未验证 提交 19124833 编写于 作者: Z zhiboniu 提交者: GitHub

add mot_pose_demo;sych with det benchmark codes (#3079)

上级 47101cfb
...@@ -18,6 +18,7 @@ PaddleDetection模块化地实现了多种主流目标检测算法,提供了 ...@@ -18,6 +18,7 @@ PaddleDetection模块化地实现了多种主流目标检测算法,提供了
<div align="center"> <div align="center">
<img src="static/docs/images/football.gif" width='800'/> <img src="static/docs/images/football.gif" width='800'/>
<img src="docs/images/mot_pose_demo_640x360.gif" width='800'/>
</div> </div>
### 产品动态 ### 产品动态
......
...@@ -76,5 +76,5 @@ python deploy/python/keypoint_infer.py --model_dir=output_inference/higherhrnet_ ...@@ -76,5 +76,5 @@ python deploy/python/keypoint_infer.py --model_dir=output_inference/higherhrnet_
python deploy/python/keypoint_infer.py --model_dir=output_inference/hrnet_w32_384x288/ --image_file=./demo/hrnet_demo.jpg --use_gpu=True --threshold=0.5 python deploy/python/keypoint_infer.py --model_dir=output_inference/hrnet_w32_384x288/ --image_file=./demo/hrnet_demo.jpg --use_gpu=True --threshold=0.5
#keypoint top-down模型 + detector 检测联合部署推理(联合推理只支持top-down方式) #keypoint top-down模型 + detector 检测联合部署推理(联合推理只支持top-down方式)
python deploy/python/keypoint_det_unite_infer.py --det_model_dir=output_inference/ppyolo_r50vd_dcn_2x_coco/ --keypoint_model_dir=output_inference/hrnet_w32_384x288/ --video_file=../video/xxx.mp4 python deploy/python/keypoint_det_unite_infer.py --det_model_dir=output_inference/ppyolo_r50vd_dcn_2x_coco/ --keypoint_model_dir=output_inference/hrnet_w32_384x288/ --video_file=../video/xxx.mp4 --use_gpu=True
``` ```
...@@ -541,8 +541,8 @@ def main(): ...@@ -541,8 +541,8 @@ def main():
detector.det_times.info(average=True) detector.det_times.info(average=True)
else: else:
mems = { mems = {
'cpu_rss': detector.cpu_mem / len(img_list), 'cpu_rss_mb': detector.cpu_mem / len(img_list),
'gpu_rss': detector.gpu_mem / len(img_list), 'gpu_rss_mb': detector.gpu_mem / len(img_list),
'gpu_util': detector.gpu_util * 100 / len(img_list) 'gpu_util': detector.gpu_util * 100 / len(img_list)
} }
...@@ -558,8 +558,8 @@ def main(): ...@@ -558,8 +558,8 @@ def main():
'shape': "dynamic_shape", 'shape': "dynamic_shape",
'data_num': perf_info['img_num'] 'data_num': perf_info['img_num']
} }
det_log = PaddleInferBenchmark( det_log = PaddleInferBenchmark(detector.config, model_info,
detector.config, model_info, data_info, perf_info, mems) data_info, perf_info, mems)
det_log('Det') det_log('Det')
......
...@@ -13,7 +13,6 @@ ...@@ -13,7 +13,6 @@
# limitations under the License. # limitations under the License.
import os import os
from PIL import Image from PIL import Image
import cv2 import cv2
import numpy as np import numpy as np
...@@ -52,7 +51,7 @@ def get_person_from_rect(images, results): ...@@ -52,7 +51,7 @@ def get_person_from_rect(images, results):
org_rects = [] org_rects = []
for rect in valid_rects: for rect in valid_rects:
rect_image, new_rect, org_rect = expand_crop(images, rect) rect_image, new_rect, org_rect = expand_crop(images, rect)
if rect_image is None: if rect_image is None or rect_image.size == 0:
continue continue
image_buff.append([rect_image, new_rect]) image_buff.append([rect_image, new_rect])
org_rects.append(org_rect) org_rects.append(org_rect)
...@@ -113,13 +112,13 @@ def topdown_unite_predict_video(detector, topdown_keypoint_detector, camera_id): ...@@ -113,13 +112,13 @@ def topdown_unite_predict_video(detector, topdown_keypoint_detector, camera_id):
os.makedirs(FLAGS.output_dir) os.makedirs(FLAGS.output_dir)
out_path = os.path.join(FLAGS.output_dir, video_name) out_path = os.path.join(FLAGS.output_dir, video_name)
writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height)) writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
index = 1 index = 0
while (1): while (1):
ret, frame = capture.read() ret, frame = capture.read()
if not ret: if not ret:
break break
print('detect frame:%d' % (index))
index += 1 index += 1
print('detect frame:%d' % (index))
frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame2 = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
results = detector.predict(frame2, FLAGS.det_threshold) results = detector.predict(frame2, FLAGS.det_threshold)
...@@ -136,7 +135,7 @@ def topdown_unite_predict_video(detector, topdown_keypoint_detector, camera_id): ...@@ -136,7 +135,7 @@ def topdown_unite_predict_video(detector, topdown_keypoint_detector, camera_id):
keypoint_res = {} keypoint_res = {}
keypoint_res['keypoint'] = [ keypoint_res['keypoint'] = [
np.vstack(keypoint_vector), np.vstack(score_vector) np.vstack(keypoint_vector), np.vstack(score_vector)
] ] if len(keypoint_vector) > 0 else [[], []]
keypoint_res['bbox'] = rect_vecotr keypoint_res['bbox'] = rect_vecotr
im = draw_pose( im = draw_pose(
frame, frame,
...@@ -189,8 +188,6 @@ def main(): ...@@ -189,8 +188,6 @@ def main():
# predict from image # predict from image
img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file) img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
topdown_unite_predict(detector, topdown_keypoint_detector, img_list) topdown_unite_predict(detector, topdown_keypoint_detector, img_list)
detector.det_times.info(average=True)
topdown_keypoint_detector.det_times.info(average=True)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -28,7 +28,8 @@ from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess ...@@ -28,7 +28,8 @@ from keypoint_postprocess import HrHRNetPostProcess, HRNetPostProcess
from keypoint_visualize import draw_pose from keypoint_visualize import draw_pose
from paddle.inference import Config from paddle.inference import Config
from paddle.inference import create_predictor from paddle.inference import create_predictor
from utils import argsparser, Timer, get_current_memory_mb, LoggerHelper from utils import argsparser, Timer, get_current_memory_mb
from benchmark_utils import PaddleInferBenchmark
from infer import get_test_images, print_arguments from infer import get_test_images, print_arguments
# Global dictionary # Global dictionary
...@@ -66,7 +67,7 @@ class KeyPoint_Detector(object): ...@@ -66,7 +67,7 @@ class KeyPoint_Detector(object):
cpu_threads=1, cpu_threads=1,
enable_mkldnn=False): enable_mkldnn=False):
self.pred_config = pred_config self.pred_config = pred_config
self.predictor = load_predictor( self.predictor, self.config = load_predictor(
model_dir, model_dir,
run_mode=run_mode, run_mode=run_mode,
min_subgraph_size=self.pred_config.min_subgraph_size, min_subgraph_size=self.pred_config.min_subgraph_size,
...@@ -129,7 +130,7 @@ class KeyPoint_Detector(object): ...@@ -129,7 +130,7 @@ class KeyPoint_Detector(object):
MaskRCNN's results include 'masks': np.ndarray: MaskRCNN's results include 'masks': np.ndarray:
shape: [N, im_h, im_w] shape: [N, im_h, im_w]
''' '''
self.det_times.preprocess_time.start() self.det_times.preprocess_time_s.start()
inputs = self.preprocess(image) inputs = self.preprocess(image)
np_boxes, np_masks = None, None np_boxes, np_masks = None, None
input_names = self.predictor.get_input_names() input_names = self.predictor.get_input_names()
...@@ -137,7 +138,7 @@ class KeyPoint_Detector(object): ...@@ -137,7 +138,7 @@ class KeyPoint_Detector(object):
for i in range(len(input_names)): for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[i]) input_tensor = self.predictor.get_input_handle(input_names[i])
input_tensor.copy_from_cpu(inputs[input_names[i]]) input_tensor.copy_from_cpu(inputs[input_names[i]])
self.det_times.preprocess_time.end() self.det_times.preprocess_time_s.end()
for i in range(warmup): for i in range(warmup):
self.predictor.run() self.predictor.run()
output_names = self.predictor.get_output_names() output_names = self.predictor.get_output_names()
...@@ -152,7 +153,7 @@ class KeyPoint_Detector(object): ...@@ -152,7 +153,7 @@ class KeyPoint_Detector(object):
inds_k.copy_to_cpu() inds_k.copy_to_cpu()
] ]
self.det_times.inference_time.start() self.det_times.inference_time_s.start()
for i in range(repeats): for i in range(repeats):
self.predictor.run() self.predictor.run()
output_names = self.predictor.get_output_names() output_names = self.predictor.get_output_names()
...@@ -166,12 +167,12 @@ class KeyPoint_Detector(object): ...@@ -166,12 +167,12 @@ class KeyPoint_Detector(object):
masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(), masks_tensor.copy_to_cpu(), heat_k.copy_to_cpu(),
inds_k.copy_to_cpu() inds_k.copy_to_cpu()
] ]
self.det_times.inference_time.end(repeats=repeats) self.det_times.inference_time_s.end(repeats=repeats)
self.det_times.postprocess_time.start() self.det_times.postprocess_time_s.start()
results = self.postprocess( results = self.postprocess(
np_boxes, np_masks, inputs, threshold=threshold) np_boxes, np_masks, inputs, threshold=threshold)
self.det_times.postprocess_time.end() self.det_times.postprocess_time_s.end()
self.det_times.img_num += 1 self.det_times.img_num += 1
return results return results
...@@ -318,7 +319,7 @@ def load_predictor(model_dir, ...@@ -318,7 +319,7 @@ def load_predictor(model_dir,
# disable feed, fetch OP, needed by zero_copy_run # disable feed, fetch OP, needed by zero_copy_run
config.switch_use_feed_fetch_ops(False) config.switch_use_feed_fetch_ops(False)
predictor = create_predictor(config) predictor = create_predictor(config)
return predictor return predictor, config
def predict_image(detector, image_list): def predict_image(detector, image_list):
...@@ -347,7 +348,8 @@ def predict_video(detector, camera_id): ...@@ -347,7 +348,8 @@ def predict_video(detector, camera_id):
video_name = 'output.mp4' video_name = 'output.mp4'
else: else:
capture = cv2.VideoCapture(FLAGS.video_file) capture = cv2.VideoCapture(FLAGS.video_file)
video_name = os.path.basename(os.path.split(FLAGS.video_file)[-1]) video_name = os.path.splitext(os.path.basename(FLAGS.video_file))[
0] + '.mp4'
fps = 30 fps = 30
width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH)) width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT)) height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
...@@ -403,13 +405,25 @@ def main(): ...@@ -403,13 +405,25 @@ def main():
detector.det_times.info(average=True) detector.det_times.info(average=True)
else: else:
mems = { mems = {
'cpu_rss': detector.cpu_mem / len(img_list), 'cpu_rss_mb': detector.cpu_mem / len(img_list),
'gpu_rss': detector.gpu_mem / len(img_list), 'gpu_rss_mb': detector.gpu_mem / len(img_list),
'gpu_util': detector.gpu_util * 100 / len(img_list) 'gpu_util': detector.gpu_util * 100 / len(img_list)
} }
det_logger = LoggerHelper( perf_info = detector.det_times.report(average=True)
FLAGS, detector.det_times.report(average=True), mems) model_dir = FLAGS.model_dir
det_logger.report() mode = FLAGS.run_mode
model_info = {
'model_name': model_dir.strip('/').split('/')[-1],
'precision': mode.split('_')[-1]
}
data_info = {
'batch_size': 1,
'shape': "dynamic_shape",
'data_num': perf_info['img_num']
}
det_log = PaddleInferBenchmark(detector.config, model_info,
data_info, perf_info, mems)
det_log('KeyPoint')
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -19,11 +19,6 @@ import numpy as np ...@@ -19,11 +19,6 @@ import numpy as np
import math import math
def map_coco_to_personlab(keypoints):
permute = [0, 6, 8, 10, 5, 7, 9, 12, 14, 16, 11, 13, 15, 2, 1, 4, 3]
return keypoints[:, permute, :]
def draw_pose(imgfile, def draw_pose(imgfile,
results, results,
visual_thread=0.6, visual_thread=0.6,
...@@ -39,9 +34,9 @@ def draw_pose(imgfile, ...@@ -39,9 +34,9 @@ def draw_pose(imgfile,
'for example: `pip install matplotlib`.') 'for example: `pip install matplotlib`.')
raise e raise e
EDGES = [(0, 14), (0, 13), (0, 4), (0, 1), (14, 16), (13, 15), (4, 10), EDGES = [(0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6), (5, 7), (6, 8),
(1, 7), (10, 11), (7, 8), (11, 12), (8, 9), (4, 5), (1, 2), (5, 6), (7, 9), (8, 10), (5, 11), (6, 12), (11, 13), (12, 14), (13, 15),
(2, 3)] (14, 16), (11, 12)]
NUM_EDGES = len(EDGES) NUM_EDGES = len(EDGES)
colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \
...@@ -52,25 +47,28 @@ def draw_pose(imgfile, ...@@ -52,25 +47,28 @@ def draw_pose(imgfile,
img = cv2.imread(imgfile) if type(imgfile) == str else imgfile img = cv2.imread(imgfile) if type(imgfile) == str else imgfile
skeletons, scores = results['keypoint'] skeletons, scores = results['keypoint']
color_set = results['colors'] if 'colors' in results else None
if 'bbox' in results: if 'bbox' in results:
bboxs = results['bbox'] bboxs = results['bbox']
for idx, rect in enumerate(bboxs): for j, rect in enumerate(bboxs):
xmin, ymin, xmax, ymax = rect xmin, ymin, xmax, ymax = rect
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), colors[0], 1) color = colors[0] if color_set is None else colors[color_set[j] %
len(colors)]
cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 1)
canvas = img.copy() canvas = img.copy()
for i in range(17): for i in range(17):
rgba = np.array(cmap(1 - i / 17. - 1. / 34))
rgba[0:3] *= 255
for j in range(len(skeletons)): for j in range(len(skeletons)):
if skeletons[j][i, 2] < visual_thread: if skeletons[j][i, 2] < visual_thread:
continue continue
color = colors[i] if color_set is None else colors[color_set[j] %
len(colors)]
cv2.circle( cv2.circle(
canvas, canvas,
tuple(skeletons[j][i, 0:2].astype('int32')), tuple(skeletons[j][i, 0:2].astype('int32')),
2, 2,
colors[i], color,
thickness=-1) thickness=-1)
to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0) to_plot = cv2.addWeighted(img, 0.3, canvas, 0.7, 0)
...@@ -78,7 +76,6 @@ def draw_pose(imgfile, ...@@ -78,7 +76,6 @@ def draw_pose(imgfile,
stickwidth = 2 stickwidth = 2
skeletons = map_coco_to_personlab(skeletons)
for i in range(NUM_EDGES): for i in range(NUM_EDGES):
for j in range(len(skeletons)): for j in range(len(skeletons)):
edge = EDGES[i] edge = EDGES[i]
...@@ -96,7 +93,9 @@ def draw_pose(imgfile, ...@@ -96,7 +93,9 @@ def draw_pose(imgfile,
polygon = cv2.ellipse2Poly((int(mY), int(mX)), polygon = cv2.ellipse2Poly((int(mY), int(mX)),
(int(length / 2), stickwidth), (int(length / 2), stickwidth),
int(angle), 0, 360, 1) int(angle), 0, 360, 1)
cv2.fillConvexPoly(cur_canvas, polygon, colors[i]) color = colors[i] if color_set is None else colors[color_set[j] %
len(colors)]
cv2.fillConvexPoly(cur_canvas, polygon, color)
canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0) canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)
if returnimg: if returnimg:
return canvas return canvas
......
因为 它太大了无法显示 image diff 。你可以改为 查看blob
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册