Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
192d2938
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
192d2938
编写于
12月 06, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use stable Sigmoid Cross Entropy implement. test=develop
上级
245b1f05
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
208 addition
and
174 deletion
+208
-174
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+4
-0
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+156
-127
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+3
-0
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+1
-1
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+44
-46
未找到文件。
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
192d2938
...
...
@@ -99,6 +99,10 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr
<
std
::
vector
<
int
>>
(
"anchors"
,
"The anchor width and height, "
"it will be parsed pair by pair."
);
AddAttr
<
int
>
(
"input_size"
,
"The input size of YOLOv3 net, "
"generally this is set as 320, 416 or 608."
)
.
SetDefault
(
406
);
AddAttr
<
float
>
(
"ignore_thresh"
,
"The ignore threshold to ignore confidence loss."
);
AddAttr
<
float
>
(
"loss_weight_xy"
,
"The weight of x, y location loss."
)
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
192d2938
...
...
@@ -33,87 +33,91 @@ static inline bool isZero(T x) {
}
template
<
typename
T
>
static
inline
T
sigmoid
(
T
x
)
{
return
1.0
/
(
exp
(
-
1.0
*
x
)
+
1.0
);
}
static
inline
T
CalcMSEWithWeight
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
weight
,
const
T
mf
)
{
int
numel
=
static_cast
<
int
>
(
x
.
numel
());
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
y_data
=
y
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
template
<
typename
T
>
static
inline
T
CalcMaskPointNum
(
const
Tensor
&
mask
)
{
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
T
count
=
0.0
;
for
(
int
i
=
0
;
i
<
mask_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
))
{
count
+=
1.0
;
}
T
error_sum
=
0.0
;
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
T
xi
=
x_data
[
i
];
T
yi
=
y_data
[
i
];
T
weighti
=
weight_data
[
i
];
error_sum
+=
pow
(
yi
-
xi
,
2
)
*
weighti
;
}
return
count
;
return
error_sum
/
mf
;
}
template
<
typename
T
>
static
inline
T
CalcMSEWithMask
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
)
{
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
T
error_sum
=
0.0
;
T
points
=
0.0
;
for
(
int
i
=
0
;
i
<
x_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
))
{
error_sum
+=
pow
(
x_t
(
i
)
-
y_t
(
i
),
2
);
points
+=
1
;
}
static
void
CalcMSEGradWithWeight
(
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
weight
,
const
T
mf
)
{
int
numel
=
static_cast
<
int
>
(
grad
->
numel
());
T
*
grad_data
=
grad
->
data
<
T
>
();
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
y_data
=
y
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
grad_data
[
i
]
=
2.0
*
weight_data
[
i
]
*
(
x_data
[
i
]
-
y_data
[
i
])
/
mf
;
}
return
(
error_sum
/
points
);
}
template
<
typename
T
>
static
void
CalcMSEGradWithMask
(
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
,
T
mf
)
{
auto
grad_t
=
EigenVector
<
T
>::
Flatten
(
*
grad
).
setConstant
(
0.0
);
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
for
(
int
i
=
0
;
i
<
x_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
))
{
grad_t
(
i
)
=
2.0
*
(
x_t
(
i
)
-
y_t
(
i
))
/
mf
;
}
struct
SigmoidCrossEntropyForward
{
T
operator
()(
const
T
&
x
,
const
T
&
label
)
const
{
T
term1
=
(
x
>
0
)
?
x
:
0
;
T
term2
=
x
*
label
;
T
term3
=
std
::
log
(
static_cast
<
T
>
(
1.0
)
+
std
::
exp
(
-
(
std
::
abs
(
x
))));
return
term1
-
term2
+
term3
;
}
}
}
;
template
<
typename
T
>
static
inline
T
CalcBCEWithMask
(
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
)
{
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
T
error_sum
=
0.0
;
T
points
=
0.0
;
for
(
int
i
=
0
;
i
<
x_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
))
{
error_sum
+=
-
1.0
*
(
y_t
(
i
)
*
log
(
x_t
(
i
))
+
(
1.0
-
y_t
(
i
))
*
log
(
1.0
-
x_t
(
i
)));
points
+=
1
;
struct
SigmoidCrossEntropyBackward
{
T
operator
()(
const
T
&
x
,
const
T
&
label
)
const
{
T
sigmoid_x
=
static_cast
<
T
>
(
1.0
)
/
(
static_cast
<
T
>
(
1.0
)
+
std
::
exp
(
-
1.0
*
x
));
return
sigmoid_x
-
label
;
}
};
template
<
typename
T
>
static
inline
T
CalcSCEWithWeight
(
const
Tensor
&
x
,
const
Tensor
&
labels
,
const
Tensor
&
weight
,
const
T
mf
)
{
int
numel
=
x
.
numel
();
const
T
*
x_data
=
x
.
data
<
T
>
();
const
T
*
labels_data
=
labels
.
data
<
T
>
();
const
T
*
weight_data
=
weight
.
data
<
T
>
();
T
loss
=
0.0
;
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
T
xi
=
x_data
[
i
];
T
labeli
=
labels_data
[
i
];
T
weighti
=
weight_data
[
i
];
loss
+=
((
xi
>
0.0
?
xi
:
0.0
)
-
xi
*
labeli
+
std
::
log
(
1.0
+
std
::
exp
(
-
1.0
*
std
::
abs
(
xi
))))
*
weighti
;
}
return
(
error_sum
/
points
)
;
return
loss
/
mf
;
}
template
<
typename
T
>
static
inline
void
Calc
BCEGradWithMask
(
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
y
,
const
Tensor
&
mask
,
T
mf
)
{
auto
grad_t
=
EigenVector
<
T
>::
Flatten
(
*
grad
).
setConstant
(
0.0
);
auto
x_t
=
EigenVector
<
T
>::
Flatten
(
x
);
auto
y_t
=
EigenVector
<
T
>::
Flatten
(
y
);
auto
mask_t
=
EigenVector
<
int
>::
Flatten
(
mask
);
for
(
int
i
=
0
;
i
<
x_t
.
dimensions
()[
0
];
i
++
)
{
if
(
mask_t
(
i
)
)
{
grad_t
(
i
)
=
((
1.0
-
y_t
(
i
))
/
(
1.0
-
x_t
(
i
))
-
y_t
(
i
)
/
x_t
(
i
))
/
mf
;
}
static
inline
void
Calc
SCEGradWithWeight
(
Tensor
*
grad
,
const
Tensor
&
x
,
const
Tensor
&
labels
,
const
Tensor
&
weight
,
const
T
mf
)
{
int
numel
=
grad
->
numel
(
);
T
*
grad_data
=
grad
->
data
<
T
>
(
);
const
T
*
x_data
=
x
.
data
<
T
>
(
);
const
T
*
labels_data
=
labels
.
data
<
T
>
(
);
const
T
*
weight_data
=
weight
.
data
<
T
>
();
for
(
int
i
=
0
;
i
<
numel
;
i
++
)
{
grad_data
[
i
]
=
(
1.0
/
(
1.0
+
std
::
exp
(
-
1.0
*
x_data
[
i
]))
-
labels_data
[
i
])
*
weight_data
[
i
]
/
mf
;
}
}
...
...
@@ -139,21 +143,20 @@ static void CalcPredResult(const Tensor& input, Tensor* pred_conf,
for
(
int
an_idx
=
0
;
an_idx
<
anchor_num
;
an_idx
++
)
{
for
(
int
j
=
0
;
j
<
h
;
j
++
)
{
for
(
int
k
=
0
;
k
<
w
;
k
++
)
{
pred_x_t
(
i
,
an_idx
,
j
,
k
)
=
sigmoid
(
input_t
(
i
,
box_attr_num
*
an_idx
,
j
,
k
));
pred_x_t
(
i
,
an_idx
,
j
,
k
)
=
input_t
(
i
,
box_attr_num
*
an_idx
,
j
,
k
);
pred_y_t
(
i
,
an_idx
,
j
,
k
)
=
sigmoid
(
input_t
(
i
,
box_attr_num
*
an_idx
+
1
,
j
,
k
)
);
input_t
(
i
,
box_attr_num
*
an_idx
+
1
,
j
,
k
);
pred_w_t
(
i
,
an_idx
,
j
,
k
)
=
input_t
(
i
,
box_attr_num
*
an_idx
+
2
,
j
,
k
);
pred_h_t
(
i
,
an_idx
,
j
,
k
)
=
input_t
(
i
,
box_attr_num
*
an_idx
+
3
,
j
,
k
);
pred_conf_t
(
i
,
an_idx
,
j
,
k
)
=
sigmoid
(
input_t
(
i
,
box_attr_num
*
an_idx
+
4
,
j
,
k
)
);
input_t
(
i
,
box_attr_num
*
an_idx
+
4
,
j
,
k
);
for
(
int
c
=
0
;
c
<
class_num
;
c
++
)
{
pred_class_t
(
i
,
an_idx
,
j
,
k
,
c
)
=
sigmoid
(
input_t
(
i
,
box_attr_num
*
an_idx
+
5
+
c
,
j
,
k
)
);
input_t
(
i
,
box_attr_num
*
an_idx
+
5
+
c
,
j
,
k
);
}
}
}
...
...
@@ -188,21 +191,22 @@ static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2) {
template
<
typename
T
>
static
void
PreProcessGTBox
(
const
Tensor
&
gt_box
,
const
Tensor
&
gt_label
,
const
float
ignore_thresh
,
std
::
vector
<
int
>
anchors
,
const
int
grid_size
,
Tensor
*
obj_mask
,
Tensor
*
noobj_mask
,
Tensor
*
tx
,
Tensor
*
ty
,
Tensor
*
t
w
,
Tensor
*
th
,
Tensor
*
tconf
,
Tensor
*
tclass
)
{
const
int
input_size
,
const
int
grid_size
,
Tensor
*
obj_mask
,
Tensor
*
noobj_mask
,
Tensor
*
tx
,
Tensor
*
t
y
,
Tensor
*
tw
,
Tensor
*
th
,
Tensor
*
tweight
,
Tensor
*
tc
onf
,
Tensor
*
tc
lass
)
{
const
int
n
=
gt_box
.
dims
()[
0
];
const
int
b
=
gt_box
.
dims
()[
1
];
const
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
gt_box_t
=
EigenTensor
<
T
,
3
>::
From
(
gt_box
);
auto
gt_label_t
=
EigenTensor
<
int
,
2
>::
From
(
gt_label
);
auto
obj_mask_t
=
EigenTensor
<
int
,
4
>::
From
(
*
obj_mask
).
setConstant
(
0
);
auto
noobj_mask_t
=
EigenTensor
<
int
,
4
>::
From
(
*
noobj_mask
).
setConstant
(
1
);
auto
obj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
*
obj_mask
).
setConstant
(
0
);
auto
noobj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
*
noobj_mask
).
setConstant
(
1
);
auto
tx_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tx
).
setConstant
(
0.0
);
auto
ty_t
=
EigenTensor
<
T
,
4
>::
From
(
*
ty
).
setConstant
(
0.0
);
auto
tw_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tw
).
setConstant
(
0.0
);
auto
th_t
=
EigenTensor
<
T
,
4
>::
From
(
*
th
).
setConstant
(
0.0
);
auto
tweight_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tweight
).
setConstant
(
0.0
);
auto
tconf_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tconf
).
setConstant
(
0.0
);
auto
tclass_t
=
EigenTensor
<
T
,
5
>::
From
(
*
tclass
).
setConstant
(
0.0
);
...
...
@@ -216,8 +220,8 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
int
cur_label
=
gt_label_t
(
i
,
j
);
T
gx
=
gt_box_t
(
i
,
j
,
0
)
*
grid_size
;
T
gy
=
gt_box_t
(
i
,
j
,
1
)
*
grid_size
;
T
gw
=
gt_box_t
(
i
,
j
,
2
)
*
grid
_size
;
T
gh
=
gt_box_t
(
i
,
j
,
3
)
*
grid
_size
;
T
gw
=
gt_box_t
(
i
,
j
,
2
)
*
input
_size
;
T
gh
=
gt_box_t
(
i
,
j
,
3
)
*
input
_size
;
int
gi
=
static_cast
<
int
>
(
gx
);
int
gj
=
static_cast
<
int
>
(
gy
);
...
...
@@ -234,15 +238,17 @@ static void PreProcessGTBox(const Tensor& gt_box, const Tensor& gt_label,
best_an_index
=
an_idx
;
}
if
(
iou
>
ignore_thresh
)
{
noobj_mask_t
(
i
,
an_idx
,
gj
,
gi
)
=
0
;
noobj_mask_t
(
i
,
an_idx
,
gj
,
gi
)
=
static_cast
<
T
>
(
0.0
)
;
}
}
obj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
1
;
noobj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
0
;
obj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
static_cast
<
T
>
(
1.0
)
;
noobj_mask_t
(
i
,
best_an_index
,
gj
,
gi
)
=
static_cast
<
T
>
(
0.0
)
;
tx_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gx
-
gi
;
ty_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gy
-
gj
;
tw_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gw
/
anchors
[
2
*
best_an_index
]);
th_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gh
/
anchors
[
2
*
best_an_index
+
1
]);
tweight_t
(
i
,
best_an_index
,
gj
,
gi
)
=
2.0
-
gt_box_t
(
i
,
j
,
2
)
*
gt_box_t
(
i
,
j
,
3
);
tclass_t
(
i
,
best_an_index
,
gj
,
gi
,
cur_label
)
=
1
;
tconf_t
(
i
,
best_an_index
,
gj
,
gi
)
=
1
;
}
...
...
@@ -295,27 +301,22 @@ static void AddAllGradToInputGrad(
for
(
int
k
=
0
;
k
<
h
;
k
++
)
{
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
grad_t
(
i
,
j
*
attr_num
,
k
,
l
)
=
grad_x_t
(
i
,
j
,
k
,
l
)
*
pred_x_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_x_t
(
i
,
j
,
k
,
l
))
*
loss
*
loss_weight_xy
;
grad_x_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_xy
;
grad_t
(
i
,
j
*
attr_num
+
1
,
k
,
l
)
=
grad_y_t
(
i
,
j
,
k
,
l
)
*
pred_y_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_y_t
(
i
,
j
,
k
,
l
))
*
loss
*
loss_weight_xy
;
grad_y_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_xy
;
grad_t
(
i
,
j
*
attr_num
+
2
,
k
,
l
)
=
grad_w_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_wh
;
grad_t
(
i
,
j
*
attr_num
+
3
,
k
,
l
)
=
grad_h_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_wh
;
grad_t
(
i
,
j
*
attr_num
+
4
,
k
,
l
)
=
grad_conf_target_t
(
i
,
j
,
k
,
l
)
*
pred_conf_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_conf_t
(
i
,
j
,
k
,
l
))
*
loss
*
loss_weight_conf_target
;
grad_conf_target_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_conf_target
;
grad_t
(
i
,
j
*
attr_num
+
4
,
k
,
l
)
+=
grad_conf_notarget_t
(
i
,
j
,
k
,
l
)
*
pred_conf_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_conf_t
(
i
,
j
,
k
,
l
))
*
loss
*
grad_conf_notarget_t
(
i
,
j
,
k
,
l
)
*
loss
*
loss_weight_conf_notarget
;
for
(
int
c
=
0
;
c
<
class_num
;
c
++
)
{
grad_t
(
i
,
j
*
attr_num
+
5
+
c
,
k
,
l
)
=
grad_class_t
(
i
,
j
,
k
,
l
,
c
)
*
pred_class_t
(
i
,
j
,
k
,
l
,
c
)
*
(
1.0
-
pred_class_t
(
i
,
j
,
k
,
l
,
c
))
*
loss
*
loss_weight_class
;
grad_class_t
(
i
,
j
,
k
,
l
,
c
)
*
loss
*
loss_weight_class
;
}
}
}
...
...
@@ -333,6 +334,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
float
loss_weight_xy
=
ctx
.
Attr
<
float
>
(
"loss_weight_xy"
);
float
loss_weight_wh
=
ctx
.
Attr
<
float
>
(
"loss_weight_wh"
);
...
...
@@ -358,30 +360,46 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
&
pred_w
,
&
pred_h
,
an_num
,
class_num
);
Tensor
obj_mask
,
noobj_mask
;
Tensor
tx
,
ty
,
tw
,
th
,
tconf
,
tclass
;
obj_mask
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
noobj_mask
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
Tensor
tx
,
ty
,
tw
,
th
,
t
weight
,
t
conf
,
tclass
;
obj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
noobj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
th
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tweight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tconf
,
&
tclass
);
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
&
tconf
,
&
tclass
);
Tensor
obj_weight
;
obj_weight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
auto
obj_weight_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_weight
);
auto
obj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_mask
);
auto
tweight_t
=
EigenTensor
<
T
,
4
>::
From
(
tweight
);
obj_weight_t
=
obj_mask_t
*
tweight_t
;
Tensor
obj_mask_expand
;
obj_mask_expand
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
,
class_num
},
obj_mask_expand
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
ExpandObjMaskByClassNum
(
&
obj_mask_expand
,
obj_mask
);
auto
obj_mask_expand_t
=
EigenTensor
<
T
,
5
>::
From
(
obj_mask_expand
);
obj_mask_expand_t
=
obj_mask_t
.
reshape
(
Array5
(
n
,
an_num
,
h
,
w
,
1
))
.
broadcast
(
Array5
(
1
,
1
,
1
,
1
,
class_num
));
T
loss_x
=
CalcMSEWithMask
<
T
>
(
pred_x
,
tx
,
obj_mask
);
T
loss_y
=
CalcMSEWithMask
<
T
>
(
pred_y
,
ty
,
obj_mask
);
T
loss_w
=
CalcMSEWithMask
<
T
>
(
pred_w
,
tw
,
obj_mask
);
T
loss_h
=
CalcMSEWithMask
<
T
>
(
pred_h
,
th
,
obj_mask
);
T
loss_conf_target
=
CalcBCEWithMask
<
T
>
(
pred_conf
,
tconf
,
obj_mask
);
T
loss_conf_notarget
=
CalcBCEWithMask
<
T
>
(
pred_conf
,
tconf
,
noobj_mask
);
T
loss_class
=
CalcBCEWithMask
<
T
>
(
pred_class
,
tclass
,
obj_mask_expand
);
T
box_f
=
static_cast
<
T
>
(
an_num
*
h
*
w
);
T
class_f
=
static_cast
<
T
>
(
an_num
*
h
*
w
*
class_num
);
T
loss_x
=
CalcSCEWithWeight
<
T
>
(
pred_x
,
tx
,
obj_weight
,
box_f
);
T
loss_y
=
CalcSCEWithWeight
<
T
>
(
pred_y
,
ty
,
obj_weight
,
box_f
);
T
loss_w
=
CalcMSEWithWeight
<
T
>
(
pred_w
,
tw
,
obj_weight
,
box_f
);
T
loss_h
=
CalcMSEWithWeight
<
T
>
(
pred_h
,
th
,
obj_weight
,
box_f
);
T
loss_conf_target
=
CalcSCEWithWeight
<
T
>
(
pred_conf
,
tconf
,
obj_mask
,
box_f
);
T
loss_conf_notarget
=
CalcSCEWithWeight
<
T
>
(
pred_conf
,
tconf
,
noobj_mask
,
box_f
);
T
loss_class
=
CalcSCEWithWeight
<
T
>
(
pred_class
,
tclass
,
obj_mask_expand
,
class_f
);
auto
*
loss_data
=
loss
->
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
loss_data
[
0
]
=
loss_weight_xy
*
(
loss_x
+
loss_y
)
+
...
...
@@ -405,6 +423,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
T
loss
=
output_grad
->
data
<
T
>
()[
0
];
int
input_size
=
ctx
.
Attr
<
int
>
(
"input_size"
);
float
loss_weight_xy
=
ctx
.
Attr
<
float
>
(
"loss_weight_xy"
);
float
loss_weight_wh
=
ctx
.
Attr
<
float
>
(
"loss_weight_wh"
);
float
loss_weight_conf_target
=
ctx
.
Attr
<
float
>
(
"loss_weight_conf_target"
);
...
...
@@ -430,22 +449,33 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
&
pred_w
,
&
pred_h
,
an_num
,
class_num
);
Tensor
obj_mask
,
noobj_mask
;
Tensor
tx
,
ty
,
tw
,
th
,
tconf
,
tclass
;
obj_mask
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
noobj_mask
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
Tensor
tx
,
ty
,
tw
,
th
,
t
weight
,
t
conf
,
tclass
;
obj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
noobj_mask
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tx
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
ty
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tw
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
th
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tweight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tconf
,
&
tclass
);
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
input_size
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tweight
,
&
tconf
,
&
tclass
);
Tensor
obj_weight
;
obj_weight
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
auto
obj_weight_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_weight
);
auto
obj_mask_t
=
EigenTensor
<
T
,
4
>::
From
(
obj_mask
);
auto
tweight_t
=
EigenTensor
<
T
,
4
>::
From
(
tweight
);
obj_weight_t
=
obj_mask_t
*
tweight_t
;
Tensor
obj_mask_expand
;
obj_mask_expand
.
mutable_data
<
int
>
({
n
,
an_num
,
h
,
w
,
class_num
},
obj_mask_expand
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
ExpandObjMaskByClassNum
(
&
obj_mask_expand
,
obj_mask
);
auto
obj_mask_expand_t
=
EigenTensor
<
T
,
5
>::
From
(
obj_mask_expand
);
obj_mask_expand_t
=
obj_mask_t
.
reshape
(
Array5
(
n
,
an_num
,
h
,
w
,
1
))
.
broadcast
(
Array5
(
1
,
1
,
1
,
1
,
class_num
));
Tensor
grad_x
,
grad_y
,
grad_w
,
grad_h
;
Tensor
grad_conf_target
,
grad_conf_notarget
,
grad_class
;
...
...
@@ -456,19 +486,18 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
grad_conf_target
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_conf_notarget
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_class
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
T
obj_mf
=
CalcMaskPointNum
<
int
>
(
obj_mask
);
T
noobj_mf
=
CalcMaskPointNum
<
int
>
(
noobj_mask
);
T
obj_expand_mf
=
CalcMaskPointNum
<
int
>
(
obj_mask_expand
);
CalcMSEGradWithMask
<
T
>
(
&
grad_x
,
pred_x
,
tx
,
obj_mask
,
obj_mf
);
CalcMSEGradWithMask
<
T
>
(
&
grad_y
,
pred_y
,
ty
,
obj_mask
,
obj_mf
);
CalcMSEGradWithMask
<
T
>
(
&
grad_w
,
pred_w
,
tw
,
obj_mask
,
obj_mf
);
CalcMSEGradWithMask
<
T
>
(
&
grad_h
,
pred_h
,
th
,
obj_mask
,
obj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_conf_target
,
pred_conf
,
tconf
,
obj_mask
,
obj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_conf_notarget
,
pred_conf
,
tconf
,
noobj_mask
,
noobj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_class
,
pred_class
,
tclass
,
obj_mask_expand
,
obj_expand_mf
);
T
box_f
=
static_cast
<
T
>
(
an_num
*
h
*
w
);
T
class_f
=
static_cast
<
T
>
(
an_num
*
h
*
w
*
class_num
);
CalcSCEGradWithWeight
<
T
>
(
&
grad_x
,
pred_x
,
tx
,
obj_weight
,
box_f
);
CalcSCEGradWithWeight
<
T
>
(
&
grad_y
,
pred_y
,
ty
,
obj_weight
,
box_f
);
CalcMSEGradWithWeight
<
T
>
(
&
grad_w
,
pred_w
,
tw
,
obj_weight
,
box_f
);
CalcMSEGradWithWeight
<
T
>
(
&
grad_h
,
pred_h
,
th
,
obj_weight
,
box_f
);
CalcSCEGradWithWeight
<
T
>
(
&
grad_conf_target
,
pred_conf
,
tconf
,
obj_mask
,
box_f
);
CalcSCEGradWithWeight
<
T
>
(
&
grad_conf_notarget
,
pred_conf
,
tconf
,
noobj_mask
,
box_f
);
CalcSCEGradWithWeight
<
T
>
(
&
grad_class
,
pred_class
,
tclass
,
obj_mask_expand
,
class_f
);
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
AddAllGradToInputGrad
<
T
>
(
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
192d2938
...
...
@@ -415,6 +415,7 @@ def yolov3_loss(x,
anchors
,
class_num
,
ignore_thresh
,
input_size
,
loss_weight_xy
=
None
,
loss_weight_wh
=
None
,
loss_weight_conf_target
=
None
,
...
...
@@ -436,6 +437,7 @@ def yolov3_loss(x,
anchors (list|tuple): ${anchors_comment}
class_num (int): ${class_num_comment}
ignore_thresh (float): ${ignore_thresh_comment}
input_size (int): ${input_size_comment}
loss_weight_xy (float|None): ${loss_weight_xy_comment}
loss_weight_wh (float|None): ${loss_weight_wh_comment}
loss_weight_conf_target (float|None): ${loss_weight_conf_target_comment}
...
...
@@ -490,6 +492,7 @@ def yolov3_loss(x,
"anchors"
:
anchors
,
"class_num"
:
class_num
,
"ignore_thresh"
:
ignore_thresh
,
"input_size"
:
input_size
,
}
if
loss_weight_xy
is
not
None
and
isinstance
(
loss_weight_xy
,
float
):
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
192d2938
...
...
@@ -464,7 +464,7 @@ class TestYoloDetection(unittest.TestCase):
gtbox
=
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
10
,
4
],
dtype
=
'float32'
)
gtlabel
=
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
10
],
dtype
=
'int32'
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
[
10
,
13
,
30
,
13
],
10
,
0.
5
)
0.
7
,
416
)
self
.
assertIsNotNone
(
loss
)
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
192d2938
...
...
@@ -16,31 +16,22 @@ from __future__ import division
import
unittest
import
numpy
as
np
from
scipy.special
import
logit
from
scipy.special
import
expit
from
op_test
import
OpTest
from
paddle.fluid
import
core
def
sigmoid
(
x
):
return
1.0
/
(
1.0
+
np
.
exp
(
-
1.0
*
x
))
def
mse
(
x
,
y
,
weight
,
num
):
return
((
y
-
x
)
**
2
*
weight
).
sum
()
/
num
def
mse
(
x
,
y
,
num
):
return
((
y
-
x
)
**
2
).
sum
()
/
num
def
bce
(
x
,
y
,
mask
):
x
=
x
.
reshape
((
-
1
))
y
=
y
.
reshape
((
-
1
))
mask
=
mask
.
reshape
((
-
1
))
error_sum
=
0.0
count
=
0
for
i
in
range
(
x
.
shape
[
0
]):
if
mask
[
i
]
>
0
:
error_sum
+=
y
[
i
]
*
np
.
log
(
x
[
i
])
+
(
1
-
y
[
i
])
*
np
.
log
(
1
-
x
[
i
])
count
+=
1
return
error_sum
/
(
-
1.0
*
count
)
def
sce
(
x
,
label
,
weight
,
num
):
sigmoid_x
=
expit
(
x
)
term1
=
label
*
np
.
log
(
sigmoid_x
)
term2
=
(
1.0
-
label
)
*
np
.
log
(
1.0
-
sigmoid_x
)
return
((
-
term1
-
term2
)
*
weight
).
sum
()
/
num
def
box_iou
(
box1
,
box2
):
...
...
@@ -66,11 +57,12 @@ def box_iou(box1, box2):
return
inter_area
/
(
b1_area
+
b2_area
+
inter_area
)
def
build_target
(
gtboxs
,
gtlabel
,
attrs
,
grid_size
):
n
,
b
,
_
=
gtboxs
.
shape
def
build_target
(
gtbox
e
s
,
gtlabel
,
attrs
,
grid_size
):
n
,
b
,
_
=
gtbox
e
s
.
shape
ignore_thresh
=
attrs
[
"ignore_thresh"
]
anchors
=
attrs
[
"anchors"
]
class_num
=
attrs
[
"class_num"
]
input_size
=
attrs
[
"input_size"
]
an_num
=
len
(
anchors
)
//
2
obj_mask
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
noobj_mask
=
np
.
ones
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
...
...
@@ -78,20 +70,21 @@ def build_target(gtboxs, gtlabel, attrs, grid_size):
ty
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tw
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
th
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tweight
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tconf
=
np
.
zeros
((
n
,
an_num
,
grid_size
,
grid_size
)).
astype
(
'float32'
)
tcls
=
np
.
zeros
(
(
n
,
an_num
,
grid_size
,
grid_size
,
class_num
)).
astype
(
'float32'
)
for
i
in
range
(
n
):
for
j
in
range
(
b
):
if
gtboxs
[
i
,
j
,
:].
sum
()
==
0
:
if
gtbox
e
s
[
i
,
j
,
:].
sum
()
==
0
:
continue
gt_label
=
gtlabel
[
i
,
j
]
gx
=
gtboxs
[
i
,
j
,
0
]
*
grid_size
gy
=
gtboxs
[
i
,
j
,
1
]
*
grid_size
gw
=
gtbox
s
[
i
,
j
,
2
]
*
grid
_size
gh
=
gtbox
s
[
i
,
j
,
3
]
*
grid
_size
gx
=
gtbox
e
s
[
i
,
j
,
0
]
*
grid_size
gy
=
gtbox
e
s
[
i
,
j
,
1
]
*
grid_size
gw
=
gtbox
es
[
i
,
j
,
2
]
*
input
_size
gh
=
gtbox
es
[
i
,
j
,
3
]
*
input
_size
gi
=
int
(
gx
)
gj
=
int
(
gy
)
...
...
@@ -115,10 +108,12 @@ def build_target(gtboxs, gtlabel, attrs, grid_size):
best_an_index
])
th
[
i
,
best_an_index
,
gj
,
gi
]
=
np
.
log
(
gh
/
anchors
[
2
*
best_an_index
+
1
])
tweight
[
i
,
best_an_index
,
gj
,
gi
]
=
2.0
-
gtboxes
[
i
,
j
,
2
]
*
gtboxes
[
i
,
j
,
3
]
tconf
[
i
,
best_an_index
,
gj
,
gi
]
=
1
tcls
[
i
,
best_an_index
,
gj
,
gi
,
gt_label
]
=
1
return
(
tx
,
ty
,
tw
,
th
,
tconf
,
tcls
,
obj_mask
,
noobj_mask
)
return
(
tx
,
ty
,
tw
,
th
,
t
weight
,
t
conf
,
tcls
,
obj_mask
,
noobj_mask
)
def
YoloV3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
...
...
@@ -126,27 +121,28 @@ def YoloV3Loss(x, gtbox, gtlabel, attrs):
an_num
=
len
(
attrs
[
'anchors'
])
//
2
class_num
=
attrs
[
"class_num"
]
x
=
x
.
reshape
((
n
,
an_num
,
5
+
class_num
,
h
,
w
)).
transpose
((
0
,
1
,
3
,
4
,
2
))
pred_x
=
sigmoid
(
x
[:,
:,
:,
:,
0
])
pred_y
=
sigmoid
(
x
[:,
:,
:,
:,
1
])
pred_x
=
x
[:,
:,
:,
:,
0
]
pred_y
=
x
[:,
:,
:,
:,
1
]
pred_w
=
x
[:,
:,
:,
:,
2
]
pred_h
=
x
[:,
:,
:,
:,
3
]
pred_conf
=
sigmoid
(
x
[:,
:,
:,
:,
4
])
pred_cls
=
sigmoid
(
x
[:,
:,
:,
:,
5
:])
pred_conf
=
x
[:,
:,
:,
:,
4
]
pred_cls
=
x
[:,
:,
:,
:,
5
:]
tx
,
ty
,
tw
,
th
,
tconf
,
tcls
,
obj_mask
,
noobj_mask
=
build_target
(
tx
,
ty
,
tw
,
th
,
t
weight
,
t
conf
,
tcls
,
obj_mask
,
noobj_mask
=
build_target
(
gtbox
,
gtlabel
,
attrs
,
x
.
shape
[
2
])
obj_weight
=
obj_mask
*
tweight
obj_mask_expand
=
np
.
tile
(
np
.
expand_dims
(
obj_mask
,
4
),
(
1
,
1
,
1
,
1
,
int
(
attrs
[
'class_num'
])))
loss_x
=
mse
(
pred_x
*
obj_mask
,
tx
*
obj_mask
,
obj_mask
.
sum
())
loss_y
=
mse
(
pred_y
*
obj_mask
,
ty
*
obj_mask
,
obj_mask
.
sum
())
loss_
w
=
mse
(
pred_w
*
obj_mask
,
tw
*
obj_mask
,
obj_mask
.
sum
()
)
loss_
h
=
mse
(
pred_h
*
obj_mask
,
th
*
obj_mask
,
obj_mask
.
sum
()
)
loss_
conf_target
=
bce
(
pred_conf
*
obj_mask
,
tconf
*
obj_mask
,
obj_mask
)
loss_
conf_notarget
=
bce
(
pred_conf
*
noobj_mask
,
tconf
*
noobj_mask
,
noobj_mask
)
loss_c
lass
=
bce
(
pred_cls
*
obj_mask_expand
,
tcls
*
obj_mask_expand
,
obj_mask_expand
)
box_f
=
an_num
*
h
*
w
class_f
=
an_num
*
h
*
w
*
class_num
loss_
x
=
sce
(
pred_x
,
tx
,
obj_weight
,
box_f
)
loss_
y
=
sce
(
pred_y
,
ty
,
obj_weight
,
box_f
)
loss_
w
=
mse
(
pred_w
,
tw
,
obj_weight
,
box_f
)
loss_
h
=
mse
(
pred_h
,
th
,
obj_weight
,
box_f
)
loss_conf_target
=
sce
(
pred_conf
,
tconf
,
obj_mask
,
box_f
)
loss_c
onf_notarget
=
sce
(
pred_conf
,
tconf
,
noobj_mask
,
box_f
)
loss_class
=
sce
(
pred_cls
,
tcls
,
obj_mask_expand
,
class_f
)
return
attrs
[
'loss_weight_xy'
]
*
(
loss_x
+
loss_y
)
\
+
attrs
[
'loss_weight_wh'
]
*
(
loss_w
+
loss_h
)
\
...
...
@@ -164,7 +160,7 @@ class TestYolov3LossOp(OpTest):
self
.
loss_weight_class
=
1.0
self
.
initTestCase
()
self
.
op_type
=
'yolov3_loss'
x
=
np
.
random
.
random
(
size
=
self
.
x_shape
).
astype
(
'float32'
)
x
=
logit
(
np
.
random
.
uniform
(
0
,
1
,
self
.
x_shape
).
astype
(
'float32'
)
)
gtbox
=
np
.
random
.
random
(
size
=
self
.
gtbox_shape
).
astype
(
'float32'
)
gtlabel
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
self
.
gtbox_shape
[:
2
]).
astype
(
'int32'
)
...
...
@@ -173,6 +169,7 @@ class TestYolov3LossOp(OpTest):
"anchors"
:
self
.
anchors
,
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"input_size"
:
self
.
input_size
,
"loss_weight_xy"
:
self
.
loss_weight_xy
,
"loss_weight_wh"
:
self
.
loss_weight_wh
,
"loss_weight_conf_target"
:
self
.
loss_weight_conf_target
,
...
...
@@ -196,18 +193,19 @@ class TestYolov3LossOp(OpTest):
place
,
[
'X'
],
'Loss'
,
no_grad_set
=
set
([
"GTBox"
,
"GTLabel"
]),
max_relative_error
=
0.
06
)
max_relative_error
=
0.
3
)
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
12
,
12
]
self
.
class_num
=
10
self
.
ignore_thresh
=
0.5
self
.
ignore_thresh
=
0.7
self
.
input_size
=
416
self
.
x_shape
=
(
5
,
len
(
self
.
anchors
)
//
2
*
(
5
+
self
.
class_num
),
7
,
7
)
self
.
gtbox_shape
=
(
5
,
10
,
4
)
self
.
loss_weight_xy
=
2.5
self
.
loss_weight_xy
=
1.4
self
.
loss_weight_wh
=
0.8
self
.
loss_weight_conf_target
=
1.
5
self
.
loss_weight_conf_notarget
=
0.
5
self
.
loss_weight_conf_target
=
1.
1
self
.
loss_weight_conf_notarget
=
0.
9
self
.
loss_weight_class
=
1.2
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录