Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
1c9fc655
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1c9fc655
编写于
6月 15, 2018
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update
上级
e2783bb6
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
48 addition
and
45 deletion
+48
-45
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+39
-34
python/paddle/fluid/layers/learning_rate_scheduler.py
python/paddle/fluid/layers/learning_rate_scheduler.py
+5
-7
python/paddle/fluid/layers/tensor.py
python/paddle/fluid/layers/tensor.py
+4
-4
未找到文件。
python/paddle/fluid/layers/detection.py
浏览文件 @
1c9fc655
...
@@ -603,7 +603,7 @@ def prior_box(input,
...
@@ -603,7 +603,7 @@ def prior_box(input,
offset
=
0.5
,
offset
=
0.5
,
name
=
None
):
name
=
None
):
"""
"""
**Prior
box o
perator**
**Prior
Box O
perator**
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
Each position of the input produce N prior boxes, N is determined by
Each position of the input produce N prior boxes, N is determined by
...
@@ -632,12 +632,15 @@ def prior_box(input,
...
@@ -632,12 +632,15 @@ def prior_box(input,
name(str): Name of the prior box op. Default: None.
name(str): Name of the prior box op. Default: None.
Returns:
Returns:
boxes(Variable): the output prior boxes of PriorBox.
tuple: A tuple with two Variable (boxes, variances)
boxes: the output prior boxes of PriorBox.
The layout is [H, W, num_priors, 4].
The layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input,
H is the height of input, W is the width of input,
num_priors is the total
num_priors is the total
box count of each position of input.
box count of each position of input.
Variances(Variable): the expanded variances of PriorBox.
variances: the expanded variances of PriorBox.
The layout is [H, W, num_priors, 4].
The layout is [H, W, num_priors, 4].
H is the height of input, W is the width of input
H is the height of input, W is the width of input
num_priors is the total
num_priors is the total
...
@@ -646,7 +649,8 @@ def prior_box(input,
...
@@ -646,7 +649,8 @@ def prior_box(input,
Examples:
Examples:
.. code-block:: python
.. code-block:: python
box, var = prior_box(
box, var = fluid.layers.prior_box(
input=conv1,
input=conv1,
image=images,
image=images,
min_sizes=[100.],
min_sizes=[100.],
...
@@ -721,11 +725,9 @@ def multi_box_head(inputs,
...
@@ -721,11 +725,9 @@ def multi_box_head(inputs,
stride
=
1
,
stride
=
1
,
name
=
None
):
name
=
None
):
"""
"""
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector)
Generate prior boxes for SSD(Single Shot MultiBox Detector)
algorithm. The details of this algorithm, please refer the
algorithm. The details of this algorithm, please refer the
section 2.2 of SSD paper
(SSD: Single Shot MultiBox Detector)
section 2.2 of SSD paper
`SSD: Single Shot MultiBox Detector
<https://arxiv.org/abs/1512.02325>`_ .
<https://arxiv.org/abs/1512.02325>`_ .
Args:
Args:
...
@@ -766,24 +768,27 @@ def multi_box_head(inputs,
...
@@ -766,24 +768,27 @@ def multi_box_head(inputs,
name(str): Name of the prior box layer. Default: None.
name(str): Name of the prior box layer. Default: None.
Returns:
Returns:
mbox_loc(Variable): The predicted boxes' location of the inputs.
tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)
The layout is [N, H*W*Priors, 4]. where Priors
is the number of predicted boxes each position of each input.
mbox_loc: The predicted boxes' location of the inputs. The layout
mbox_conf(Variable): The predicted boxes' confidence of the inputs.
is [N, H*W*Priors, 4]. where Priors is the number of predicted
The layout is [N, H*W*Priors, C]. where Priors
boxes each position of each input.
is the number of predicted boxes each position of each input
and C is the number of Classes.
mbox_conf: The predicted boxes' confidence of the inputs. The layout
boxes(Variable): the output prior boxes of PriorBox.
is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
The layout is [num_priors, 4]. num_priors is the total
each position of each input and C is the number of Classes.
box count of each position of inputs.
Variances(Variable): the expanded variances of PriorBox.
boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
The layout is [num_priors, 4]. num_priors is the total
num_priors is the total box count of each position of inputs.
box count of each position of inputs
variances: the expanded variances of PriorBox. The layout is
[num_priors, 4]. num_priors is the total box count of each position of inputs
Examples:
Examples:
.. code-block:: python
.. code-block:: python
mbox_locs, mbox_confs, box, var = layers.multi_box_head(
mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
image=images,
image=images,
num_classes=21,
num_classes=21,
...
...
python/paddle/fluid/layers/learning_rate_scheduler.py
浏览文件 @
1c9fc655
...
@@ -163,8 +163,6 @@ def polynomial_decay(learning_rate,
...
@@ -163,8 +163,6 @@ def polynomial_decay(learning_rate,
power
=
1.0
,
power
=
1.0
,
cycle
=
False
):
cycle
=
False
):
"""
"""
**Polynomial Decay**
Applies polynomial decay to the initial learning rate.
Applies polynomial decay to the initial learning rate.
.. code-block:: python
.. code-block:: python
...
@@ -178,14 +176,14 @@ def polynomial_decay(learning_rate,
...
@@ -178,14 +176,14 @@ def polynomial_decay(learning_rate,
Args:
Args:
learning_rate(Variable|float32): A scalar float32 value or a Variable. This
learning_rate(Variable|float32): A scalar float32 value or a Variable. This
will be the initial learning rate during training
will be the initial learning rate during training
.
decay_steps(int32): A Python `int32` number.
decay_steps(int32): A Python `int32` number.
end_learning_rate(float
, Default: 0.0001
): A Python `float` number.
end_learning_rate(float): A Python `float` number.
power(float
, Default: 1.0): A Python `float` number
power(float
): A Python `float` number.
cycle(bool
, Default: False): Boolean.
If set true, decay the learning rate every decay_steps.
cycle(bool
):
If set true, decay the learning rate every decay_steps.
Returns:
Returns:
The decayed learning rate
Variable:
The decayed learning rate
"""
"""
global_step
=
_decay_step_counter
()
global_step
=
_decay_step_counter
()
...
...
python/paddle/fluid/layers/tensor.py
浏览文件 @
1c9fc655
...
@@ -40,14 +40,14 @@ __all__ = [
...
@@ -40,14 +40,14 @@ __all__ = [
def
create_tensor
(
dtype
,
name
=
None
,
persistable
=
False
):
def
create_tensor
(
dtype
,
name
=
None
,
persistable
=
False
):
"""
"""
**Create a Tensor**
Create an variable, which will hold a LoDTensor with data type dtype.
Args:
Args:
dtype
(string): 'float32'|'int32'|..., the data type of the
dtype(string): 'float32'|'int32'|..., the data type of the
created tensor.
created tensor.
name
(string, Default: None
): The name of the created tensor, if not set,
name
(string
): The name of the created tensor, if not set,
the name will be a random unique one.
the name will be a random unique one.
persistable
(bool, Default: False
): Set the persistable flag of the create tensor.
persistable
(bool
): Set the persistable flag of the create tensor.
Returns:
Returns:
Variable: The tensor variable storing the created tensor.
Variable: The tensor variable storing the created tensor.
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录