diff --git a/configs/_base_/datasets/coco.yml b/configs/_base_/datasets/coco.yml index 6f8af073925f10f94c64cad83b7876f17553a226..628c8ddf37d8a5798c1db151c1476b68a4cc0e2e 100644 --- a/configs/_base_/datasets/coco.yml +++ b/configs/_base_/datasets/coco.yml @@ -6,6 +6,7 @@ TrainDataset: image_dir: train2017 anno_path: annotations/instances_train2017.json dataset_dir: dataset/coco + mixup_epoch: 250 EvalDataset: !COCODataSet diff --git a/configs/_base_/models/yolov3_darknet53.yml b/configs/_base_/models/yolov3_darknet53.yml index 376bb618b6bf65c230bbfe36767b4246e3267ad3..6e4bc216ad6376ec3d0b51cdcb344c49fde41d88 100644 --- a/configs/_base_/models/yolov3_darknet53.yml +++ b/configs/_base_/models/yolov3_darknet53.yml @@ -13,18 +13,21 @@ YOLOv3: DarkNet: depth: 53 return_idx: [2, 3, 4] + norm_type: sync_bn YOLOv3FPN: feat_channels: [1024, 768, 384] YOLOv3Head: - anchors: [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326] + anchors: [[10, 13], [16, 30], [33, 23], + [30, 61], [62, 45], [59, 119], + [116, 90], [156, 198], [373, 326]] anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]] loss: YOLOv3Loss YOLOv3Loss: ignore_thresh: 0.7 - downsample: 32 + downsample: [32, 16, 8] label_smooth: true BBoxPostProcess: diff --git a/configs/_base_/readers/yolov3_reader.yml b/configs/_base_/readers/yolov3_reader.yml index b6d4c93cbc92d69e323bd101f56f20a7f1611246..32994714e4687209c0019db0a546c16228a78878 100644 --- a/configs/_base_/readers/yolov3_reader.yml +++ b/configs/_base_/readers/yolov3_reader.yml @@ -1,26 +1,23 @@ worker_num: 2 TrainReader: inputs_def: - fields: ['image', 'gt_bbox', 'gt_class', 'gt_score'] + fields: ['image', 'gt_bbox', 'gt_class', 'gt_score', 'im_shape', 'scale_factor'] num_max_boxes: 50 sample_transforms: - - DecodeImage: {to_rgb: True, with_mixup: True} - - MixupImage: {alpha: 1.5, beta: 1.5} - - ColorDistort: {} - - RandomExpand: {fill_value: [123.675, 116.28, 103.53]} - - RandomCrop: {} - - RandomFlipImage: {is_normalized: false} - - NormalizeBox: {} - - PadBox: {num_max_boxes: 50} - - BboxXYXY2XYWH: {} + - DecodeOp: {} + - MixupOp: {alpha: 1.5, beta: 1.5} + - RandomDistortOp: {} + - RandomExpandOp: {fill_value: [123.675, 116.28, 103.53]} + - RandomCropOp: {} + - RandomFlipOp: {} batch_transforms: - - RandomShape: {sizes: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608], random_inter: True} - - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True, is_channel_first: false} - - Permute: {to_bgr: false, channel_first: True} - # Gt2YoloTarget is only used when use_fine_grained_loss set as true, - # this operator will be deleted automatically if use_fine_grained_loss - # is set as false - - Gt2YoloTarget: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8]} + - BatchRandomResizeOp: {target_size: [320, 352, 384, 416, 448, 480, 512, 544, 576, 608], random_size: True, random_interp: True, keep_ratio: False} + - NormalizeBoxOp: {} + - PadBoxOp: {num_max_boxes: 50} + - BboxXYXY2XYWHOp: {} + - NormalizeImageOp: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} + - PermuteOp: {} + - Gt2YoloTargetOp: {anchor_masks: [[6, 7, 8], [3, 4, 5], [0, 1, 2]], anchors: [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]], downsample_ratios: [32, 16, 8]} batch_size: 8 shuffle: true drop_last: true @@ -28,24 +25,24 @@ TrainReader: EvalReader: inputs_def: - fields: ['image', 'im_size', 'im_id'] + fields: ['image', 'im_shape', 'scale_factor', 'im_id'] num_max_boxes: 50 sample_transforms: - - DecodeImage: {to_rgb: True} - - ResizeImage: {target_size: 608, interp: 2} - - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True, is_channel_first: false} - - PadBox: {num_max_boxes: 50} - - Permute: {to_bgr: false, channel_first: True} + - DecodeOp: {} + - ResizeOp: {target_size: [608, 608], keep_ratio: False, interp: 2} + - NormalizeImageOp: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} + - PadBoxOp: {num_max_boxes: 50} + - PermuteOp: {} batch_size: 1 drop_empty: false TestReader: inputs_def: image_shape: [3, 608, 608] - fields: ['image', 'im_size', 'im_id'] + fields: ['image', 'im_shape', 'scale_factor', 'im_id'] sample_transforms: - - DecodeImage: {to_rgb: True} - - ResizeImage: {target_size: 608, interp: 2} - - NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True, is_channel_first: false} - - Permute: {to_bgr: false, channel_first: True} + - DecodeOp: {} + - ResizeOp: {target_size: [608, 608], interp: 2} + - NormalizeImageOp: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} + - PermuteOp: {} batch_size: 1 diff --git a/ppdet/data/reader.py b/ppdet/data/reader.py index c279e5abd9b70119d5b898f0ba4614d369412691..2533217d6aa91bfb272754d170ef323e38f59951 100644 --- a/ppdet/data/reader.py +++ b/ppdet/data/reader.py @@ -11,17 +11,18 @@ import numpy as np from paddle.io import DataLoader from ppdet.core.workspace import register, serializable, create from .sampler import DistributedBatchSampler -from .transform import operators -from .transform import batch_operators +from . import transform +from .transform import operator, batch_operator logger = logging.getLogger(__name__) class Compose(object): - def __init__(self, transforms, fields=None, from_=operators, + def __init__(self, transforms, fields=None, from_=transform, num_classes=81): self.transforms = transforms self.transforms_cls = [] + output_fields = None for t in self.transforms: for k, v in t.items(): op_cls = getattr(from_, k) @@ -29,7 +30,17 @@ class Compose(object): if hasattr(op_cls, 'num_classes'): op_cls.num_classes = num_classes + if op_cls in [ + transform.Gt2YoloTargetOp, transform.Gt2YoloTarget + ]: + output_fields = ['image', 'gt_bbox'] + output_fields.extend([ + 'target{}'.format(i) + for i in range(len(v['anchor_masks'])) + ]) + self.fields = fields + self.output_fields = output_fields if output_fields else fields def __call__(self, data): if self.fields is not None: @@ -47,11 +58,11 @@ class Compose(object): format(f, e, str(stack_info))) raise e - if self.fields is not None: + if self.output_fields is not None: data_new = [] for item in data: batch = [] - for k in self.fields: + for k in self.output_fields: batch.append(item[k]) data_new.append(batch) batch_size = len(data_new) @@ -80,8 +91,7 @@ class BaseDataLoader(object): num_classes=81, with_background=True): # out fields - self._fields = copy.deepcopy(inputs_def[ - 'fields']) if inputs_def else None + self._fields = inputs_def['fields'] if inputs_def else None # sample transform self._sample_transforms = Compose( sample_transforms, num_classes=num_classes) @@ -89,8 +99,9 @@ class BaseDataLoader(object): # batch transfrom self._batch_transforms = None if batch_transforms: - self._batch_transforms = Compose(batch_transforms, self._fields, - batch_operators, num_classes) + self._batch_transforms = Compose(batch_transforms, + copy.deepcopy(self._fields), + transform, num_classes) self.batch_size = batch_size self.shuffle = shuffle @@ -100,19 +111,24 @@ class BaseDataLoader(object): def __call__(self, dataset, worker_num, - device, + device=None, + batch_sampler=None, return_list=False, use_prefetch=True): self._dataset = dataset self._dataset.parse_dataset(self.with_background) # get data - self._dataset.set_out(self._sample_transforms, self._fields) + self._dataset.set_out(self._sample_transforms, + copy.deepcopy(self._fields)) # batch sampler - self._batch_sampler = DistributedBatchSampler( - self._dataset, - batch_size=self.batch_size, - shuffle=self.shuffle, - drop_last=self.drop_last) + if batch_sampler is None: + self._batch_sampler = DistributedBatchSampler( + self._dataset, + batch_size=self.batch_size, + shuffle=self.shuffle, + drop_last=self.drop_last) + else: + self._batch_sampler = batch_sampler loader = DataLoader( dataset=self._dataset, @@ -152,7 +168,7 @@ class EvalReader(BaseDataLoader): batch_transforms=None, batch_size=1, shuffle=False, - drop_last=False, + drop_last=True, drop_empty=True, num_classes=81, with_background=True): diff --git a/ppdet/data/source/coco.py b/ppdet/data/source/coco.py index 69e383ac795671ce700b39672b157d8dbe8098f8..d92eef9b2727b44be41e093ce87a85b13812306b 100644 --- a/ppdet/data/source/coco.py +++ b/ppdet/data/source/coco.py @@ -28,9 +28,18 @@ class COCODataSet(DetDataset): dataset_dir=None, image_dir=None, anno_path=None, + mixup_epoch=-1, + cutmix_epoch=-1, + mosaic_epoch=-1, sample_num=-1): - super(COCODataSet, self).__init__(dataset_dir, image_dir, anno_path, - sample_num) + super(COCODataSet, self).__init__( + dataset_dir, + image_dir, + anno_path, + sample_num, + mixup_epoch=mixup_epoch, + cutmix_epoch=cutmix_epoch, + mosaic_epoch=mosaic_epoch) self.load_image_only = False self.load_semantic = False diff --git a/ppdet/data/source/dataset.py b/ppdet/data/source/dataset.py index f5ef1aad5f0982b7d5b1fbe623d3fe608a08e01c..2b3136dc56a6428af7fd8ae9ac62e3d2969fc461 100644 --- a/ppdet/data/source/dataset.py +++ b/ppdet/data/source/dataset.py @@ -33,6 +33,9 @@ class DetDataset(Dataset): anno_path=None, sample_num=-1, use_default_label=None, + mixup_epoch=-1, + cutmix_epoch=-1, + mosaic_epoch=-1, **kwargs): super(DetDataset, self).__init__() self.dataset_dir = dataset_dir if dataset_dir is not None else '' @@ -40,6 +43,10 @@ class DetDataset(Dataset): self.image_dir = image_dir if image_dir is not None else '' self.sample_num = sample_num self.use_default_label = use_default_label + self.epoch = 0 + self.mixup_epoch = mixup_epoch + self.cutmix_epoch = cutmix_epoch + self.mosaic_epoch = mosaic_epoch def __len__(self, ): return len(self.roidbs) @@ -47,6 +54,21 @@ class DetDataset(Dataset): def __getitem__(self, idx): # data batch roidb = copy.deepcopy(self.roidbs[idx]) + if self.mixup_epoch == 0 or self.epoch < self.mixup_epoch: + n = len(self.roidbs) + idx = np.random.randint(n) + roidb = [roidb, copy.deepcopy(self.roidbs[idx])] + elif self.cutmix_epoch == 0 or self.epoch < self.cutmix_epoch: + n = len(self.roidbs) + idx = np.random.randint(n) + roidb = [roidb, copy.deepcopy(self.roidbs[idx])] + elif self.mosaic_epoch == 0 or self.epoch < self.mosaic_epoch: + n = len(self.roidbs) + roidb = [roidb, ] + [ + copy.deepcopy(self.roidbs[np.random.randint(n)]) + for _ in range(3) + ] + # data augment roidb = self.transform(roidb) # data item diff --git a/ppdet/data/transform/__init__.py b/ppdet/data/transform/__init__.py index 8c606b3aacdeed91559c39471ac92d67874313eb..f2496426f493148c108a3b34bb43d7689da5f01a 100644 --- a/ppdet/data/transform/__init__.py +++ b/ppdet/data/transform/__init__.py @@ -14,6 +14,8 @@ from . import operators from . import batch_operators +from . import operator +from . import batch_operator # TODO: operators and batch_operators will be replaced by operator and batch_operator from .operators import * diff --git a/ppdet/data/transform/batch_operator.py b/ppdet/data/transform/batch_operator.py index e02a7d6e4082635ea071f8c2b3ee239a1229910e..870f1ad3b052abf6937f509476010f1c38580909 100644 --- a/ppdet/data/transform/batch_operator.py +++ b/ppdet/data/transform/batch_operator.py @@ -156,7 +156,7 @@ class BatchRandomResizeOp(BaseOperator): def __init__(self, target_size, keep_ratio=True, - interp=cv2.INTER_LINEAR, + interp=cv2.INTER_NEAREST, random_size=True, random_interp=False): super(BatchRandomResizeOp, self).__init__() diff --git a/ppdet/data/transform/operator.py b/ppdet/data/transform/operator.py index 76d399be0a2d10837f7cfaed7b10fdcda754667b..760383e91387f419d50ee1b433003745b8efcca0 100644 --- a/ppdet/data/transform/operator.py +++ b/ppdet/data/transform/operator.py @@ -25,7 +25,7 @@ try: except Exception: from collections import Sequence -from numbers import Number +from numbers import Number, Integral import uuid import logging @@ -33,6 +33,7 @@ import random import math import numpy as np import os +import copy import cv2 from PIL import Image, ImageEnhance, ImageDraw @@ -95,8 +96,8 @@ class BaseOperator(object): if isinstance(sample, Sequence): for i in range(len(sample)): sample[i] = self.apply(sample[i], context) - - sample = self.apply(sample, context) + else: + sample = self.apply(sample, context) return sample def __str__(self): @@ -140,8 +141,8 @@ class DecodeOp(BaseOperator): "image width.".format(im.shape[1], sample['w'])) sample['w'] = im.shape[1] - sample['im_shape'] = im.shape[:2] - sample['scale_factor'] = [1., 1.] + sample['im_shape'] = np.array(im.shape[:2], dtype=np.int32) + sample['scale_factor'] = np.array([1., 1.], dtype=np.float32) return sample @@ -182,6 +183,56 @@ class LightingOp(BaseOperator): return sample +@register_op +class RandomErasingImageOp(BaseOperator): + def __init__(self, prob=0.5, lower=0.02, higher=0.4, aspect_ratio=0.3): + """ + Random Erasing Data Augmentation, see https://arxiv.org/abs/1708.04896 + Args: + prob (float): probability to carry out random erasing + lower (float): lower limit of the erasing area ratio + heigher (float): upper limit of the erasing area ratio + aspect_ratio (float): aspect ratio of the erasing region + """ + super(RandomErasingImageOp, self).__init__() + self.prob = prob + self.lower = lower + self.heigher = heigher + self.aspect_ratio = aspect_ratio + + def apply(self, sample): + gt_bbox = sample['gt_bbox'] + im = sample['image'] + if not isinstance(im, np.ndarray): + raise TypeError("{}: image is not a numpy array.".format(self)) + if len(im.shape) != 3: + raise ImageError("{}: image is not 3-dimensional.".format(self)) + + for idx in range(gt_bbox.shape[0]): + if self.prob <= np.random.rand(): + continue + + x1, y1, x2, y2 = gt_bbox[idx, :] + w_bbox = x2 - x1 + 1 + h_bbox = y2 - y1 + 1 + area = w_bbox * h_bbox + + target_area = random.uniform(self.lower, self.higher) * area + aspect_ratio = random.uniform(self.aspect_ratio, + 1 / self.aspect_ratio) + + h = int(round(math.sqrt(target_area * aspect_ratio))) + w = int(round(math.sqrt(target_area / aspect_ratio))) + + if w < w_bbox and h < h_bbox: + off_y1 = random.randint(0, int(h_bbox - h)) + off_x1 = random.randint(0, int(w_bbox - w)) + im[int(y1 + off_y1):int(y1 + off_y1 + h), int(x1 + off_x1):int( + x1 + off_x1 + w), :] = 0 + sample['image'] = im + return sample + + @register_op class NormalizeImageOp(BaseOperator): def __init__(self, mean=[0.485, 0.456, 0.406], std=[1, 1, 1], @@ -350,7 +401,7 @@ class RandomDistortOp(BaseOperator): lambda img: cv2.cvtColor(self.apply_saturation(cv2.cvtColor(img, cv2.COLOR_RGB2HSV)), cv2.COLOR_HSV2RGB), lambda img: cv2.cvtColor(self.apply_hue(cv2.cvtColor(img, cv2.COLOR_RGB2HSV)), cv2.COLOR_HSV2RGB), ] - distortions = np.random.permutation(functions)[:count] + distortions = np.random.permutation(functions)[:self.count] for func in distortions: img = func(img) sample['image'] = img @@ -527,11 +578,11 @@ class ResizeOp(BaseOperator): super(ResizeOp, self).__init__() self.keep_ratio = keep_ratio self.interp = interp - if not isinstance(target_size, (int, list, tuple)): + if not isinstance(target_size, (Integral, Sequence)): raise TypeError( "Type of target_size is invalid. Must be Integer or List or Tuple, now is {}". format(type(target_size))) - if isinstance(target_size, int): + if isinstance(target_size, Integral): target_size = [target_size, target_size] self.target_size = target_size @@ -627,11 +678,15 @@ class ResizeOp(BaseOperator): im = self.apply_image(sample['image'], [im_scale_x, im_scale_y]) sample['image'] = im - sample['im_shape'] = [resize_h, resize_w] - scale_factor = sample['scale_factor'] - sample['scale_factor'] = [ - scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x - ] + sample['im_shape'] = np.array([resize_h, resize_w], dtype=np.int32) + if 'scale_factor' in sample: + scale_factor = sample['scale_factor'] + sample['scale_factor'] = np.array( + [scale_factor[0] * im_scale_y, scale_factor[1] * im_scale_x], + dtype=np.float32) + else: + sample['scale_factor'] = np.array( + [im_scale_y, im_scale_x], dtype=np.float32) # apply bbox if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: @@ -641,7 +696,7 @@ class ResizeOp(BaseOperator): # apply polygon if 'gt_poly' in sample and len(sample['gt_poly']) > 0: - sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape, + sample['gt_poly'] = self.apply_segm(sample['gt_poly'], im_shape[:2], [im_scale_x, im_scale_y]) # apply semantic @@ -694,16 +749,16 @@ class MultiscaleTestResizeOp(BaseOperator): self.interp = interp self.use_flip = use_flip - if not isinstance(target_size, list): + if not isinstance(target_size, Sequence): raise TypeError( - "Type of target_size is invalid. Must be List, now is {}". + "Type of target_size is invalid. Must be List or Tuple, now is {}". format(type(target_size))) self.target_size = target_size - if not isinstance(origin_target_size, list): + if not isinstance(origin_target_size, Sequence): raise TypeError( - "Type of target_size is invalid. Must be List, now is {}". - format(type(target_size))) + "Type of origin_target_size is invalid. Must be List or Tuple, now is {}". + format(type(origin_target_size))) self.origin_target_size = origin_target_size @@ -753,10 +808,10 @@ class RandomResizeOp(BaseOperator): cv2.INTER_LANCZOS4, ] assert isinstance(target_size, ( - int, Sequence)), "target_size must be int, list or tuple" - if random_size and not isinstance(target_size, list): + Integral, Sequence)), "target_size must be Integer, List or Tuple" + if random_size and not isinstance(target_size, Sequence): raise TypeError( - "Type of target_size is invalid when random_size is True. Must be List, now is {}". + "Type of target_size is invalid when random_size is True. Must be List or Tuple, now is {}". format(type(target_size))) self.target_size = target_size self.random_size = random_size @@ -816,7 +871,10 @@ class RandomExpandOp(BaseOperator): x = np.random.randint(0, w - width) offsets, size = [x, y], [h, w] - pad = Pad(size, pad_mode=-1, offsets=offsets) + pad = Pad(size, + pad_mode=-1, + offsets=offsets, + fill_value=self.fill_value) return pad(sample, context=context) @@ -1350,11 +1408,11 @@ class RandomScaledCropOp(BaseOperator): canvas[:min(dim, resize_h), :min(dim, resize_w), :] = img[ offset_y:offset_y + dim, offset_x:offset_x + dim, :] sample['image'] = canvas - sample['im_shape'] = [resize_h, resize_w] + sample['im_shape'] = np.array([resize_h, resize_w], dtype=np.int32) scale_factor = sample['sacle_factor'] - sample['scale_factor'] = [ - scale_factor[0] * scale, scale_factor[1] * scale - ] + sample['scale_factor'] = np.array( + [scale_factor[0] * scale, scale_factor[1] * scale], + dtype=np.float32) if 'gt_bbox' in sample and len(sample['gt_bbox']) > 0: scale_array = np.array([scale, scale] * 2, dtype=np.float32) @@ -1487,30 +1545,32 @@ class MixupOp(BaseOperator): if factor <= 0.0: return sample[1] im = self.apply_image(sample[0]['image'], sample[1]['image'], factor) + result = copy.deepcopy(sample[0]) + result['image'] = im # apply bbox and score - gt_bbox1 = sample[0]['gt_bbox'] - gt_bbox2 = sample[1]['gt_bbox'] - gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0) - gt_class1 = sample[0]['gt_class'] - gt_class2 = sample[1]['gt_class'] - gt_class = np.concatenate((gt_class1, gt_class2), axis=0) - - gt_score1 = sample[0]['gt_score'] - gt_score2 = sample[1]['gt_score'] - gt_score = np.concatenate( - (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0) - - is_crowd1 = sample[0]['is_crowd'] - is_crowd2 = sample[1]['is_crowd'] - is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0) - - sample = sample[0] - sample['image'] = im - sample['gt_bbox'] = gt_bbox - sample['gt_score'] = gt_score - sample['gt_class'] = gt_class - sample['is_crowd'] = is_crowd - return sample + if 'gt_bbox' in sample[0]: + gt_bbox1 = sample[0]['gt_bbox'] + gt_bbox2 = sample[1]['gt_bbox'] + gt_bbox = np.concatenate((gt_bbox1, gt_bbox2), axis=0) + result['gt_bbox'] = gt_bbox + if 'gt_class' in sample[0]: + gt_class1 = sample[0]['gt_class'] + gt_class2 = sample[1]['gt_class'] + gt_class = np.concatenate((gt_class1, gt_class2), axis=0) + result['gt_class'] = gt_class + if 'gt_score' in sample[0]: + gt_score1 = sample[0]['gt_score'] + gt_score2 = sample[1]['gt_score'] + gt_score = np.concatenate( + (gt_score1 * factor, gt_score2 * (1. - factor)), axis=0) + result['gt_score'] = gt_score + if 'is_crowd' in sample[0]: + is_crowd1 = sample[0]['is_crowd'] + is_crowd2 = sample[1]['is_crowd'] + is_crowd = np.concatenate((is_crowd1, is_crowd2), axis=0) + result['is_crowd'] = is_crowd + + return result @register_op @@ -1578,26 +1638,26 @@ class PadBoxOp(BaseOperator): bbox = sample['gt_bbox'] gt_num = min(self.num_max_boxes, len(bbox)) num_max = self.num_max_boxes - fields = context['fields'] if context else [] + # fields = context['fields'] if context else [] pad_bbox = np.zeros((num_max, 4), dtype=np.float32) if gt_num > 0: pad_bbox[:gt_num, :] = bbox[:gt_num, :] sample['gt_bbox'] = pad_bbox - if 'gt_class' in fields: - pad_class = np.zeros((num_max), dtype=np.int32) + if 'gt_class' in sample: + pad_class = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_class[:gt_num] = sample['gt_class'][:gt_num, 0] sample['gt_class'] = pad_class - if 'gt_score' in fields: - pad_score = np.zeros((num_max), dtype=np.float32) + if 'gt_score' in sample: + pad_score = np.zeros((num_max, ), dtype=np.float32) if gt_num > 0: pad_score[:gt_num] = sample['gt_score'][:gt_num, 0] sample['gt_score'] = pad_score # in training, for example in op ExpandImage, # the bbox and gt_class is expandded, but the difficult is not, # so, judging by it's length - if 'is_difficult' in fields: - pad_diff = np.zeros((num_max), dtype=np.int32) + if 'is_difficult' in sample: + pad_diff = np.zeros((num_max, ), dtype=np.int32) if gt_num > 0: pad_diff[:gt_num] = sample['difficult'][:gt_num, 0] sample['difficult'] = pad_diff @@ -1751,9 +1811,9 @@ class Pad(BaseOperator): x, y = offsets im_h, im_w = im_size h, w = size - canvas = np.ones((h, w, 3), dtype=np.uint8) - canvas *= np.array(self.fill_value, dtype=np.uint8) - canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.uint8) + canvas = np.ones((h, w, 3), dtype=np.float32) + canvas *= np.array(self.fill_value, dtype=np.float32) + canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32) return canvas def apply(self, sample, context=None): diff --git a/ppdet/modeling/__init__.py b/ppdet/modeling/__init__.py index 01b1d2adbdd30f6849ee8cd968dc1c46310bd6b2..ab7ca0ff1430e88e62bd2ad01b8eb1c2bee57449 100644 --- a/ppdet/modeling/__init__.py +++ b/ppdet/modeling/__init__.py @@ -8,6 +8,7 @@ from . import loss from . import architecture from . import post_process from . import layers +from . import utils from .ops import * from .bbox import * @@ -19,3 +20,4 @@ from .loss import * from .architecture import * from .post_process import * from .layers import * +from .utils import * diff --git a/ppdet/modeling/architecture/yolo.py b/ppdet/modeling/architecture/yolo.py index 1d21d17041809bdd1ee7324ba1c86ee74d696be0..e63ec8bd2c994e31e1ce0936075c5a0fd6a257f6 100644 --- a/ppdet/modeling/architecture/yolo.py +++ b/ppdet/modeling/architecture/yolo.py @@ -40,13 +40,13 @@ class YOLOv3(BaseArch): self.yolo_head_outs = self.yolo_head(body_feats) def get_loss(self, ): - loss = self.yolo_head.get_loss(self.inputs, self.yolo_head_outs) + loss = self.yolo_head.get_loss(self.yolo_head_outs, self.inputs) return loss def get_pred(self, ): - bbox, bbox_num = self.post_process(self.yolo_head_outs, - self.yolo_head.mask_anchors, - self.inputs['im_size']) + bbox, bbox_num = self.post_process( + self.yolo_head_outs, self.yolo_head.mask_anchors, + self.inputs['im_shape'], self.inputs['scale_factor']) outs = { "bbox": bbox.numpy(), "bbox_num": bbox_num.numpy(), diff --git a/ppdet/modeling/backbone/darknet.py b/ppdet/modeling/backbone/darknet.py index b1e386caebe2926ea191e15a1887cb74b3dc334d..a1788eeac5f349b395912c653beda70f877e28b7 100755 --- a/ppdet/modeling/backbone/darknet.py +++ b/ppdet/modeling/backbone/darknet.py @@ -2,8 +2,9 @@ import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr -from paddle.fluid.regularizer import L2Decay +from paddle.regularizer import L2Decay from ppdet.core.workspace import register, serializable +from ppdet.modeling.ops import BatchNorm __all__ = ['DarkNet', 'ConvBNLayer'] @@ -16,6 +17,7 @@ class ConvBNLayer(nn.Layer): stride=1, groups=1, padding=0, + norm_type='bn', act="leaky", name=None): super(ConvBNLayer, self).__init__() @@ -29,14 +31,7 @@ class ConvBNLayer(nn.Layer): groups=groups, weight_attr=ParamAttr(name=name + '.conv.weights'), bias_attr=False) - bn_name = name + '.bn' - self.batch_norm = nn.BatchNorm2D( - ch_out, - weight_attr=ParamAttr( - name=bn_name + '.scale', regularizer=L2Decay(0.)), - bias_attr=ParamAttr( - name=bn_name + '.offset', regularizer=L2Decay(0.))) - + self.batch_norm = BatchNorm(ch_out, norm_type=norm_type, name=name) self.act = act def forward(self, inputs): @@ -54,6 +49,7 @@ class DownSample(nn.Layer): filter_size=3, stride=2, padding=1, + norm_type='bn', name=None): super(DownSample, self).__init__() @@ -64,6 +60,7 @@ class DownSample(nn.Layer): filter_size=filter_size, stride=stride, padding=padding, + norm_type=norm_type, name=name) self.ch_out = ch_out @@ -73,7 +70,7 @@ class DownSample(nn.Layer): class BasicBlock(nn.Layer): - def __init__(self, ch_in, ch_out, name=None): + def __init__(self, ch_in, ch_out, norm_type='bn', name=None): super(BasicBlock, self).__init__() self.conv1 = ConvBNLayer( @@ -82,6 +79,7 @@ class BasicBlock(nn.Layer): filter_size=1, stride=1, padding=0, + norm_type=norm_type, name=name + '.0') self.conv2 = ConvBNLayer( ch_in=ch_out, @@ -89,6 +87,7 @@ class BasicBlock(nn.Layer): filter_size=3, stride=1, padding=1, + norm_type=norm_type, name=name + '.1') def forward(self, inputs): @@ -99,16 +98,18 @@ class BasicBlock(nn.Layer): class Blocks(nn.Layer): - def __init__(self, ch_in, ch_out, count, name=None): + def __init__(self, ch_in, ch_out, count, norm_type='bn', name=None): super(Blocks, self).__init__() - self.basicblock0 = BasicBlock(ch_in, ch_out, name=name + '.0') + self.basicblock0 = BasicBlock( + ch_in, ch_out, norm_type=norm_type, name=name + '.0') self.res_out_list = [] for i in range(1, count): block_name = '{}.{}'.format(name, i) res_out = self.add_sublayer( - block_name, BasicBlock( - ch_out * 2, ch_out, name=block_name)) + block_name, + BasicBlock( + ch_out * 2, ch_out, norm_type=norm_type, name=block_name)) self.res_out_list.append(res_out) self.ch_out = ch_out @@ -125,11 +126,14 @@ DarkNet_cfg = {53: ([1, 2, 8, 8, 4])} @register @serializable class DarkNet(nn.Layer): + __shared__ = ['norm_type'] + def __init__(self, depth=53, freeze_at=-1, return_idx=[2, 3, 4], - num_stages=5): + num_stages=5, + norm_type='bn'): super(DarkNet, self).__init__() self.depth = depth self.freeze_at = freeze_at @@ -143,10 +147,14 @@ class DarkNet(nn.Layer): filter_size=3, stride=1, padding=1, + norm_type=norm_type, name='yolo_input') self.downsample0 = DownSample( - ch_in=32, ch_out=32 * 2, name='yolo_input.downsample') + ch_in=32, + ch_out=32 * 2, + norm_type=norm_type, + name='yolo_input.downsample') self.darknet_conv_block_list = [] self.downsample_list = [] @@ -154,8 +162,13 @@ class DarkNet(nn.Layer): for i, stage in enumerate(self.stages): name = 'stage.{}'.format(i) conv_block = self.add_sublayer( - name, Blocks( - int(ch_in[i]), 32 * (2**i), stage, name=name)) + name, + Blocks( + int(ch_in[i]), + 32 * (2**i), + stage, + norm_type=norm_type, + name=name)) self.darknet_conv_block_list.append(conv_block) for i in range(num_stages - 1): down_name = 'stage.{}.downsample'.format(i) @@ -164,6 +177,7 @@ class DarkNet(nn.Layer): DownSample( ch_in=32 * (2**(i + 1)), ch_out=32 * (2**(i + 2)), + norm_type=norm_type, name=down_name)) self.downsample_list.append(downsample) diff --git a/ppdet/modeling/head/yolo_head.py b/ppdet/modeling/head/yolo_head.py index 2fa370b62c8edc66a002d8e5c933655042bfdd10..2814fb3b0d3bd002708b2ea17790870d0c0e1489 100644 --- a/ppdet/modeling/head/yolo_head.py +++ b/ppdet/modeling/head/yolo_head.py @@ -1,9 +1,8 @@ -import paddle.fluid as fluid import paddle import paddle.nn as nn import paddle.nn.functional as F from paddle import ParamAttr -from paddle.fluid.regularizer import L2Decay +from paddle.regularizer import L2Decay from ppdet.core.workspace import register from ..backbone.darknet import ConvBNLayer @@ -14,24 +13,20 @@ class YOLOv3Head(nn.Layer): __inject__ = ['loss'] def __init__(self, - anchors=[ - 10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, - 156, 198, 373, 326 - ], + anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], + [59, 119], [116, 90], [156, 198], [373, 326]], anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]], num_classes=80, loss='YOLOv3Loss'): super(YOLOv3Head, self).__init__() - self.anchors = anchors - self.anchor_masks = anchor_masks self.num_classes = num_classes self.loss = loss - self.mask_anchors = self.parse_anchor(self.anchors, self.anchor_masks) - self.num_outputs = len(self.mask_anchors) + self.parse_anchor(anchors, anchor_masks) + self.num_outputs = len(self.anchors) self.yolo_outputs = [] - for i in range(len(self.mask_anchors)): + for i in range(len(self.anchors)): num_filters = self.num_outputs * (self.num_classes + 5) name = 'yolo_output.{}'.format(i) yolo_output = self.add_sublayer( @@ -48,24 +43,22 @@ class YOLOv3Head(nn.Layer): self.yolo_outputs.append(yolo_output) def parse_anchor(self, anchors, anchor_masks): - anchor_num = len(self.anchors) - mask_anchors = [] - for i in range(len(self.anchor_masks)): - mask_anchor = [] - for m in self.anchor_masks[i]: - assert m < anchor_num, "anchor mask index overflow" - mask_anchor.extend(self.anchors[2 * m:2 * m + 2]) - mask_anchors.append(mask_anchor) - - return mask_anchors + self.anchors = [[anchors[i] for i in mask] for mask in anchor_masks] + self.mask_anchors = [] + anchor_num = len(anchors) + for masks in anchor_masks: + self.mask_anchors.append([]) + for mask in masks: + assert mask < anchor_num, "anchor mask index overflow" + self.mask_anchors[-1].extend(anchors[mask]) def forward(self, feats): - assert len(feats) == len(self.mask_anchors) + assert len(feats) == len(self.anchors) yolo_outputs = [] for i, feat in enumerate(feats): yolo_output = self.yolo_outputs[i](feat) yolo_outputs.append(yolo_output) return yolo_outputs - def get_loss(self, inputs, head_outputs): - return self.loss(inputs, head_outputs, self.anchors, self.anchor_masks) + def get_loss(self, inputs, targets): + return self.loss(inputs, targets, self.anchors) diff --git a/ppdet/modeling/layers.py b/ppdet/modeling/layers.py index 029309504a39b77007076e0d75fab9148a5a9ff9..15176341ec273cf6a06530296652d71a66dd138d 100644 --- a/ppdet/modeling/layers.py +++ b/ppdet/modeling/layers.py @@ -407,10 +407,13 @@ class YOLOBox(object): def __call__(self, yolo_head_out, anchors, im_shape, scale_factor=None): boxes_list = [] scores_list = [] + im_shape = paddle.cast(im_shape, 'float32') if scale_factor is not None: origin_shape = im_shape / scale_factor else: origin_shape = im_shape + + origin_shape = paddle.cast(origin_shape, 'int32') for i, head_out in enumerate(yolo_head_out): boxes, scores = ops.yolo_box(head_out, origin_shape, anchors[i], self.num_classes, self.conf_thresh, diff --git a/ppdet/modeling/loss/__init__.py b/ppdet/modeling/loss/__init__.py index f18cadcc87d994ac5462be5c4204f2eb01fc82f8..6d87bdc02f94ff6eb1e72f81fab717f3c001d427 100644 --- a/ppdet/modeling/loss/__init__.py +++ b/ppdet/modeling/loss/__init__.py @@ -13,5 +13,9 @@ # limitations under the License. from . import yolo_loss +from . import iou_aware_loss +from . import iou_loss from .yolo_loss import * +from .iou_aware_loss import * +from .iou_loss import * diff --git a/ppdet/modeling/loss/iou_aware_loss.py b/ppdet/modeling/loss/iou_aware_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..0e61883f9af496c6336ad682011f45dc974b0b36 --- /dev/null +++ b/ppdet/modeling/loss/iou_aware_loss.py @@ -0,0 +1,59 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import paddle.nn.functional as F +from ppdet.core.workspace import register, serializable +from .iou_loss import IouLoss +from ..utils import xywh2xyxy, bbox_iou, decode_yolo + + +@register +@serializable +class IouAwareLoss(IouLoss): + """ + iou aware loss, see https://arxiv.org/abs/1912.05992 + Args: + loss_weight (float): iou aware loss weight, default is 1.0 + max_height (int): max height of input to support random shape input + max_width (int): max width of input to support random shape input + """ + + def __init__( + self, + loss_weight=1.0, + giou=False, + diou=False, + ciou=False, ): + super(IouAwareLoss, self).__init__( + loss_weight=loss_weight, giou=giou, diou=diou, ciou=ciou) + + def __call__(self, ioup, pbox, gbox, anchor, downsample, scale=1.): + b = pbox.shape[0] + ioup = ioup.reshape((b, -1)) + pbox = decode_yolo(pbox, anchor, downsample) + gbox = decode_yolo(gbox, anchor, downsample) + pbox = xywh2xyxy(pbox).reshape((b, -1, 4)) + gbox = xywh2xyxy(gbox).reshape((b, -1, 4)) + iou = bbox_iou( + pbox, gbox, giou=self.giou, diou=self.diou, ciou=self.ciou) + iou.stop_gradient = True + + loss_iou_aware = F.binary_cross_entropy_with_logits( + ioup, iou, reduction='none') + loss_iou_aware = loss_iou_aware * self.loss_weight + return loss_iou_aware diff --git a/ppdet/modeling/loss/iou_loss.py b/ppdet/modeling/loss/iou_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..97c59bf278c9d269d557eb434b87b0c65f632371 --- /dev/null +++ b/ppdet/modeling/loss/iou_loss.py @@ -0,0 +1,67 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import paddle +import paddle.nn.functional as F +from ppdet.core.workspace import register, serializable +from ..utils import xywh2xyxy, bbox_iou, decode_yolo + +__all__ = ['IouLoss'] + + +@register +@serializable +class IouLoss(object): + """ + iou loss, see https://arxiv.org/abs/1908.03851 + loss = 1.0 - iou * iou + Args: + loss_weight (float): iou loss weight, default is 2.5 + max_height (int): max height of input to support random shape input + max_width (int): max width of input to support random shape input + ciou_term (bool): whether to add ciou_term + loss_square (bool): whether to square the iou term + """ + + def __init__(self, + loss_weight=2.5, + giou=False, + diou=False, + ciou=False, + loss_square=True): + self.loss_weight = loss_weight + self.giou = giou + self.diou = diou + self.ciou = ciou + self.loss_square = loss_square + + def __call__(self, pbox, gbox, anchor, downsample, scale=1.): + b = pbox.shape[0] + pbox = decode_yolo(pbox, anchor, downsample) + gbox = decode_yolo(gbox, anchor, downsample) + pbox = xywh2xyxy(pbox).reshape((b, -1, 4)) + gbox = xywh2xyxy(gbox).reshape((b, -1, 4)) + iou = bbox_iou( + pbox, gbox, giou=self.giou, diou=self.diou, ciou=self.ciou) + if self.loss_square: + loss_iou = 1 - iou * iou + else: + loss_iou = 1 - iou + + loss_iou = loss_iou * self.loss_weight + return loss_iou diff --git a/ppdet/modeling/loss/yolo_loss.py b/ppdet/modeling/loss/yolo_loss.py index bfef53a1dd0a3787200e22d34170d58f62afafd3..51bc490cb9a08220f6eade39444d52e31a6e755b 100644 --- a/ppdet/modeling/loss/yolo_loss.py +++ b/ppdet/modeling/loss/yolo_loss.py @@ -12,54 +12,156 @@ # See the License for the specific language governing permissions and # limitations under the License. -import paddle.fluid as fluid +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + import paddle import paddle.nn as nn import paddle.nn.functional as F -from paddle import ParamAttr -from paddle.fluid.regularizer import L2Decay from ppdet.core.workspace import register -from ..backbone.darknet import ConvBNLayer + +from ..utils import decode_yolo, xywh2xyxy, iou_similarity __all__ = ['YOLOv3Loss'] @register class YOLOv3Loss(nn.Layer): + + __inject__ = ['iou_loss', 'iou_aware_loss'] __shared__ = ['num_classes'] def __init__(self, num_classes=80, ignore_thresh=0.7, label_smooth=False, - downsample=32, - use_fine_grained_loss=False): + downsample=[32, 16, 8], + scale_x_y=1., + iou_loss=None, + iou_aware_loss=None): super(YOLOv3Loss, self).__init__() self.num_classes = num_classes self.ignore_thresh = ignore_thresh self.label_smooth = label_smooth self.downsample = downsample - self.use_fine_grained_loss = use_fine_grained_loss - - def forward(self, inputs, head_outputs, anchors, anchor_masks): - if self.use_fine_grained_loss: - raise NotImplementedError( - "fine grained loss not implement currently") - - yolo_losses = [] - for i, out in enumerate(head_outputs): - loss = fluid.layers.yolov3_loss( - x=out, - gt_box=inputs['gt_bbox'], - gt_label=inputs['gt_class'], - gt_score=inputs['gt_score'], - anchors=anchors, - anchor_mask=anchor_masks[i], - class_num=self.num_classes, - ignore_thresh=self.ignore_thresh, - downsample_ratio=self.downsample // 2**i, - use_label_smooth=self.label_smooth, - name='yolo_loss_' + str(i)) - loss = paddle.mean(loss) - yolo_losses.append(loss) - return {'loss': sum(yolo_losses)} + self.scale_x_y = scale_x_y + self.iou_loss = iou_loss + self.iou_aware_loss = iou_aware_loss + + def obj_loss(self, pbox, gbox, pobj, tobj, anchor, downsample): + b, h, w, na = pbox.shape[:4] + pbox = decode_yolo(pbox, anchor, downsample) + pbox = pbox.reshape((b, -1, 4)) + pbox = xywh2xyxy(pbox) + gbox = xywh2xyxy(gbox) + + iou = iou_similarity(pbox, gbox) + iou.stop_gradient = True + iou_max = iou.max(2) # [N, M1] + iou_mask = paddle.cast(iou_max <= self.ignore_thresh, dtype=pbox.dtype) + iou_mask.stop_gradient = True + + pobj = pobj.reshape((b, -1)) + tobj = tobj.reshape((b, -1)) + obj_mask = paddle.cast(tobj > 0, dtype=pbox.dtype) + obj_mask.stop_gradient = True + + loss_obj = F.binary_cross_entropy_with_logits( + pobj, obj_mask, reduction='none') + loss_obj_pos = (loss_obj * tobj) + loss_obj_neg = (loss_obj * (1 - obj_mask) * iou_mask) + return loss_obj_pos + loss_obj_neg + + def cls_loss(self, pcls, tcls): + if self.label_smooth: + delta = min(1. / self.num_classes, 1. / 40) + pos, neg = 1 - delta, delta + # 1 for positive, 0 for negative + tcls = pos * paddle.cast( + tcls > 0., dtype=tcls.dtype) + neg * paddle.cast( + tcls <= 0., dtype=tcls.dtype) + + loss_cls = F.binary_cross_entropy_with_logits( + pcls, tcls, reduction='none') + return loss_cls + + def yolov3_loss(self, x, t, gt_box, anchor, downsample, scale=1., + eps=1e-10): + na = len(anchor) + b, c, h, w = x.shape + no = c // na + x = x.reshape((b, na, no, h, w)).transpose((0, 3, 4, 1, 2)) + + xy, wh, obj = x[:, :, :, :, 0:2], x[:, :, :, :, 2:4], x[:, :, :, :, 4:5] + if self.iou_aware_loss: + ioup, pcls = x[:, :, :, :, 5:6], x[:, :, :, :, 6:] + else: + pcls = x[:, :, :, :, 5:] + + t = t.transpose((0, 3, 4, 1, 2)) + txy, twh, tscale = t[:, :, :, :, 0:2], t[:, :, :, :, 2:4], t[:, :, :, :, + 4:5] + tobj, tcls = t[:, :, :, :, 5:6], t[:, :, :, :, 6:] + + tscale_obj = tscale * tobj + loss = dict() + if abs(scale - 1.) < eps: + loss_xy = tscale_obj * F.binary_cross_entropy_with_logits( + xy, txy, reduction='none') + else: + xy = scale * F.sigmoid(xy) - 0.5 * (scale - 1.) + loss_xy = tscale_obj * paddle.abs(xy - txy) + + loss_xy = loss_xy.sum([1, 2, 3, 4]).mean() + loss_wh = tscale_obj * paddle.abs(wh - twh) + loss_wh = loss_wh.sum([1, 2, 3, 4]).mean() + + loss['loss_loc'] = loss_xy + loss_wh + + x[:, :, :, :, 0:2] = scale * F.sigmoid(x[:, :, :, :, 0:2]) - 0.5 * ( + scale - 1.) + box, tbox = x[:, :, :, :, 0:4], t[:, :, :, :, 0:4] + if self.iou_loss is not None: + # box and tbox will not change though they are modified in self.iou_loss function, so no need to clone + loss_iou = self.iou_loss(box, tbox, anchor, downsample, scale) + loss_iou = loss_iou * tscale_obj.reshape((b, -1)) + loss_iou = loss_iou.sum(-1).mean() + loss['loss_iou'] = loss_iou + + if self.iou_aware_loss is not None: + # box and tbox will not change though they are modified in self.iou_aware_loss function, so no need to clone + loss_iou_aware = self.iou_aware_loss(ioup, box, tbox, anchor, + downsample, scale) + loss_iou_aware = loss_iou_aware * tobj.reshape((b, -1)) + loss_iou_aware = loss_iou_aware.sum(-1).mean() + loss['loss_iou_aware'] = loss_iou_aware + + loss_obj = self.obj_loss(box, gt_box, obj, tobj, anchor, downsample) + loss_obj = loss_obj.sum(-1).mean() + loss['loss_obj'] = loss_obj + loss_cls = self.cls_loss(pcls, tcls) * tobj + loss_cls = loss_cls.sum([1, 2, 3, 4]).mean() + loss['loss_cls'] = loss_cls + return loss + + def forward(self, inputs, targets, anchors): + np = len(inputs) + gt_targets = [targets['target{}'.format(i)] for i in range(np)] + gt_box = targets['gt_bbox'] + yolo_losses = dict() + for x, t, anchor, downsample in zip(inputs, gt_targets, anchors, + self.downsample): + yolo_loss = self.yolov3_loss(x, t, gt_box, anchor, downsample) + for k, v in yolo_loss.items(): + if k in yolo_losses: + yolo_losses[k] += v + else: + yolo_losses[k] = v + + loss = 0 + for k, v in yolo_losses.items(): + loss += v + + yolo_losses['loss'] = loss + return yolo_losses diff --git a/ppdet/modeling/neck/yolo_fpn.py b/ppdet/modeling/neck/yolo_fpn.py index a7cfa349f805a8da0711b89c1d6d960df0bcc0b6..bd49069977aeb32dc17e431b1831729d9d7a9250 100644 --- a/ppdet/modeling/neck/yolo_fpn.py +++ b/ppdet/modeling/neck/yolo_fpn.py @@ -21,7 +21,7 @@ from ..backbone.darknet import ConvBNLayer class YoloDetBlock(nn.Layer): - def __init__(self, ch_in, channel, name): + def __init__(self, ch_in, channel, norm_type, name): super(YoloDetBlock, self).__init__() self.ch_in = ch_in self.channel = channel @@ -45,6 +45,7 @@ class YoloDetBlock(nn.Layer): ch_out=ch_out, filter_size=filter_size, padding=(filter_size - 1) // 2, + norm_type=norm_type, name=name + post_name)) self.tip = ConvBNLayer( @@ -52,6 +53,7 @@ class YoloDetBlock(nn.Layer): ch_out=channel * 2, filter_size=3, padding=1, + norm_type=norm_type, name=name + '.tip') def forward(self, inputs): @@ -63,7 +65,9 @@ class YoloDetBlock(nn.Layer): @register @serializable class YOLOv3FPN(nn.Layer): - def __init__(self, feat_channels=[1024, 768, 384]): + __shared__ = ['norm_type'] + + def __init__(self, feat_channels=[1024, 768, 384], norm_type='bn'): super(YOLOv3FPN, self).__init__() assert len(feat_channels) > 0, "feat_channels length should > 0" self.feat_channels = feat_channels @@ -75,7 +79,10 @@ class YOLOv3FPN(nn.Layer): yolo_block = self.add_sublayer( name, YoloDetBlock( - feat_channels[i], channel=512 // (2**i), name=name)) + feat_channels[i], + channel=512 // (2**i), + norm_type=norm_type, + name=name)) self.yolo_blocks.append(yolo_block) if i < self.num_blocks - 1: @@ -88,6 +95,7 @@ class YOLOv3FPN(nn.Layer): filter_size=1, stride=1, padding=0, + norm_type=norm_type, name=name)) self.routes.append(route) diff --git a/ppdet/modeling/ops.py b/ppdet/modeling/ops.py index 6c8a55204e999aaf32cd8883718c3e6f4dfd3797..88a17437740669ed5b32f7f3361bb536abc9a829 100644 --- a/ppdet/modeling/ops.py +++ b/ppdet/modeling/ops.py @@ -14,6 +14,9 @@ import paddle import paddle.nn.functional as F +import paddle.nn as nn +from paddle import ParamAttr +from paddle.regularizer import L2Decay from paddle.fluid.framework import Variable, in_dygraph_mode from paddle.fluid import core @@ -26,21 +29,33 @@ import numpy as np from functools import reduce __all__ = [ - 'roi_pool', - 'roi_align', - 'prior_box', - 'anchor_generator', - 'generate_proposals', - 'iou_similarity', - 'box_coder', - 'yolo_box', - 'multiclass_nms', - 'distribute_fpn_proposals', - 'collect_fpn_proposals', - 'matrix_nms', + 'roi_pool', 'roi_align', 'prior_box', 'anchor_generator', + 'generate_proposals', 'iou_similarity', 'box_coder', 'yolo_box', + 'multiclass_nms', 'distribute_fpn_proposals', 'collect_fpn_proposals', + 'matrix_nms', 'BatchNorm' ] +class BatchNorm(nn.Layer): + def __init__(self, ch, norm_type='bn', name=None): + super(BatchNorm, self).__init__() + bn_name = name + '.bn' + if norm_type == 'sync_bn': + batch_norm = nn.SyncBatchNorm + else: + batch_norm = nn.BatchNorm2D + + self.batch_norm = batch_norm( + ch, + weight_attr=ParamAttr( + name=bn_name + '.scale', regularizer=L2Decay(0.)), + bias_attr=ParamAttr( + name=bn_name + '.offset', regularizer=L2Decay(0.))) + + def forward(self, x): + return self.batch_norm(x) + + def roi_pool(input, rois, output_size, diff --git a/ppdet/modeling/post_process.py b/ppdet/modeling/post_process.py index 5dd686d3a1e3733d60e5163a3de3c3b0a94c34cf..fab68eeae4d2ba5bce55f590a946619d8666efb6 100644 --- a/ppdet/modeling/post_process.py +++ b/ppdet/modeling/post_process.py @@ -1,5 +1,4 @@ import numpy as np -import paddle.fluid as fluid import paddle import paddle.nn as nn import paddle.nn.functional as F diff --git a/ppdet/modeling/tests/test_transfrom.py b/ppdet/modeling/tests/test_transfrom.py new file mode 100644 index 0000000000000000000000000000000000000000..b98710467e31747342d71b9050e3188ecbac4f5a --- /dev/null +++ b/ppdet/modeling/tests/test_transfrom.py @@ -0,0 +1,240 @@ +from __future__ import print_function +import random +import unittest +import numpy as np +import copy +# add python path of PadleDetection to sys.path +import os +import sys +parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4))) +if parent_path not in sys.path: + sys.path.append(parent_path) + +from ppdet.data.transform import * + + +def gen_sample(h, w, nt, nc, random_score=True, channel_first=False): + im = np.random.randint(0, 256, size=(h, w, 3)).astype('float32') + if channel_first: + im = im.transpose((2, 0, 1)) + gt_bbox = np.random.random(size=(nt, 4)).astype('float32') + gt_class = np.random.randint(0, nc, size=(nt, 1)).astype('int32') + if random_score: + gt_score = np.random.random(size=(nt, 1)) + else: + gt_score = np.ones(shape=(nt, 1)).astype('float32') + is_crowd = np.zeros_like(gt_class) + sample = { + 'image': im, + 'gt_bbox': gt_bbox, + 'gt_class': gt_class, + 'gt_score': gt_score, + 'is_crowd': is_crowd, + 'h': h, + 'w': w + } + return sample + + +class TestTransformOp(unittest.TestCase): + def setUp(self): + self.h, self.w = np.random.randint(1, 1024, size=2) + self.nt = np.random.randint(1, 50) + self.nc = 80 + + def assertAllClose(self, x, y, msg, atol=1e-5, rtol=1e-3): + self.assertTrue(np.allclose(x, y, atol=atol, rtol=rtol), msg=msg) + + +class TestResizeOp(TestTransformOp): + def test_resize(self): + sample = gen_sample(self.h, self.w, self.nt, self.nc) + orig_op = Resize(target_dim=608, interp=2) + curr_op = ResizeOp(target_size=608, keep_ratio=False, interp=2) + orig_res = orig_op(copy.deepcopy(sample)) + curr_res = curr_op(copy.deepcopy(sample)) + fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] + for k in fields: + self.assertAllClose(orig_res[k], curr_res[k], msg=k) + + +# only for specified random seed +# class TestMixupOp(TestTransformOp): +# def setUp(self): +# self.h, self.w = np.random.randint(1024, size=2) +# self.nt = np.random.randint(50) +# self.nc = 80 + +# def test_mixup(self): +# curr_sample = [gen_sample(self.h, self.w, self.nt, self.nc) for _ in range(2)] +# orig_sample = copy.deepcopy(curr_sample[0]) +# orig_sample['mixup'] = copy.deepcopy(curr_sample[1]) +# orig_op = MixupImage(alpha=1.5, beta=1.5) +# curr_op = MixupOp(alpha=1.5, beta=1.5) +# orig_res = orig_op(orig_sample) +# curr_res = curr_op(curr_sample) +# fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] +# for k in fields: +# self.assertAllClose(orig_res[k], curr_res[k], msg=k) + +# only for specified random seed +# class TestRandomDistortOp(TestTransformOp): + +# def test_random_distort(self): +# sample = gen_sample(self.h, self.w, self.nt, self.nc) +# orig_op = ColorDistort(hsv_format=True, random_apply=False) +# curr_op = RandomDistortOp(random_apply=False) +# orig_res = orig_op(copy.deepcopy(sample)) +# curr_res = curr_op(copy.deepcopy(sample)) +# fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] +# for k in fields: +# self.assertAllClose(orig_res[k], curr_res[k], msg=k) + +# only for specified random seed +# class TestRandomExpandOp(TestTransformOp): + +# def test_random_expand(self): +# sample = gen_sample(self.h, self.w, self.nt, self.nc) +# orig_op = RandomExpand(fill_value=[123.675, 116.28, 103.53]) +# curr_op = RandomExpandOp(fill_value=[123.675, 116.28, 103.53]) +# orig_res = orig_op(copy.deepcopy(sample)) +# curr_res = curr_op(copy.deepcopy(sample)) +# fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] +# for k in fields: +# self.assertAllClose(orig_res[k], curr_res[k], msg=k) + +# only for specified random seed +# class TestRandomCropOp(TestTransformOp): + +# def test_random_crop(self): +# sample = gen_sample(self.h, self.w, self.nt, self.nc) +# orig_op = RandomCrop() +# curr_op = RandomCropOp() +# orig_res = orig_op(copy.deepcopy(sample)) +# curr_res = curr_op(copy.deepcopy(sample)) +# fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] +# for k in fields: +# self.assertAllClose(orig_res[k], curr_res[k], msg=k) + +# only for specified random seed +# class TestRandomFlipOp(TestTransformOp): + +# def test_random_flip(self): +# sample = gen_sample(self.h, self.w, self.nt, self.nc) +# orig_op = RandomFlipImage(is_normalized=False) +# curr_op = RandomFlipOp() +# orig_res = orig_op(copy.deepcopy(sample)) +# curr_res = curr_op(copy.deepcopy(sample)) +# fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] +# for k in fields: +# self.assertAllClose(orig_res[k], curr_res[k], msg=k) + +# only for specified random seed +# class TestBatchRandomResizeOp(TestTransformOp): + +# def test_batch_random_resize(self): +# sample = [gen_sample(self.h, self.w, self.nt, self.nc) for _ in range(10)] +# orig_op = RandomShape(sizes=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608], random_inter=True, resize_box=True) +# curr_op = BatchRandomResizeOp(target_size=[320, 352, 384, 416, 448, 480, 512, 544, 576, 608], random_size=True, random_interp=True, keep_ratio=False) +# orig_ress = orig_op(copy.deepcopy(sample)) +# curr_ress = curr_op(copy.deepcopy(sample)) +# fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] +# for orig_res, curr_res in zip(orig_ress, curr_ress): +# for k in fields: +# self.assertAllClose(orig_res[k], curr_res[k], msg=k) + + +class TestNormalizeBoxOp(TestTransformOp): + def test_normalize_box(self): + sample = gen_sample(self.h, self.w, self.nt, self.nc) + orig_op = NormalizeBox() + curr_op = NormalizeBoxOp() + orig_res = orig_op(copy.deepcopy(sample)) + curr_res = curr_op(copy.deepcopy(sample)) + fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] + for k in fields: + self.assertAllClose(orig_res[k], curr_res[k], msg=k) + + +class TestPadBoxOp(TestTransformOp): + def test_pad_box(self): + sample = gen_sample(self.h, self.w, self.nt, self.nc) + orig_op = PadBox(num_max_boxes=50) + curr_op = PadBoxOp(num_max_boxes=50) + orig_res = orig_op(copy.deepcopy(sample)) + curr_res = curr_op(copy.deepcopy(sample)) + fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] + for k in fields: + self.assertAllClose(orig_res[k], curr_res[k], msg=k) + + +class TestBboxXYXY2XYWHOp(TestTransformOp): + def test_bbox_xyxy2xywh(self): + sample = gen_sample(self.h, self.w, self.nt, self.nc) + orig_op = BboxXYXY2XYWH() + curr_op = BboxXYXY2XYWHOp() + orig_res = orig_op(copy.deepcopy(sample)) + curr_res = curr_op(copy.deepcopy(sample)) + fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] + for k in fields: + self.assertAllClose(orig_res[k], curr_res[k], msg=k) + + +class TestNormalizeImageOp(TestTransformOp): + def test_normalize_image(self): + sample = gen_sample(self.h, self.w, self.nt, self.nc) + orig_op = NormalizeImage( + mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225], + is_scale=True, + is_channel_first=False) + curr_op = NormalizeImageOp( + mean=[0.485, 0.456, 0.406], + std=[0.229, 0.224, 0.225], + is_scale=True) + orig_res = orig_op(copy.deepcopy(sample)) + curr_res = curr_op(copy.deepcopy(sample)) + fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] + for k in fields: + self.assertAllClose(orig_res[k], curr_res[k], msg=k) + + +class TestPermuteOp(TestTransformOp): + def test_permute(self): + sample = gen_sample(self.h, self.w, self.nt, self.nc) + orig_op = Permute(to_bgr=False, channel_first=True) + curr_op = PermuteOp() + orig_res = orig_op(copy.deepcopy(sample)) + curr_res = curr_op(copy.deepcopy(sample)) + fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] + for k in fields: + self.assertAllClose(orig_res[k], curr_res[k], msg=k) + + +class TestGt2YoloTargetOp(TestTransformOp): + def test_gt2yolotarget(self): + sample = [ + gen_sample( + self.h, self.w, self.nt, self.nc, channel_first=True) + for _ in range(10) + ] + orig_op = Gt2YoloTarget( + anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]], + anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], + [59, 119], [116, 90], [156, 198], [373, 326]], + downsample_ratios=[32, 16, 8]) + curr_op = Gt2YoloTargetOp( + anchor_masks=[[6, 7, 8], [3, 4, 5], [0, 1, 2]], + anchors=[[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], + [59, 119], [116, 90], [156, 198], [373, 326]], + downsample_ratios=[32, 16, 8]) + orig_ress = orig_op(copy.deepcopy(sample)) + curr_ress = curr_op(copy.deepcopy(sample)) + fields = ['image', 'gt_bbox', 'gt_class', 'gt_score'] + for orig_res, curr_res in zip(orig_ress, curr_ress): + for k in fields: + self.assertAllClose(orig_res[k], curr_res[k], msg=k) + + +if __name__ == "__main__": + unittest.main() diff --git a/ppdet/modeling/tests/test_yolov3_loss.py b/ppdet/modeling/tests/test_yolov3_loss.py new file mode 100644 index 0000000000000000000000000000000000000000..885ae734077487f0f238c0273268391b46823ab8 --- /dev/null +++ b/ppdet/modeling/tests/test_yolov3_loss.py @@ -0,0 +1,419 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import division + +import unittest +import numpy as np +from scipy.special import logit +from scipy.special import expit + +import paddle +from paddle import fluid +from paddle.fluid import core +# add python path of PadleDetection to sys.path +import os +import sys +parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 4))) +if parent_path not in sys.path: + sys.path.append(parent_path) + +from ppdet.modeling.loss import YOLOv3Loss +from ppdet.data.transform.op_helper import jaccard_overlap +import random +import numpy as np + + +def _split_ioup(output, an_num, num_classes): + """ + Split output feature map to output, predicted iou + along channel dimension + """ + ioup = fluid.layers.slice(output, axes=[1], starts=[0], ends=[an_num]) + ioup = fluid.layers.sigmoid(ioup) + oriout = fluid.layers.slice( + output, axes=[1], starts=[an_num], ends=[an_num * (num_classes + 6)]) + return (ioup, oriout) + + +def _split_output(output, an_num, num_classes): + """ + Split output feature map to x, y, w, h, objectness, classification + along channel dimension + """ + x = fluid.layers.strided_slice( + output, + axes=[1], + starts=[0], + ends=[output.shape[1]], + strides=[5 + num_classes]) + y = fluid.layers.strided_slice( + output, + axes=[1], + starts=[1], + ends=[output.shape[1]], + strides=[5 + num_classes]) + w = fluid.layers.strided_slice( + output, + axes=[1], + starts=[2], + ends=[output.shape[1]], + strides=[5 + num_classes]) + h = fluid.layers.strided_slice( + output, + axes=[1], + starts=[3], + ends=[output.shape[1]], + strides=[5 + num_classes]) + obj = fluid.layers.strided_slice( + output, + axes=[1], + starts=[4], + ends=[output.shape[1]], + strides=[5 + num_classes]) + clss = [] + stride = output.shape[1] // an_num + for m in range(an_num): + clss.append( + fluid.layers.slice( + output, + axes=[1], + starts=[stride * m + 5], + ends=[stride * m + 5 + num_classes])) + cls = fluid.layers.transpose( + fluid.layers.stack( + clss, axis=1), perm=[0, 1, 3, 4, 2]) + return (x, y, w, h, obj, cls) + + +def _split_target(target): + """ + split target to x, y, w, h, objectness, classification + along dimension 2 + target is in shape [N, an_num, 6 + class_num, H, W] + """ + tx = target[:, :, 0, :, :] + ty = target[:, :, 1, :, :] + tw = target[:, :, 2, :, :] + th = target[:, :, 3, :, :] + tscale = target[:, :, 4, :, :] + tobj = target[:, :, 5, :, :] + tcls = fluid.layers.transpose(target[:, :, 6:, :, :], perm=[0, 1, 3, 4, 2]) + tcls.stop_gradient = True + return (tx, ty, tw, th, tscale, tobj, tcls) + + +def _calc_obj_loss(output, obj, tobj, gt_box, batch_size, anchors, num_classes, + downsample, ignore_thresh, scale_x_y): + # A prediction bbox overlap any gt_bbox over ignore_thresh, + # objectness loss will be ignored, process as follows: + # 1. get pred bbox, which is same with YOLOv3 infer mode, use yolo_box here + # NOTE: img_size is set as 1.0 to get noramlized pred bbox + bbox, prob = fluid.layers.yolo_box( + x=output, + img_size=fluid.layers.ones( + shape=[batch_size, 2], dtype="int32"), + anchors=anchors, + class_num=num_classes, + conf_thresh=0., + downsample_ratio=downsample, + clip_bbox=False, + scale_x_y=scale_x_y) + # 2. split pred bbox and gt bbox by sample, calculate IoU between pred bbox + # and gt bbox in each sample + if batch_size > 1: + preds = fluid.layers.split(bbox, batch_size, dim=0) + gts = fluid.layers.split(gt_box, batch_size, dim=0) + else: + preds = [bbox] + gts = [gt_box] + probs = [prob] + ious = [] + for pred, gt in zip(preds, gts): + + def box_xywh2xyxy(box): + x = box[:, 0] + y = box[:, 1] + w = box[:, 2] + h = box[:, 3] + return fluid.layers.stack( + [ + x - w / 2., + y - h / 2., + x + w / 2., + y + h / 2., + ], axis=1) + + pred = fluid.layers.squeeze(pred, axes=[0]) + gt = box_xywh2xyxy(fluid.layers.squeeze(gt, axes=[0])) + ious.append(fluid.layers.iou_similarity(pred, gt)) + iou = fluid.layers.stack(ious, axis=0) + # 3. Get iou_mask by IoU between gt bbox and prediction bbox, + # Get obj_mask by tobj(holds gt_score), calculate objectness loss + max_iou = fluid.layers.reduce_max(iou, dim=-1) + iou_mask = fluid.layers.cast(max_iou <= ignore_thresh, dtype="float32") + output_shape = fluid.layers.shape(output) + an_num = len(anchors) // 2 + iou_mask = fluid.layers.reshape(iou_mask, (-1, an_num, output_shape[2], + output_shape[3])) + iou_mask.stop_gradient = True + # NOTE: tobj holds gt_score, obj_mask holds object existence mask + obj_mask = fluid.layers.cast(tobj > 0., dtype="float32") + obj_mask.stop_gradient = True + # For positive objectness grids, objectness loss should be calculated + # For negative objectness grids, objectness loss is calculated only iou_mask == 1.0 + loss_obj = fluid.layers.sigmoid_cross_entropy_with_logits(obj, obj_mask) + loss_obj_pos = fluid.layers.reduce_sum(loss_obj * tobj, dim=[1, 2, 3]) + loss_obj_neg = fluid.layers.reduce_sum( + loss_obj * (1.0 - obj_mask) * iou_mask, dim=[1, 2, 3]) + return loss_obj_pos, loss_obj_neg + + +def fine_grained_loss(output, + target, + gt_box, + batch_size, + num_classes, + anchors, + ignore_thresh, + downsample, + scale_x_y=1., + eps=1e-10): + an_num = len(anchors) // 2 + x, y, w, h, obj, cls = _split_output(output, an_num, num_classes) + tx, ty, tw, th, tscale, tobj, tcls = _split_target(target) + + tscale_tobj = tscale * tobj + + scale_x_y = scale_x_y + + if (abs(scale_x_y - 1.0) < eps): + loss_x = fluid.layers.sigmoid_cross_entropy_with_logits( + x, tx) * tscale_tobj + loss_x = fluid.layers.reduce_sum(loss_x, dim=[1, 2, 3]) + loss_y = fluid.layers.sigmoid_cross_entropy_with_logits( + y, ty) * tscale_tobj + loss_y = fluid.layers.reduce_sum(loss_y, dim=[1, 2, 3]) + else: + dx = scale_x_y * fluid.layers.sigmoid(x) - 0.5 * (scale_x_y - 1.0) + dy = scale_x_y * fluid.layers.sigmoid(y) - 0.5 * (scale_x_y - 1.0) + loss_x = fluid.layers.abs(dx - tx) * tscale_tobj + loss_x = fluid.layers.reduce_sum(loss_x, dim=[1, 2, 3]) + loss_y = fluid.layers.abs(dy - ty) * tscale_tobj + loss_y = fluid.layers.reduce_sum(loss_y, dim=[1, 2, 3]) + + # NOTE: we refined loss function of (w, h) as L1Loss + loss_w = fluid.layers.abs(w - tw) * tscale_tobj + loss_w = fluid.layers.reduce_sum(loss_w, dim=[1, 2, 3]) + loss_h = fluid.layers.abs(h - th) * tscale_tobj + loss_h = fluid.layers.reduce_sum(loss_h, dim=[1, 2, 3]) + + loss_obj_pos, loss_obj_neg = _calc_obj_loss( + output, obj, tobj, gt_box, batch_size, anchors, num_classes, downsample, + ignore_thresh, scale_x_y) + + loss_cls = fluid.layers.sigmoid_cross_entropy_with_logits(cls, tcls) + loss_cls = fluid.layers.elementwise_mul(loss_cls, tobj, axis=0) + loss_cls = fluid.layers.reduce_sum(loss_cls, dim=[1, 2, 3, 4]) + + loss_xys = fluid.layers.reduce_mean(loss_x + loss_y) + loss_whs = fluid.layers.reduce_mean(loss_w + loss_h) + loss_objs = fluid.layers.reduce_mean(loss_obj_pos + loss_obj_neg) + loss_clss = fluid.layers.reduce_mean(loss_cls) + + losses_all = { + "loss_xy": fluid.layers.sum(loss_xys), + "loss_wh": fluid.layers.sum(loss_whs), + "loss_loc": fluid.layers.sum(loss_xys) + fluid.layers.sum(loss_whs), + "loss_obj": fluid.layers.sum(loss_objs), + "loss_cls": fluid.layers.sum(loss_clss), + } + return losses_all, x, y, tx, ty + + +def gt2yolotarget(gt_bbox, gt_class, gt_score, anchors, mask, num_classes, size, + stride): + grid_h, grid_w = size + h, w = grid_h * stride, grid_w * stride + an_hw = np.array(anchors) / np.array([[w, h]]) + target = np.zeros( + (len(mask), 6 + num_classes, grid_h, grid_w), dtype=np.float32) + for b in range(gt_bbox.shape[0]): + gx, gy, gw, gh = gt_bbox[b, :] + cls = gt_class[b] + score = gt_score[b] + if gw <= 0. or gh <= 0. or score <= 0.: + continue + + # find best match anchor index + best_iou = 0. + best_idx = -1 + for an_idx in range(an_hw.shape[0]): + iou = jaccard_overlap([0., 0., gw, gh], + [0., 0., an_hw[an_idx, 0], an_hw[an_idx, 1]]) + if iou > best_iou: + best_iou = iou + best_idx = an_idx + + gi = int(gx * grid_w) + gj = int(gy * grid_h) + + # gtbox should be regresed in this layes if best match + # anchor index in anchor mask of this layer + if best_idx in mask: + best_n = mask.index(best_idx) + + # x, y, w, h, scale + target[best_n, 0, gj, gi] = gx * grid_w - gi + target[best_n, 1, gj, gi] = gy * grid_h - gj + target[best_n, 2, gj, gi] = np.log(gw * w / anchors[best_idx][0]) + target[best_n, 3, gj, gi] = np.log(gh * h / anchors[best_idx][1]) + target[best_n, 4, gj, gi] = 2.0 - gw * gh + + # objectness record gt_score + # if target[best_n, 5, gj, gi] > 0: + # print('find 1 duplicate') + target[best_n, 5, gj, gi] = score + + # classification + target[best_n, 6 + cls, gj, gi] = 1. + + return target + + +class TestYolov3LossOp(unittest.TestCase): + def setUp(self): + self.initTestCase() + x = np.random.uniform(0, 1, self.x_shape).astype('float64') + gtbox = np.random.random(size=self.gtbox_shape).astype('float64') + gtlabel = np.random.randint(0, self.class_num, self.gtbox_shape[:2]) + gtmask = np.random.randint(0, 2, self.gtbox_shape[:2]) + gtbox = gtbox * gtmask[:, :, np.newaxis] + gtlabel = gtlabel * gtmask + + gtscore = np.ones(self.gtbox_shape[:2]).astype('float64') + if self.gtscore: + gtscore = np.random.random(self.gtbox_shape[:2]).astype('float64') + + target = [] + for box, label, score in zip(gtbox, gtlabel, gtscore): + target.append( + gt2yolotarget(box, label, score, self.anchors, self.anchor_mask, + self.class_num, (self.h, self.w + ), self.downsample_ratio)) + + self.target = np.array(target).astype('float64') + + self.mask_anchors = [] + for i in self.anchor_mask: + self.mask_anchors.extend(self.anchors[i]) + self.x = x + self.gtbox = gtbox + self.gtlabel = gtlabel + self.gtscore = gtscore + + def initTestCase(self): + self.b = 8 + self.h = 19 + self.w = 19 + self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], + [59, 119], [116, 90], [156, 198], [373, 326]] + self.anchor_mask = [6, 7, 8] + self.na = len(self.anchor_mask) + self.class_num = 80 + self.ignore_thresh = 0.7 + self.downsample_ratio = 32 + self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num), + self.h, self.w) + self.gtbox_shape = (self.b, 40, 4) + self.gtscore = True + self.use_label_smooth = False + self.scale_x_y = 1. + + def test_loss(self): + x, gtbox, gtlabel, gtscore, target = self.x, self.gtbox, self.gtlabel, self.gtscore, self.target + yolo_loss = YOLOv3Loss( + ignore_thresh=self.ignore_thresh, + label_smooth=self.use_label_smooth, + num_classes=self.class_num, + downsample=self.downsample_ratio, + scale_x_y=self.scale_x_y) + x = paddle.to_tensor(x.astype(np.float32)) + gtbox = paddle.to_tensor(gtbox.astype(np.float32)) + gtlabel = paddle.to_tensor(gtlabel.astype(np.float32)) + gtscore = paddle.to_tensor(gtscore.astype(np.float32)) + t = paddle.to_tensor(target.astype(np.float32)) + anchor = [self.anchors[i] for i in self.anchor_mask] + (yolo_loss1, px, py, tx, ty) = fine_grained_loss( + output=x, + target=t, + gt_box=gtbox, + batch_size=self.b, + num_classes=self.class_num, + anchors=self.mask_anchors, + ignore_thresh=self.ignore_thresh, + downsample=self.downsample_ratio, + scale_x_y=self.scale_x_y) + yolo_loss2 = yolo_loss.yolov3_loss( + x, t, gtbox, anchor, self.downsample_ratio, self.scale_x_y) + for k in yolo_loss2: + self.assertAlmostEqual( + yolo_loss1[k].numpy()[0], + yolo_loss2[k].numpy()[0], + delta=1e-2, + msg=k) + + +class TestYolov3LossNoGTScore(TestYolov3LossOp): + def initTestCase(self): + self.b = 1 + self.h = 76 + self.w = 76 + self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], + [59, 119], [116, 90], [156, 198], [373, 326]] + self.anchor_mask = [0, 1, 2] + self.na = len(self.anchor_mask) + self.class_num = 80 + self.ignore_thresh = 0.7 + self.downsample_ratio = 8 + self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num), + self.h, self.w) + self.gtbox_shape = (self.b, 40, 4) + self.gtscore = False + self.use_label_smooth = False + self.scale_x_y = 1. + + +class TestYolov3LossWithScaleXY(TestYolov3LossOp): + def initTestCase(self): + self.b = 5 + self.h = 38 + self.w = 38 + self.anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], + [59, 119], [116, 90], [156, 198], [373, 326]] + self.anchor_mask = [3, 4, 5] + self.na = len(self.anchor_mask) + self.class_num = 80 + self.ignore_thresh = 0.7 + self.downsample_ratio = 16 + self.x_shape = (self.b, len(self.anchor_mask) * (5 + self.class_num), + self.h, self.w) + self.gtbox_shape = (self.b, 40, 4) + self.gtscore = True + self.use_label_smooth = False + self.scale_x_y = 1.2 + + +if __name__ == "__main__": + unittest.main() diff --git a/ppdet/modeling/utils/__init__.py b/ppdet/modeling/utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e27f26a6f1254241a760af2b41a7eb26eb463ad6 --- /dev/null +++ b/ppdet/modeling/utils/__init__.py @@ -0,0 +1,17 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from . import bbox_util + +from .bbox_util import * diff --git a/ppdet/modeling/utils/bbox_util.py b/ppdet/modeling/utils/bbox_util.py new file mode 100644 index 0000000000000000000000000000000000000000..9672ed484840b60f68bd8fc1b9b55a72b88a13ef --- /dev/null +++ b/ppdet/modeling/utils/bbox_util.py @@ -0,0 +1,134 @@ +# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import paddle +import paddle.nn.functional as F +import math + + +def xywh2xyxy(box): + out = paddle.zeros_like(box) + out[:, :, 0:2] = box[:, :, 0:2] - box[:, :, 2:4] / 2 + out[:, :, 2:4] = box[:, :, 0:2] + box[:, :, 2:4] / 2 + return out + + +def make_grid(h, w, dtype): + yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)]) + return paddle.stack((xv, yv), 2).cast(dtype=dtype) + + +def decode_yolo(box, anchor, downsample_ratio): + """decode yolo box + + Args: + box (Tensor): pred with the shape [b, h, w, na, 4] + anchor (list): anchor with the shape [na, 2] + downsample_ratio (int): downsample ratio, default 32 + scale (float): scale, default 1. + + Return: + box (Tensor): decoded box, with the shape [b, h, w, na, 4] + """ + h, w, na = box.shape[1:4] + grid = make_grid(h, w, box.dtype).reshape((1, h, w, 1, 2)) + box[:, :, :, :, 0:2] = box[:, :, :, :, :2] + grid + box[:, :, :, :, 0] = box[:, :, :, :, 0] / w + box[:, :, :, :, 1] = box[:, :, :, :, 1] / h + + anchor = paddle.to_tensor(anchor) + anchor = paddle.cast(anchor, box.dtype) + anchor = anchor.reshape((1, 1, 1, na, 2)) + box[:, :, :, :, 2:4] = paddle.exp(box[:, :, :, :, 2:4]) * anchor + box[:, :, :, :, 2] = box[:, :, :, :, 2] / (downsample_ratio * w) + box[:, :, :, :, 3] = box[:, :, :, :, 3] / (downsample_ratio * h) + return box + + +def iou_similarity(box1, box2, eps=1e-9): + """Calculate iou of box1 and box2 + + Args: + box1 (Tensor): box with the shape [N, M1, 4] + box2 (Tensor): box with the shape [N, M2, 4] + + Return: + iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2] + """ + box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4] + box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4] + px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4] + gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4] + x1y1 = paddle.maximum(px1y1, gx1y1) + x2y2 = paddle.minimum(px2y2, gx2y2) + overlap = (x2y2 - x1y1).clip(0).prod(-1) + area1 = (px2y2 - px1y1).clip(0).prod(-1) + area2 = (gx2y2 - gx1y1).clip(0).prod(-1) + union = area1 + area2 - overlap + eps + return overlap / union + + +def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9): + """calculate the iou of box1 and box2 + + Args: + box1 (Tensor): box1 with the shape (N, M, 4) + box2 (Tensor): box1 with the shape (N, M, 4) + giou (bool): whether use giou or not, default False + diou (bool): whether use diou or not, default False + ciou (bool): whether use ciou or not, default False + eps (float): epsilon to avoid divide by zero + + Return: + iou (Tensor): iou of box1 and box1, with the shape (N, M) + """ + px1y1, px2y2 = box1[:, :, 0:2], box1[:, :, 2:4] + gx1y1, gx2y2 = box2[:, :, 0:2], box2[:, :, 2:4] + x1y1 = paddle.maximum(px1y1, gx1y1) + x2y2 = paddle.minimum(px2y2, gx2y2) + + overlap = (x2y2 - x1y1).clip(0).prod(-1) + area1 = (px2y2 - px1y1).clip(0).prod(-1) + area2 = (gx2y2 - gx1y1).clip(0).prod(-1) + union = area1 + area2 - overlap + eps + iou = overlap / union + if giou or ciou or diou: + # convex w, h + cwh = paddle.maximum(px2y2, gx2y2) - paddle.minimum(px1y1, gx1y1) + if ciou or diou: + # convex diagonal squared + c2 = (cwh**2).sum(2) + eps + # center distance + rho2 = ((px1y1 + px2y2 - gx1y1 - gx2y2)**2).sum(2) / 4 + if diou: + return iou - rho2 / c2 + elif ciou: + wh1 = px2y2 - px1y1 + wh2 = gx2y2 - gx1y1 + w1, h1 = wh1[:, :, 0], wh1[:, :, 1] + eps + w2, h2 = wh2[:, :, 0], wh2[:, :, 1] + eps + v = (4 / math.pi**2) * paddle.pow( + paddle.atan(w1 / h1) - paddle.atan(w2 / h2), 2) + alpha = v / (1 + eps - iou + v) + alpha.stop_gradient = True + return iou - (rho2 / c2 + v * alpha) + else: + c_area = cwh.prod(2) + eps + return iou - (c_area - union) / c_area + else: + return iou diff --git a/tools/train.py b/tools/train.py index a59dd192d305ccfee320272e6363d32fc13b27ac..318ae855fb2dfb0338f39e53f08c71608137d132 100755 --- a/tools/train.py +++ b/tools/train.py @@ -30,7 +30,6 @@ import datetime import numpy as np from collections import deque import paddle -from paddle import fluid from ppdet.core.workspace import load_config, merge_config, create from ppdet.utils.stats import TrainingStats from ppdet.utils.check import check_gpu, check_version, check_config @@ -122,7 +121,6 @@ def run(FLAGS, cfg, place): dataset, cfg['worker_num'], place) # Model - main_arch = cfg.architecture model = create(cfg.architecture) # Optimizer @@ -137,19 +135,28 @@ def run(FLAGS, cfg, place): cfg.get('load_static_weights', False), FLAGS.weight_type) + if getattr(model.backbone, 'norm_type', None) == 'sync_bn': + assert cfg.use_gpu and ParallelEnv( + ).nranks > 1, 'you should use bn rather than sync_bn while using a single gpu' + # sync_bn = (getattr(model.backbone, 'norm_type', None) == 'sync_bn' and + # cfg.use_gpu and ParallelEnv().nranks > 1) + # if sync_bn: + # model = paddle.nn.SyncBatchNorm.convert_sync_batchnorm(model) + # Parallel Model if ParallelEnv().nranks > 1: model = paddle.DataParallel(model) + fields = train_loader.collate_fn.output_fields # Run Train - start_iter = 0 time_stat = deque(maxlen=cfg.log_iter) start_time = time.time() end_time = time.time() # Run Train start_epoch = optimizer.state_dict()['LR_Scheduler']['last_epoch'] - for e_id in range(int(cfg.epoch)): - cur_eid = e_id + start_epoch + for epoch_id in range(int(cfg.epoch)): + cur_eid = epoch_id + start_epoch + train_loader.dataset.epoch = epoch_id for iter_id, data in enumerate(train_loader): start_time = end_time end_time = time.time() @@ -161,8 +168,7 @@ def run(FLAGS, cfg, place): # Model Forward model.train() - outputs = model(data, cfg['TrainReader']['inputs_def']['fields'], - 'train') + outputs = model(data, fields, 'train') # Model Backward loss = outputs['loss'] @@ -179,7 +185,7 @@ def run(FLAGS, cfg, place): if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0: # Log state - if e_id == 0 and iter_id == 0: + if epoch_id == 0 and iter_id == 0: train_stats = TrainingStats(cfg.log_iter, outputs.keys()) train_stats.update(outputs) logs = train_stats.log()