diff --git a/doc/fluid/howto/optimization/cpu_profiling_cn.md b/doc/fluid/howto/optimization/cpu_profiling_cn.md index 8266dec3c6125a09b90ac0ccd4aa5464f5c7db31..198a05a79e19227e90eaafe116217a164cd51a7d 100644 --- a/doc/fluid/howto/optimization/cpu_profiling_cn.md +++ b/doc/fluid/howto/optimization/cpu_profiling_cn.md @@ -1,3 +1,5 @@ +# CPU性能调优 + 此教程会介绍如何使用Python的cProfile包、Python库yep、Google perftools来进行性能分析 (profiling) 与调优(performance tuning)。 Profling 指发现性能瓶颈。系统中的瓶颈可能和程序员开发过程中想象的瓶颈相去甚远。Tuning 指消除瓶颈。性能优化的过程通常是不断重复地 profiling 和 tuning。 @@ -8,7 +10,7 @@ PaddlePaddle 用户一般通过调用 Python API 编写深度学习程序。大 * Python 与 C++ 混合代码的性能分析 -# Python代码的性能分析 +## Python代码的性能分析 ### 生成性能分析文件