](./mot_ppyoloe_l_36e_ppvehicle.yml) |
|PP-YOLOE-s| PPVehicle | 1 | 61.3 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_s_36e_ppvehicle.pdparams) | [配置文件](./mot_ppyoloe_s_36e_ppvehicle.yml) | |PP-YOLOE-s| PPVehicle | 1 | 61.3 | [下载链接](https://paddledet.bj.bcebos.com/models/mot_ppyoloe_s_36e_ppvehicle.pdparams) | [配置文件](./mot_ppyoloe_s_36e_ppvehicle.yml) |
|PP-YOLOE+_t-aux(320)| PPVehicle | 1 | 53.5 | [下载链接](https://paddledet.bj.bcebos.com/models/pipeline/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.pdparams) | [配置文件](./ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.yml) | |PP-YOLOE+_t-aux(320)| PPVehicle | 1 | 53.5 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.pdparams) | [配置文件](./ppyoloe_plus_crn_t_auxhead_320_60e_ppvehicle.yml) |
**注意:** **注意:**
......
# 小目标数据集下载汇总
## 目录
- [数据集准备](#数据集准备)
- [VisDrone-DET](#VisDrone-DET)
- [DOTA水平框](#DOTA水平框)
- [Xview](#Xview)
- [用户自定义数据集](#用户自定义数据集)
## 数据集准备
### VisDrone-DET
VisDrone-DET是一个无人机航拍场景的小目标数据集,整理后的COCO格式VisDrone-DET数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone.zip),切图后的COCO格式数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone_sliced.zip),检测其中的**10类**,包括 `pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10)`,原始数据集[下载链接](https://github.com/VisDrone/VisDrone-Dataset)
具体使用和下载请参考[visdrone](../visdrone)
### DOTA水平框
DOTA是一个大型的遥感影像公开数据集,这里使用**DOTA-v1.0**水平框数据集,切图后整理的COCO格式的DOTA水平框数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/dota_sliced.zip),检测其中的**15类**
包括 `plane(0), baseball-diamond(1), bridge(2), ground-track-field(3), small-vehicle(4), large-vehicle(5), ship(6), tennis-court(7),basketball-court(8), storage-tank(9), soccer-ball-field(10), roundabout(11), harbor(12), swimming-pool(13), helicopter(14)`
图片及原始数据集[下载链接](https://captain-whu.github.io/DOAI2019/dataset.html)
### Xview
Xview是一个大型的航拍遥感检测数据集,目标极小极多,切图后整理的COCO格式数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/xview_sliced.zip),检测其中的**60类**
具体类别为:
<details>
`Fixed-wing Aircraft(0),
Small Aircraft(1),
Cargo Plane(2),
Helicopter(3),
Passenger Vehicle(4),
Small Car(5),
Bus(6),
Pickup Truck(7),
Utility Truck(8),
Truck(9),
Cargo Truck(10),
Truck w/Box(11),
Truck Tractor(12),
Trailer(13),
Truck w/Flatbed(14),
Truck w/Liquid(15),
Crane Truck(16),
Railway Vehicle(17),
Passenger Car(18),
Cargo Car(19),
Flat Car(20),
Tank car(21),
Locomotive(22),
Maritime Vessel(23),
Motorboat(24),
Sailboat(25),
Tugboat(26),
Barge(27),
Fishing Vessel(28),
Ferry(29),
Yacht(30),
Container Ship(31),
Oil Tanker(32),
Engineering Vehicle(33),
Tower crane(34),
Container Crane(35),
Reach Stacker(36),
Straddle Carrier(37),
Mobile Crane(38),
Dump Truck(39),
Haul Truck(40),
Scraper/Tractor(41),
Front loader/Bulldozer(42),
Excavator(43),
Cement Mixer(44),
Ground Grader(45),
Hut/Tent(46),
Shed(47),
Building(48),
Aircraft Hangar(49),
Damaged Building(50),
Facility(51),
Construction Site(52),
Vehicle Lot(53),
Helipad(54),
Storage Tank(55),
Shipping container lot(56),
Shipping Container(57),
Pylon(58),
Tower(59)
`
</details>
,原始数据集[下载链接](https://challenge.xviewdataset.org/)
### 用户自定义数据集
用户自定义数据集准备请参考[DET数据集标注工具](../../docs/tutorials/data/DetAnnoTools.md)[DET数据集准备教程](../../docs/tutorials/data/PrepareDetDataSet.md)去准备。
...@@ -4,31 +4,103 @@ ...@@ -4,31 +4,103 @@
## 内容 ## 内容
- [简介](#简介) - [简介](#简介)
- [切图使用说明](#切图使用说明)
- [小目标数据集下载](#小目标数据集下载)
- [统计数据集分布](#统计数据集分布)
- [SAHI切图](#SAHI切图)
- [模型库](#模型库) - [模型库](#模型库)
- [VisDrone模型](#VisDrone模型) - [VisDrone模型](#VisDrone模型)
- [COCO模型](#COCO模型) - [COCO模型](#COCO模型)
- [切图模型](#切图模型) - [切图模型](#切图模型)
- [拼图模型](#拼图模型) - [拼图模型](#拼图模型)
- [数据集准备](#数据集准备) - [注意事项](#注意事项)
- [模型库使用说明](#模型库使用说明) - [模型库使用说明](#模型库使用说明)
- [训练](#训练) - [训练](#训练)
- [评估](#评估) - [评估](#评估)
- [预测](#预测) - [预测](#预测)
- [部署](#部署) - [部署](#部署)
- [切图使用说明](#切图使用说明)
- [统计数据集分布](#统计数据集分布)
- [SAHI切图](#SAHI切图)
- [引用](#引用) - [引用](#引用)
## 简介 ## 简介
PaddleDetection团队提供了针对VisDrone-DET、DOTA水平框、Xview等小目标场景数据集的基于PP-YOLOE的检测模型,以及提供了一套使用[SAHI](https://github.com/obss/sahi)(Slicing Aided Hyper Inference)工具切图和拼图的方案,用户可以下载模型进行使用。 PaddleDetection团队提供了针对VisDrone-DET、DOTA水平框、Xview等小目标场景数据集的基于PP-YOLOE改进的检测模型 PP-YOLOE-SOD,以及提供了一套使用[SAHI](https://github.com/obss/sahi)(Slicing Aided Hyper Inference)工具的切图和拼图的方案。
- PP-YOLOE-SOD 是PaddleDetection团队自研的小目标检测特色模型,使用**数据集分布相关的基于向量的DFL算法****针对小目标优化的中心先验优化策略**,并且**在模型的Neck(FPN)结构中加入Transformer模块**,以及结合增加P2层、使用large size等策略,最终在多个小目标数据集上达到极高的精度。
- 切图拼图方案**适用于任何检测模型**,建议**使用 PP-YOLOE-SOD 结合切图拼图方案**一起使用以达到最佳的效果。
- 官方 AI Studio 教程案例请参考 [基于PP-YOLOE-SOD的无人机航拍图像检测案例全流程实操](https://aistudio.baidu.com/aistudio/projectdetail/5036782),欢迎一起动手实践学习。
- 第三方 AI Studio 教程案例可参考 [PPYOLOE:遥感场景下的小目标检测与部署(切图版)](https://aistudio.baidu.com/aistudio/projectdetail/4493701)[涨分神器!基于PPYOLOE的切图和拼图解决方案](https://aistudio.baidu.com/aistudio/projectdetail/4438275),欢迎一起动手实践学习。
**注意:**
- **不通过切图拼图而直接使用原图或子图**去训练评估预测,推荐使用 PP-YOLOE-SOD 模型,更多细节和消融实验可参照[COCO模型](#COCO模型)[VisDrone模型](./visdrone)
- 是否需要切图然后使用子图去**训练**,建议首先参照[切图使用说明](#切图使用说明)中的[统计数据集分布](#统计数据集分布)分析一下数据集再确定,一般数据集中**所有的目标均极小**的情况下推荐切图去训练。
- 是否需要切图然后使用子图去**预测**,建议在切图训练的情况下,配合着**同样操作的切图策略和参数**去预测(inference)效果更佳。但其实即便不切图训练,也可进行切图预测(inference),只需**在常规的预测命令最后加上`--slice_infer`以及相关子图参数**即可。
- 是否需要切图然后使用子图去**评估**,建议首先确保制作生成了合适的子图验证集,以及确保对应的标注框制作无误,并需要参照[模型库使用说明-评估](#评估)**改动配置文件中的验证集(EvalDataset)的相关配置**,然后**在常规的评估命令最后加上`--slice_infer`以及相关子图参数**即可。
- `--slice_infer`的操作在PaddleDetection中默认**子图预测框会自动组合并拼回原图**,默认返回的是原图上的预测框,此方法也**适用于任何训好的检测模型**,无论是否切图训练。
## 切图使用说明
### 小目标数据集下载
PaddleDetection团队整理提供的VisDrone-DET、DOTA水平框、Xview等小目标场景数据集的下载链接可以参照 [DataDownload.md](./DataDownload.md)
### 统计数据集分布
对于待训的数据集(默认已处理为COCO格式,参照 [COCO格式数据集准备](../../docs/tutorials/data/PrepareDetDataSet.md#用户数据转成COCO数据),首先统计**标注框的平均宽高占图片真实宽高的比例**分布:
以DOTA水平框数据集的train数据集为例:
```bash
python tools/box_distribution.py --json_path dataset/DOTA/annotations/train.json --out_img box_distribution.jpg --eval_size 640 --small_stride 8
```
- `--json_path` :待统计数据集 COCO 格式 annotation 的json标注文件路径
- `--out_img` :输出的统计分布图的路径
- `--eval_size` :推理尺度(默认640)
- `--small_stride` :模型最小步长(默认8)
统计结果打印如下:
```bash
Suggested reg_range[1] is 13 # DFL算法中推荐值,在 PP-YOLOE-SOD 模型的配置文件的head中设置为此值,效果最佳
Mean of all img_w is 2304.3981547196595 # 原图宽的平均值
Mean of all img_h is 2180.9354151880766 # 原图高的平均值
Median of ratio_w is 0.03799439775910364 # 标注框的宽与原图宽的比例的中位数
Median of ratio_h is 0.04074914637387802 # 标注框的高与原图高的比例的中位数
all_img with box: 1409 # 数据集图片总数(排除无框或空标注的图片)
all_ann: 98905 # 数据集标注框总数
Distribution saved as box_distribution.jpg
```
**注意:**
- 一般情况下,在原始数据集全部有标注框的图片中,**原图宽高的平均值大于1500像素,且有1/2以上的图片标注框的平均宽高与原图宽高比例小于0.04时(通过打印中位数得到该值)**,建议进行切图训练。
- `Suggested reg_range[1]` 为数据集在优化后DFL算法中推荐的`reg_range`上限,即`reg_max + 1`,在 PP-YOLOE-SOD 模型的配置文件的head中设置这个值。
AI Studio 官方教程案例请参考[基于PP-YOLOE-SOD的无人机航拍图像检测案例全流程实操](https://aistudio.baidu.com/aistudio/projectdetail/5036782),欢迎一起动手实践学习。
### SAHI切图
针对需要切图的数据集,使用[SAHI](https://github.com/obss/sahi)库进行切图:
#### 安装SAHI库:
参考[SAHI installation](https://github.com/obss/sahi/blob/main/README.md#installation)进行安装,`pip install sahi`,参考[installation](https://github.com/obss/sahi/blob/main/README.md#installation)
#### 基于SAHI切图
以DOTA水平框数据集的train数据集为例,切分后的**子图文件夹****子图json标注文件**共同保存在`dota_sliced`文件夹下,分别命名为`train_images_500_025``train_500_025.json`
```bash
python tools/slice_image.py --image_dir dataset/DOTA/train/ --json_path dataset/DOTA/annotations/train.json --output_dir dataset/dota_sliced --slice_size 500 --overlap_ratio 0.25
```
- `--image_dir`:原始数据集图片文件夹的路径
- `--json_path`:原始数据集COCO格式的json标注文件的路径
- `--output_dir`:切分后的子图及其json标注文件保存的路径
- `--slice_size`:切分以后子图的边长尺度大小(默认切图后为正方形)
- `--overlap_ratio`:切分时的子图之间的重叠率
**注意:** **注意:**
- **是否需要切图**,建议参照[切图使用说明](#切图使用说明)中的[统计数据集分布](#统计数据集分布)先分析一下数据集再确定,一般数据集中**所有目标均极小**的情况下推荐切图训练和切图预测。 - 如果切图然后使用子图去**训练**,则只能**离线切图**,即切完图后保存成子图,存放在内存空间中。
- 不通过切图拼图而**直接使用原图**的方案也可以参照[visdrone](./visdrone) - 如果切图然后使用子图去**评估或预测**,则既可以**离线切图**,也可以**在线切图**,PaddleDetection中支持切图并自动拼图组合结果到原图上。
- 第三方AI Studio教程案例可参考 [PPYOLOE:遥感场景下的小目标检测与部署(切图版)](https://aistudio.baidu.com/aistudio/projectdetail/4493701)[涨分神器!基于PPYOLOE的切图和拼图解决方案](https://aistudio.baidu.com/aistudio/projectdetail/4438275)
## 模型库 ## 模型库
...@@ -56,6 +128,21 @@ AI Studio 官方教程案例请参考[基于PP-YOLOE-SOD的无人机航拍图像 ...@@ -56,6 +128,21 @@ AI Studio 官方教程案例请参考[基于PP-YOLOE-SOD的无人机航拍图像
- **P2**表示增加P2层(1/4下采样层)的特征,共输出4个PPYOLOEHead。 - **P2**表示增加P2层(1/4下采样层)的特征,共输出4个PPYOLOEHead。
- **Alpha**表示对CSPResNet骨干网络增加可一个学习权重参数Alpha参与训练。 - **Alpha**表示对CSPResNet骨干网络增加可一个学习权重参数Alpha参与训练。
- **largesize**表示使用**以1600尺度为基础的多尺度训练****1920尺度预测**,相应的训练batch_size也减小,以速度来换取高精度。 - **largesize**表示使用**以1600尺度为基础的多尺度训练****1920尺度预测**,相应的训练batch_size也减小,以速度来换取高精度。
- MatlabAPI测试是使用官网评测工具[VisDrone2018-DET-toolkit](https://github.com/VisDrone/VisDrone2018-DET-toolkit)
<details>
<summary> 快速开始 </summary>
```shell
# 训练
python -m paddle.distributed.launch --log_dir=logs/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l_80e_visdrone.yml --amp --eval
# 评估
python tools/eval.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l_80e_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_visdrone.pdparams
# 预测
python tools/infer.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l_80e_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_visdrone.pdparams --infer_img=demo/visdrone_0000315_01601_d_0000509.jpg --draw_threshold=0.25
```
</details>
### COCO模型 ### COCO模型
...@@ -69,6 +156,20 @@ AI Studio 官方教程案例请参考[基于PP-YOLOE-SOD的无人机航拍图像 ...@@ -69,6 +156,20 @@ AI Studio 官方教程案例请参考[基于PP-YOLOE-SOD的无人机航拍图像
- 上表中的模型均为**使用原图训练**,也**原图评估预测**,网络输入尺度为640x640,训练集为COCO的train2017,验证集为val2017,均为8卡总batch_size为64训练80 epoch。 - 上表中的模型均为**使用原图训练**,也**原图评估预测**,网络输入尺度为640x640,训练集为COCO的train2017,验证集为val2017,均为8卡总batch_size为64训练80 epoch。
- **SOD**表示使用**基于向量的DFL算法**和针对小目标的**中心先验优化策略**,并**在模型的Neck结构中加入transformer**,可在 AP<sup>small 上提升1.9。 - **SOD**表示使用**基于向量的DFL算法**和针对小目标的**中心先验优化策略**,并**在模型的Neck结构中加入transformer**,可在 AP<sup>small 上提升1.9。
<details>
<summary> 快速开始 </summary>
```shell
# 训练
python -m paddle.distributed.launch --log_dir=logs/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/smalldet/ppyoloe_plus_sod_crn_l_80e_coco.yml --amp --eval
# 评估
python tools/eval.py -c configs/smalldet/ppyoloe_plus_sod_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_coco.pdparams
# 预测
python tools/infer.py -c configs/smalldet/ppyoloe_plus_sod_crn_l_80e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_coco.pdparams --infer_img=demo/000000014439_640x640.jpg --draw_threshold=0.25
```
</details>
### 切图模型 ### 切图模型
...@@ -83,18 +184,55 @@ AI Studio 官方教程案例请参考[基于PP-YOLOE-SOD的无人机航拍图像 ...@@ -83,18 +184,55 @@ AI Studio 官方教程案例请参考[基于PP-YOLOE-SOD的无人机航拍图像
- **SLICE_SIZE**表示使用SAHI工具切图后子图的边长大小,**OVERLAP_RATIO**表示切图的子图之间的重叠率。 - **SLICE_SIZE**表示使用SAHI工具切图后子图的边长大小,**OVERLAP_RATIO**表示切图的子图之间的重叠率。
- VisDrone-DET的模型与[拼图模型](#拼图模型)表格中的VisDrone-DET是**同一个模型权重**,但此处AP精度是在**切图后的子图验证集**上评估的结果。 - VisDrone-DET的模型与[拼图模型](#拼图模型)表格中的VisDrone-DET是**同一个模型权重**,但此处AP精度是在**切图后的子图验证集**上评估的结果。
<details>
<summary> 快速开始 </summary>
```shell
# 训练
python -m paddle.distributed.launch --log_dir=logs/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml --amp --eval
# 子图直接评估
python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams
# 子图直接预测
python tools/infer.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --infer_img=demo/visdrone_0000315_01601_d_0000509.jpg --draw_threshold=0.25
```
</details>
### 拼图模型 ### 拼图模型
| 模型 | 数据集 | SLICE_SIZE | OVERLAP_RATIO | 类别数 | mAP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | 下载链接 | 配置文件 | | 模型 | 数据集 | SLICE_SIZE | OVERLAP_RATIO | 类别数 | mAP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | 下载链接 | 配置文件 |
|:---------|:---------------:|:---------------:|:---------------:|:------:|:-----------------------:|:-------------------:|:---------:| :-----: | |:---------|:---------------:|:---------------:|:---------------:|:------:|:-----------------------:|:-------------------:|:---------:| :-----: |
|PP-YOLOE-l (原图评估)| VisDrone-DET| 640 | 0.25 | 10 | 29.7 | 48.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](./ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) | |PP-YOLOE-l (原图直接评估)| VisDrone-DET| 640 | 0.25 | 10 | 29.7 | 48.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](./ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) |
|PP-YOLOE-l (拼图评估)| VisDrone-DET| 640 | 0.25 | 10 | 37.2 | 59.4 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](./ppyoloe_crn_l_80e_sliced_visdrone_640_025_slice_infer.yml) | |PP-YOLOE-l (切图拼图评估)| VisDrone-DET| 640 | 0.25 | 10 | 37.3 | 59.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](./ppyoloe_crn_l_80e_sliced_visdrone_640_025_slice_infer.yml) |
**注意:** **注意:**
- 上表中的模型均为使用**切图后的子图**训练,评估预测时分为两种,**直接使用原图**评估预测,和**使用子图自动拼成原图**评估预测,AP精度均为**原图验证集**上评估的结果。。 - 上表中的模型均为使用**切图后的子图**训练,评估预测时分为两种,**直接使用原图**评估预测,和**使用子图自动拼成原图**评估预测,AP精度均为**原图验证集**上评估的结果。。
- **SLICE_SIZE**表示使用SAHI工具切图后子图的边长大小,**OVERLAP_RATIO**表示切图的子图之间的重叠率。 - **SLICE_SIZE**表示使用SAHI工具切图后子图的边长大小,**OVERLAP_RATIO**表示切图的子图之间的重叠率。
- VisDrone-DET的模型与[切图模型](#切图模型)表格中的VisDrone-DET是**同一个模型权重**,但此处AP精度是在**原图验证集**上评估的结果。 - VisDrone-DET的模型与[切图模型](#切图模型)表格中的VisDrone-DET是**同一个模型权重**,但此处AP精度是在**原图验证集**上评估的结果,需要提前修改`ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml`里的`EvalDataset`的默认的子图验证集路径为以下**原图验证集路径**
```
EvalDataset:
!COCODataSet
image_dir: VisDrone2019-DET-val
anno_path: val.json
dataset_dir: dataset/visdrone
```
<details>
<summary> 快速开始 </summary>
```shell
# 训练
python -m paddle.distributed.launch --log_dir=logs/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml --amp --eval
# 原图直接评估,注意需要提前修改此yml中的 `EvalDataset` 的默认的子图验证集路径 为 原图验证集路径:
python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams
# 切图拼图评估,加上 --slice_infer,注意是使用的带 _slice_infer 后缀的yml配置文件
python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025_slice_infer.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --slice_infer
# 切图拼图预测,加上 --slice_infer
python tools/infer.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --infer_img=demo/visdrone_0000315_01601_d_0000509.jpg --draw_threshold=0.25 --slice_infer
```
</details>
### 注意事项 ### 注意事项
...@@ -103,124 +241,42 @@ AI Studio 官方教程案例请参考[基于PP-YOLOE-SOD的无人机航拍图像 ...@@ -103,124 +241,42 @@ AI Studio 官方教程案例请参考[基于PP-YOLOE-SOD的无人机航拍图像
- DOTA水平框和Xview数据集均是**切图后训练**,AP指标为**切图后的子图val上的指标** - DOTA水平框和Xview数据集均是**切图后训练**,AP指标为**切图后的子图val上的指标**
- VisDrone-DET数据集请参照[visdrone](./visdrone)**可使用原图训练,也可使用切图后训练**,这上面表格中的指标均是使用VisDrone-DET的val子集做验证而未使用test_dev子集。 - VisDrone-DET数据集请参照[visdrone](./visdrone)**可使用原图训练,也可使用切图后训练**,这上面表格中的指标均是使用VisDrone-DET的val子集做验证而未使用test_dev子集。
- PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率。 - PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率。
- 常用训练验证部署等步骤请参考[ppyoloe](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/ppyoloe#getting-start) - 常用训练验证部署等步骤请参考[ppyoloe](../ppyoloe#getting-start)
- 自动切图和拼图的推理预测需添加设置`--slice_infer`,具体见下文[模型库使用说明](#模型库使用说明)中的[预测](#预测)[部署](#部署) - 自动切图和拼图的推理预测需添加设置`--slice_infer`,具体见下文[模型库使用说明](#模型库使用说明)中的[预测](#预测)[部署](#部署)
- 自动切图和拼图过程,参照[2.3 子图拼图评估](#评估) - 自动切图和拼图过程,参照[2.3 子图拼图评估](#评估)
## 数据集准备 ## 模型库使用说明
### VisDrone-DET
VisDrone-DET是一个无人机航拍场景的小目标数据集,整理后的COCO格式VisDrone-DET数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone.zip),切图后的COCO格式数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone_sliced.zip),检测其中的**10类**,包括 `pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10)`,原始数据集[下载链接](https://github.com/VisDrone/VisDrone-Dataset)
具体使用和下载请参考[visdrone](../visdrone)
### DOTA水平框
DOTA是一个大型的遥感影像公开数据集,这里使用**DOTA-v1.0**水平框数据集,切图后整理的COCO格式的DOTA水平框数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/dota_sliced.zip),检测其中的**15类**
包括 `plane(0), baseball-diamond(1), bridge(2), ground-track-field(3), small-vehicle(4), large-vehicle(5), ship(6), tennis-court(7),basketball-court(8), storage-tank(9), soccer-ball-field(10), roundabout(11), harbor(12), swimming-pool(13), helicopter(14)`
图片及原始数据集[下载链接](https://captain-whu.github.io/DOAI2019/dataset.html)
### Xview
Xview是一个大型的航拍遥感检测数据集,目标极小极多,切图后整理的COCO格式数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/xview_sliced.zip),检测其中的**60类**
具体类别为:
<details>
`Fixed-wing Aircraft(0),
Small Aircraft(1),
Cargo Plane(2),
Helicopter(3),
Passenger Vehicle(4),
Small Car(5),
Bus(6),
Pickup Truck(7),
Utility Truck(8),
Truck(9),
Cargo Truck(10),
Truck w/Box(11),
Truck Tractor(12),
Trailer(13),
Truck w/Flatbed(14),
Truck w/Liquid(15),
Crane Truck(16),
Railway Vehicle(17),
Passenger Car(18),
Cargo Car(19),
Flat Car(20),
Tank car(21),
Locomotive(22),
Maritime Vessel(23),
Motorboat(24),
Sailboat(25),
Tugboat(26),
Barge(27),
Fishing Vessel(28),
Ferry(29),
Yacht(30),
Container Ship(31),
Oil Tanker(32),
Engineering Vehicle(33),
Tower crane(34),
Container Crane(35),
Reach Stacker(36),
Straddle Carrier(37),
Mobile Crane(38),
Dump Truck(39),
Haul Truck(40),
Scraper/Tractor(41),
Front loader/Bulldozer(42),
Excavator(43),
Cement Mixer(44),
Ground Grader(45),
Hut/Tent(46),
Shed(47),
Building(48),
Aircraft Hangar(49),
Damaged Building(50),
Facility(51),
Construction Site(52),
Vehicle Lot(53),
Helipad(54),
Storage Tank(55),
Shipping container lot(56),
Shipping Container(57),
Pylon(58),
Tower(59)
`
</details>
,原始数据集[下载链接](https://challenge.xviewdataset.org/)
### 用户自定义数据集准备 ### 训练
用户自定义数据集准备请参考[DET数据集标注工具](../../docs/tutorials/data/DetAnnoTools.md)[DET数据集准备教程](../../docs/tutorials/data/PrepareDetDataSet.md)去准备。 #### 1.1 原图训练
首先将待训数据集制作成COCO数据集格式,然后按照PaddleDetection的模型的常规训练流程训练即可。
执行以下指令使用混合精度训练COCO数据集:
## 模型库使用说明 ```bash
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/smalldet/ppyoloe_plus_sod_crn_l_80e_coco.yml --amp --eval
```
### 训练 **注意:**
- 使用默认配置训练需要设置`--amp`以避免显存溢出,`--eval`表示边训边验证,会自动保存最佳精度的模型权重。
首先将你的数据集为COCO数据集格式,然后使用SAHI切图工具进行离线切图,对保存的子图按常规检测模型的训练流程走即可。 #### 1.2 原图训练
首先将待训数据集制作成COCO数据集格式,然后使用SAHI切图工具进行**离线切图**,对保存的子图按**常规检测模型的训练流程**走即可。
也可直接下载PaddleDetection团队提供的切图后的VisDrone-DET、DOTA水平框、Xview数据集。 也可直接下载PaddleDetection团队提供的切图后的VisDrone-DET、DOTA水平框、Xview数据集。
执行以下指令使用混合精度训练PP-YOLOE 执行以下指令使用混合精度训练VisDrone切图数据集:
```bash ```bash
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml --amp --eval python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml --amp --eval
``` ```
**注意:**
- 使用默认配置训练需要设置`--amp`以避免显存溢出。
### 评估 ### 评估
#### 2.1 子图评估 #### 2.1 子图评估
**默认评估方式是子图评估**,子图数据集的验证集设置为:
默认评估方式是子图评估,子图数据集的验证集设置为:
``` ```
EvalDataset: EvalDataset:
!COCODataSet !COCODataSet
...@@ -234,7 +290,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80 ...@@ -234,7 +290,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80
``` ```
#### 2.2 原图评估 #### 2.2 原图评估
修改验证集的标注文件路径为原图标注文件 修改验证集的标注文件路径为**原图标注文件**
``` ```
EvalDataset: EvalDataset:
!COCODataSet !COCODataSet
...@@ -248,7 +304,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80 ...@@ -248,7 +304,7 @@ CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80
``` ```
#### 2.3 子图拼图评估 #### 2.3 子图拼图评估
修改验证集的标注文件路径为原图标注文件 修改验证集的标注文件路径为**原图标注文件**
``` ```
# very slow, preferly eval with a determined weights(xx.pdparams) # very slow, preferly eval with a determined weights(xx.pdparams)
# if you want to eval during training, change SlicedCOCODataSet to COCODataSet and delete sliced_size and overlap_ratio # if you want to eval during training, change SlicedCOCODataSet to COCODataSet and delete sliced_size and overlap_ratio
...@@ -287,14 +343,14 @@ EvalDataset: ...@@ -287,14 +343,14 @@ EvalDataset:
#### 3.1 子图或原图直接预测 #### 3.1 子图或原图直接预测
与评估流程基本相同,可以在提前切好并存下来的子图上预测,也可以对原图预测,如: 与评估流程基本相同,可以在提前切好并存下来的子图上预测,也可以对原图预测,如:
```bash ```bash
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --infer_img=demo/0000315_01601_d_0000509.jpg --draw_threshold=0.25 CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --infer_img=demo/visdrone_0000315_01601_d_0000509.jpg --draw_threshold=0.25
``` ```
#### 3.2 原图自动切图并拼图预测 #### 3.2 原图自动切图并拼图预测
也可以对原图进行自动切图并拼图重组来预测原图,如: 也可以对原图进行自动切图并拼图重组来预测原图,如:
```bash ```bash
# 单张图 # 单张图
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --infer_img=demo/0000315_01601_d_0000509.jpg --draw_threshold=0.25 --slice_infer --slice_size 640 640 --overlap_ratio 0.25 0.25 --combine_method=nms --match_threshold=0.6 --match_metric=ios --save_results=True CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --infer_img=demo/visdrone_0000315_01601_d_0000509.jpg --draw_threshold=0.25 --slice_infer --slice_size 640 640 --overlap_ratio 0.25 0.25 --combine_method=nms --match_threshold=0.6 --match_metric=ios --save_results=True
# 或图片文件夹 # 或图片文件夹
CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --infer_dir=demo/ --draw_threshold=0.25 --slice_infer --slice_size 640 640 --overlap_ratio 0.25 0.25 --combine_method=nms --match_threshold=0.6 --match_metric=ios CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --infer_dir=demo/ --draw_threshold=0.25 --slice_infer --slice_size 640 640 --overlap_ratio 0.25 0.25 --combine_method=nms --match_threshold=0.6 --match_metric=ios
``` ```
...@@ -317,14 +373,14 @@ CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/smalldet/ppyoloe_ ...@@ -317,14 +373,14 @@ CUDA_VISIBLE_DEVICES=0 python tools/export_model.py -c configs/smalldet/ppyoloe_
#### 4.2 使用原图或子图直接推理 #### 4.2 使用原图或子图直接推理
```bash ```bash
# deploy infer # deploy infer
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_80e_sliced_visdrone_640_025 --image_file=demo/0000315_01601_d_0000509.jpg --device=GPU --save_images --threshold=0.25 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_80e_sliced_visdrone_640_025 --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=GPU --save_images --threshold=0.25
``` ```
#### 4.3 使用原图自动切图并拼图重组结果来推理 #### 4.3 使用原图自动切图并拼图重组结果来推理
```bash ```bash
# deploy slice infer # deploy slice infer
# 单张图 # 单张图
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_80e_sliced_visdrone_640_025 --image_file=demo/0000315_01601_d_0000509.jpg --device=GPU --save_images --threshold=0.25 --slice_infer --slice_size 640 640 --overlap_ratio 0.25 0.25 --combine_method=nms --match_threshold=0.6 --match_metric=ios --save_results=True CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_80e_sliced_visdrone_640_025 --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=GPU --save_images --threshold=0.25 --slice_infer --slice_size 640 640 --overlap_ratio 0.25 0.25 --combine_method=nms --match_threshold=0.6 --match_metric=ios --save_results=True
# 或图片文件夹 # 或图片文件夹
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_80e_sliced_visdrone_640_025 --image_dir=demo/ --device=GPU --save_images --threshold=0.25 --slice_infer --slice_size 640 640 --overlap_ratio 0.25 0.25 --combine_method=nms --match_threshold=0.6 --match_metric=ios CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_crn_l_80e_sliced_visdrone_640_025 --image_dir=demo/ --device=GPU --save_images --threshold=0.25 --slice_infer --slice_size 640 640 --overlap_ratio 0.25 0.25 --combine_method=nms --match_threshold=0.6 --match_metric=ios
``` ```
...@@ -336,64 +392,6 @@ CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inferenc ...@@ -336,64 +392,6 @@ CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inferenc
- 设置`--save_results`表示保存图片结果为json文件,一般只单张图预测时使用; - 设置`--save_results`表示保存图片结果为json文件,一般只单张图预测时使用;
## 切图使用说明
### 统计数据集分布
首先统计所用数据集标注框的平均宽高占图片真实宽高的比例分布:
```bash
python tools/box_distribution.py --json_path ../../dataset/DOTA/annotations/train.json --out_img box_distribution.jpg
```
- `--json_path` :待统计数据集COCO 格式 annotation 的json文件路径
- `--eval_size` :推理尺度(默认640)
- `--small_sride` :模型最小步长(默认8)
- `--out_img` :输出的统计分布图路径
以DOTA数据集的train数据集为例,统计结果打印如下:
```bash
Suggested reg_range[1] is 13
Mean of all img_w is 2304.3981547196595
Mean of all img_h is 2180.9354151880766
Median of ratio_w is 0.03799439775910364
Median of ratio_h is 0.04074914637387802
all_img with box: 1409
all_ann: 98905
Distribution saved as box_distribution.jpg
```
**注意:**
- `Suggested reg_range[1]` 为数据集在优化后DFL算法中推荐的`reg_range`上限,即` reg_max+1`
- 当原始数据集全部有标注框的图片中,**原图宽高均值大于1500且有1/2以上的图片标注框的平均宽高与原图宽高比例小于0.04时**,建议进行切图训练。
### SAHI切图
针对需要切图的数据集,使用[SAHI](https://github.com/obss/sahi)库进行切分:
#### 安装SAHI库:
参考[SAHI installation](https://github.com/obss/sahi/blob/main/README.md#installation)进行安装
```bash
pip install sahi
```
#### 基于SAHI切图
```bash
python tools/slice_image.py --image_dir ../../dataset/DOTA/train/ --json_path ../../dataset/DOTA/annotations/train.json --output_dir ../../dataset/dota_sliced --slice_size 500 --overlap_ratio 0.25
```
- `--image_dir`:原始数据集图片文件夹的路径
- `--json_path`:原始数据集COCO格式的json标注文件的路径
- `--output_dir`:切分后的子图及其json标注文件保存的路径
- `--slice_size`:切分以后子图的边长尺度大小(默认切图后为正方形)
- `--overlap_ratio`:切分时的子图之间的重叠率
- 以上述代码为例,切分后的子图文件夹与json标注文件共同保存在`dota_sliced`文件夹下,分别命名为`train_images_500_025``train_500_025.json`
## 引用 ## 引用
``` ```
@article{akyon2022sahi, @article{akyon2022sahi,
......
...@@ -50,3 +50,9 @@ EvalDataset: ...@@ -50,3 +50,9 @@ EvalDataset:
image_dir: val_images_640_025 image_dir: val_images_640_025
anno_path: val_640_025.json anno_path: val_640_025.json
dataset_dir: dataset/visdrone_sliced dataset_dir: dataset/visdrone_sliced
# EvalDataset:
# !COCODataSet
# image_dir: VisDrone2019-DET-val
# anno_path: val.json
# dataset_dir: dataset/visdrone
# VisDrone-DET 小目标检测模型 # VisDrone-DET 小目标检测模型
PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基于PP-YOLOE的检测模型,用户可以下载模型进行使用。整理后的COCO格式VisDrone-DET数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone.zip),检测其中的10类,包括 `pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10)`,原始数据集[下载链接](https://github.com/VisDrone/VisDrone-Dataset) PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基于PP-YOLOE的检测模型,用户可以下载模型进行使用。整理后的COCO格式VisDrone-DET数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone.zip),检测其中的10类,包括 `pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10)`,原始数据集[下载链接](https://github.com/VisDrone/VisDrone-Dataset)其他相关小目标数据集可参照 [DataDownload.md](../DataDownload.md)
**注意:** **注意:**
- VisDrone-DET数据集包括**train集6471张,val集548张,test_dev集1610张**,test-challenge集1580张(未开放检测框标注),前三者均有开放检测框标注。 - VisDrone-DET数据集包括**train集6471张,val集548张,test_dev集1610张**,test-challenge集1580张(未开放检测框标注),前三者均有开放检测框标注。
...@@ -30,26 +30,66 @@ PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基 ...@@ -30,26 +30,66 @@ PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基
- **P2**表示增加P2层(1/4下采样层)的特征,共输出4个PPYOLOEHead。 - **P2**表示增加P2层(1/4下采样层)的特征,共输出4个PPYOLOEHead。
- **Alpha**表示对CSPResNet骨干网络增加可一个学习权重参数Alpha参与训练。 - **Alpha**表示对CSPResNet骨干网络增加可一个学习权重参数Alpha参与训练。
- **largesize**表示使用**以1600尺度为基础的多尺度训练****1920尺度预测**,相应的训练batch_size也减小,以速度来换取高精度。 - **largesize**表示使用**以1600尺度为基础的多尺度训练****1920尺度预测**,相应的训练batch_size也减小,以速度来换取高精度。
- MatlabAPI测试是使用官网评测工具[VisDrone2018-DET-toolkit](https://github.com/VisDrone/VisDrone2018-DET-toolkit)
<details>
<summary> 快速开始 </summary>
```shell
# 训练
python -m paddle.distributed.launch --log_dir=logs/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l_80e_visdrone.yml --amp --eval
# 评估
python tools/eval.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l_80e_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_visdrone.pdparams
# 预测
python tools/infer.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l_80e_visdrone.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_plus_sod_crn_l_80e_visdrone.pdparams --infer_img=demo/visdrone_0000315_01601_d_0000509.jpg --draw_threshold=0.25
```
</details>
## 子图训练,原图评估和拼图评估: ## 子图训练,原图评估和拼图评估:
| 模型 | 数据集 | SLICE_SIZE | OVERLAP_RATIO | 类别数 | mAP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | 下载链接 | 配置文件 | | 模型 | 数据集 | SLICE_SIZE | OVERLAP_RATIO | 类别数 | mAP<sup>val<br>0.5:0.95 | AP<sup>val<br>0.5 | 下载链接 | 配置文件 |
|:---------|:---------------:|:---------------:|:---------------:|:------:|:-----------------------:|:-------------------:|:---------:| :-----: | |:---------|:---------------:|:---------------:|:---------------:|:------:|:-----------------------:|:-------------------:|:---------:| :-----: |
|PP-YOLOE-l(原图评估)| VisDrone-DET| 640 | 0.25 | 10 | 29.7 | 48.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](../ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) | |PP-YOLOE-l(子图直接评估)| VisDrone-DET| 640 | 0.25 | 10 | 38.5(子图val) | 60.2 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](./ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) |
|PP-YOLOE-l (拼图评估)| VisDrone-DET| 640 | 0.25 | 10 | 37.2 | 59.4 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](../ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) | |PP-YOLOE-l(原图直接评估)| VisDrone-DET| 640 | 0.25 | 10 | 29.7(原图val) | 48.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](../ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) |
|PP-YOLOE-l (切图拼图评估)| VisDrone-DET| 640 | 0.25 | 10 | 37.3(原图val) | 59.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](../ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) |
**注意:** **注意:**
- 上表中的模型均为使用**切图后的子图**训练,评估预测时分为两种,**直接使用原图**评估预测,和**使用子图自动拼成原图**评估预测,AP精度均为**原图验证集**上评估的结果。。 - 上表中的模型均为使用**切图后的子图**训练,评估预测时分为两种,**直接使用原图**评估预测,和**使用子图自动拼成原图**评估预测,AP精度均为**原图验证集**上评估的结果。。
- **SLICE_SIZE**表示使用SAHI工具切图后子图的边长大小,**OVERLAP_RATIO**表示切图的子图之间的重叠率。 - **SLICE_SIZE**表示使用SAHI工具切图后子图的边长大小,**OVERLAP_RATIO**表示切图的子图之间的重叠率。
- VisDrone-DET的模型与[切图模型](../README.md#切图模型)表格中的VisDrone-DET是**同一个模型权重**,但此处AP精度是在**原图验证集**上评估的结果。 - VisDrone-DET的模型与[切图模型](../README.md#切图模型)表格中的VisDrone-DET是**同一个模型权重**,但此处AP精度是在**原图验证集**上评估的结果,需要提前修改`ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml`里的`EvalDataset`的默认的子图验证集路径为以下**原图验证集路径**
```
EvalDataset:
!COCODataSet
image_dir: VisDrone2019-DET-val
anno_path: val.json
dataset_dir: dataset/visdrone
```
<details>
<summary> 快速开始 </summary>
```shell
# 训练
python -m paddle.distributed.launch --log_dir=logs/ --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml --amp --eval
# 子图直接评估
python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams
# 原图直接评估,注意需要提前修改此yml中的 `EvalDataset` 的默认的子图验证集路径 为 原图验证集路径:
python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams
# 切图拼图评估,加上 --slice_infer,注意是使用的带 _slice_infer 后缀的yml配置文件
python tools/eval.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025_slice_infer.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --slice_infer
# 切图拼图预测,加上 --slice_infer
python tools/infer.py -c configs/smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml -o weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams --infer_img=demo/visdrone_0000315_01601_d_0000509.jpg --draw_threshold=0.25 --slice_infer
```
</details>
## 注意事项: ## 注意事项:
- PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率。 - PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)** 调整学习率。
- 具体使用教程请参考[ppyoloe](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.5/configs/ppyoloe#getting-start) - 具体使用教程请参考[ppyoloe](../../ppyoloe#getting-start)
- MatlabAPI测试是使用官网评测工具[VisDrone2018-DET-toolkit](https://github.com/VisDrone/VisDrone2018-DET-toolkit) - MatlabAPI测试是使用官网评测工具[VisDrone2018-DET-toolkit](https://github.com/VisDrone/VisDrone2018-DET-toolkit)
- 切图训练模型的配置文件及训练相关流程请参照[README](../README.cn)
## PP-YOLOE+_SOD 部署模型 ## PP-YOLOE+_SOD 部署模型
...@@ -89,16 +129,16 @@ python tools/export_model.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l ...@@ -89,16 +129,16 @@ python tools/export_model.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l
paddle2onnx --model_dir output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx paddle2onnx --model_dir output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx
# 推理单张图片 # 推理单张图片
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_mode=trt_fp16
# 推理文件夹下的所有图片 # 推理文件夹下的所有图片
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_dir=demo/ --device=gpu --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_dir=demo/ --device=gpu --run_mode=trt_fp16
# 单张图片普通测速 # 单张图片普通测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True
# 单张图片TensorRT FP16测速 # 单张图片TensorRT FP16测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True --run_mode=trt_fp16
``` ```
3.运行以下命令导出**不带NMS的模型和ONNX**,并使用TensorRT FP16进行推理和测速,以及**ONNX下FP16测速** 3.运行以下命令导出**不带NMS的模型和ONNX**,并使用TensorRT FP16进行推理和测速,以及**ONNX下FP16测速**
...@@ -111,16 +151,16 @@ python tools/export_model.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l ...@@ -111,16 +151,16 @@ python tools/export_model.py -c configs/smalldet/visdrone/ppyoloe_plus_sod_crn_l
paddle2onnx --model_dir output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx paddle2onnx --model_dir output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx
# 推理单张图片 # 推理单张图片
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_mode=trt_fp16
# 推理文件夹下的所有图片 # 推理文件夹下的所有图片
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_dir=demo/ --device=gpu --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_dir=demo/ --device=gpu --run_mode=trt_fp16
# 单张图片普通测速 # 单张图片普通测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True
# 单张图片TensorRT FP16测速 # 单张图片TensorRT FP16测速
CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True --run_mode=trt_fp16 CUDA_VISIBLE_DEVICES=0 python deploy/python/infer.py --model_dir=output_inference/ppyoloe_plus_sod_crn_l_largesize_80e_visdrone --image_file=demo/visdrone_0000315_01601_d_0000509.jpg --device=gpu --run_benchmark=True --run_mode=trt_fp16
# 单张图片ONNX TensorRT FP16测速 # 单张图片ONNX TensorRT FP16测速
/usr/local/TensorRT-8.0.3.4/bin/trtexec --onnx=ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx --workspace=4096 --avgRuns=10 --shapes=input:1x3x1920x1920 --fp16 /usr/local/TensorRT-8.0.3.4/bin/trtexec --onnx=ppyoloe_plus_sod_crn_l_largesize_80e_visdrone.onnx --workspace=4096 --avgRuns=10 --shapes=input:1x3x1920x1920 --fp16
......
...@@ -2,10 +2,10 @@ ...@@ -2,10 +2,10 @@
## 目录 ## 目录
- [目标检测数据说明](#目标检测数据说明) - [目标检测数据说明](#目标检测数据说明)
- [准备训练数据](#准备训练数据) - [准备训练数据](#准备训练数据)
- [VOC数据数据](#VOC数据数据) - [VOC数据](#VOC数据)
- [VOC数据集下载](#VOC数据集下载) - [VOC数据集下载](#VOC数据集下载)
- [VOC数据标注文件介绍](#VOC数据标注文件介绍) - [VOC数据标注文件介绍](#VOC数据标注文件介绍)
- [COCO数据数据](#COCO数据数据) - [COCO数据](#COCO数据)
- [COCO数据集下载](#COCO数据下载) - [COCO数据集下载](#COCO数据下载)
- [COCO数据标注文件介绍](#COCO数据标注文件介绍) - [COCO数据标注文件介绍](#COCO数据标注文件介绍)
- [用户数据准备](#用户数据准备) - [用户数据准备](#用户数据准备)
...@@ -36,8 +36,8 @@ ...@@ -36,8 +36,8 @@
PaddleDetection默认支持[COCO](http://cocodataset.org)[Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/)[WIDER-FACE](http://shuoyang1213.me/WIDERFACE/) 数据源。 PaddleDetection默认支持[COCO](http://cocodataset.org)[Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/)[WIDER-FACE](http://shuoyang1213.me/WIDERFACE/) 数据源。
同时还支持自定义数据源,包括: 同时还支持自定义数据源,包括:
(1) 自定义数据数据转换成VOC数据; (1) 自定义数据转换成VOC数据;
(2) 自定义数据数据转换成COCO数据; (2) 自定义数据转换成COCO数据;
(3) 自定义新的数据源,增加自定义的reader。 (3) 自定义新的数据源,增加自定义的reader。
...@@ -47,7 +47,7 @@ cd PaddleDetection/ ...@@ -47,7 +47,7 @@ cd PaddleDetection/
ppdet_root=$(pwd) ppdet_root=$(pwd)
``` ```
#### VOC数据数据 #### VOC数据
VOC数据是[Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) 比赛使用的数据。Pascal VOC比赛不仅包含图像分类分类任务,还包含图像目标检测、图像分割等任务,其标注文件中包含多个任务的标注内容。 VOC数据是[Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) 比赛使用的数据。Pascal VOC比赛不仅包含图像分类分类任务,还包含图像目标检测、图像分割等任务,其标注文件中包含多个任务的标注内容。
VOC数据集指的是Pascal VOC比赛使用的数据。用户自定义的VOC数据,xml文件中的非必须字段,请根据实际情况选择是否标注或是否使用默认值。 VOC数据集指的是Pascal VOC比赛使用的数据。用户自定义的VOC数据,xml文件中的非必须字段,请根据实际情况选择是否标注或是否使用默认值。
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册