Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
155328a4
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
155328a4
编写于
12月 07, 2018
作者:
Y
Yihua Xu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Clean Code
test=develop
上级
65dbc7cc
变更
2
显示空白变更内容
内联
并排
Showing
2 changed file
with
53 addition
and
83 deletion
+53
-83
paddle/fluid/operators/conv_mkldnn_op.cc
paddle/fluid/operators/conv_mkldnn_op.cc
+47
-77
paddle/fluid/operators/conv_op.cc
paddle/fluid/operators/conv_op.cc
+6
-6
未找到文件。
paddle/fluid/operators/conv_mkldnn_op.cc
浏览文件 @
155328a4
...
...
@@ -28,6 +28,46 @@ using mkldnn::stream;
using
platform
::
to_void_cast
;
using
platform
::
GetMKLDNNFormat
;
inline
void
GetWeightsTz
(
std
::
vector
<
int
>&
weights_tz
,
int
groups
,
// NOLINT
bool
is_conv3d
)
{
if
(
groups
>
1
)
{
if
(
is_conv3d
)
{
int
output
=
weights_tz
[
0
];
int
input
=
weights_tz
[
1
];
int
dimension
=
weights_tz
[
2
];
int
height
=
weights_tz
[
3
];
int
width
=
weights_tz
[
4
];
weights_tz
.
resize
(
6
);
weights_tz
[
0
]
=
groups
;
weights_tz
[
1
]
=
output
/
groups
;
weights_tz
[
2
]
=
input
;
weights_tz
[
3
]
=
dimension
;
weights_tz
[
4
]
=
height
;
weights_tz
[
5
]
=
width
;
}
else
{
int
output
=
weights_tz
[
0
];
int
input
=
weights_tz
[
1
];
int
height
=
weights_tz
[
2
];
int
width
=
weights_tz
[
3
];
weights_tz
.
resize
(
5
);
weights_tz
[
0
]
=
groups
;
weights_tz
[
1
]
=
output
/
groups
;
weights_tz
[
2
]
=
input
;
weights_tz
[
3
]
=
height
;
weights_tz
[
4
]
=
width
;
}
}
}
inline
mkldnn
::
memory
::
format
GetWeightsFormat
(
mkldnn
::
memory
::
format
format
,
int
groups
,
bool
is_conv3d
)
{
if
(
is_conv3d
)
{
return
(
groups
==
1
)
?
format
:
mkldnn
::
memory
::
format
::
goidhw
;
}
else
{
return
(
groups
==
1
)
?
format
:
mkldnn
::
memory
::
format
::
goihw
;
}
}
template
<
typename
T
>
class
ConvMKLDNNOpKernel
:
public
paddle
::
framework
::
OpKernel
<
T
>
{
public:
...
...
@@ -53,7 +93,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
filter
->
format
()
!=
memory
::
format
::
format_undef
,
"Wrong layout/format set for Filter tensor"
);
PADDLE_ENFORCE
(
input
->
dims
().
size
()
==
4
||
input
->
dims
().
size
()
==
5
,
"Input must be with 4 or 5dimensions, i.e. NCHW or NCDHW"
);
"Input must be with 4 or 5
dimensions, i.e. NCHW or NCDHW"
);
PADDLE_ENFORCE
(
filter
->
dims
().
size
()
==
4
||
filter
->
dims
().
size
()
==
5
,
"Filter must be with 4 or 5 dimensions, i.e. OIHW or OIDHW"
);
if
(
bias
)
{
...
...
@@ -87,33 +127,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
int
>
weights_tz
=
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
if
(
g
>
1
)
{
if
(
is_conv3d
)
{
int
o
=
weights_tz
[
0
];
int
i
=
weights_tz
[
1
];
int
d
=
weights_tz
[
2
];
int
h
=
weights_tz
[
3
];
int
w
=
weights_tz
[
4
];
weights_tz
.
resize
(
6
);
weights_tz
[
0
]
=
g
;
weights_tz
[
1
]
=
o
/
g
;
weights_tz
[
2
]
=
i
;
weights_tz
[
3
]
=
d
;
weights_tz
[
4
]
=
h
;
weights_tz
[
5
]
=
w
;
}
else
{
int
o
=
weights_tz
[
0
];
int
i
=
weights_tz
[
1
];
int
h
=
weights_tz
[
2
];
int
w
=
weights_tz
[
3
];
weights_tz
.
resize
(
5
);
weights_tz
[
0
]
=
g
;
weights_tz
[
1
]
=
o
/
g
;
weights_tz
[
2
]
=
i
;
weights_tz
[
3
]
=
h
;
weights_tz
[
4
]
=
w
;
}
}
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
// Get unique name for storing MKLDNN primitives
...
...
@@ -126,12 +140,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
src_format
=
input
->
format
();
mkldnn
::
memory
::
format
weights_format
=
(
g
==
1
)
?
filter
->
format
()
:
mkldnn
::
memory
::
format
::
goihw
;
if
(
is_conv3d
)
{
weights_format
=
(
g
==
1
)
?
filter
->
format
()
:
mkldnn
::
memory
::
format
::
goidhw
;
}
GetWeightsFormat
(
filter
->
format
(),
g
,
is_conv3d
);
auto
user_src_md
=
platform
::
MKLDNNMemDesc
(
{
src_tz
},
platform
::
MKLDNNGetDataType
<
T
>
(),
src_format
);
...
...
@@ -146,15 +155,11 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
weights_format
=
(
g
==
1
)
?
chosen_memory_format
:
mkldnn
::
memory
::
format
::
goihw
;
if
(
is_conv3d
)
{
chosen_memory_format
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
chosen_memory_format
);
weights_format
=
(
g
==
1
)
?
chosen_memory_format
:
mkldnn
::
memory
::
format
::
goidhw
;
}
weights_format
=
GetWeightsFormat
(
chosen_memory_format
,
g
,
is_conv3d
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
...
...
@@ -397,43 +402,12 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
std
::
vector
<
int
>
weights_tz
=
paddle
::
framework
::
vectorize2int
(
filter
->
dims
());
int
g
=
std
::
max
(
groups
,
1
);
if
(
g
>
1
)
{
if
(
is_conv3d
)
{
int
o
=
weights_tz
[
0
];
int
i
=
weights_tz
[
1
];
int
d
=
weights_tz
[
2
];
int
h
=
weights_tz
[
3
];
int
w
=
weights_tz
[
4
];
weights_tz
.
resize
(
6
);
weights_tz
[
0
]
=
g
;
weights_tz
[
1
]
=
o
/
g
;
weights_tz
[
2
]
=
i
;
weights_tz
[
3
]
=
d
;
weights_tz
[
4
]
=
h
;
weights_tz
[
5
]
=
w
;
}
else
{
int
o
=
weights_tz
[
0
];
int
i
=
weights_tz
[
1
];
int
h
=
weights_tz
[
2
];
int
w
=
weights_tz
[
3
];
weights_tz
.
resize
(
5
);
weights_tz
[
0
]
=
g
;
weights_tz
[
1
]
=
o
/
g
;
weights_tz
[
2
]
=
i
;
weights_tz
[
3
]
=
h
;
weights_tz
[
4
]
=
w
;
}
}
GetWeightsTz
(
weights_tz
,
g
,
is_conv3d
);
std
::
vector
<
int
>
dst_tz
=
paddle
::
framework
::
vectorize2int
(
output
->
dims
());
auto
src_format
=
input
->
format
();
mkldnn
::
memory
::
format
weights_format
=
(
g
==
1
)
?
filter
->
format
()
:
mkldnn
::
memory
::
format
::
goihw
;
if
(
is_conv3d
)
{
weights_format
=
(
g
==
1
)
?
filter
->
format
()
:
mkldnn
::
memory
::
format
::
goidhw
;
}
GetWeightsFormat
(
filter
->
format
(),
g
,
is_conv3d
);
// Get an unique name from "argument" name of "Output" variable
// as well as attributes of primitive to be created
...
...
@@ -461,15 +435,11 @@ class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
auto
chosen_memory_format
=
platform
::
data_format_to_memory_format
(
data_format
);
weights_format
=
(
g
==
1
)
?
chosen_memory_format
:
mkldnn
::
memory
::
format
::
goihw
;
if
(
is_conv3d
)
{
chosen_memory_format
=
platform
::
MKLDNNFormatForSize
(
src_tz
.
size
(),
chosen_memory_format
);
weights_format
=
(
g
==
1
)
?
chosen_memory_format
:
mkldnn
::
memory
::
format
::
goidhw
;
}
weights_format
=
GetWeightsFormat
(
chosen_memory_format
,
g
,
is_conv3d
);
auto
src_md
=
platform
::
MKLDNNMemDesc
(
src_tz
,
platform
::
MKLDNNGetDataType
<
T
>
(),
chosen_memory_format
);
...
...
paddle/fluid/operators/conv_op.cc
浏览文件 @
155328a4
...
...
@@ -134,14 +134,14 @@ void Conv2DOpMaker::Make() {
"The format of output tensor is X (one-dimensional) of size equal"
"to the number of output channels. Only used with MKL-DNN."
)
.
AsDispensable
();
AddOutput
(
"Output"
,
"(Tensor) The output tensor of convolution operator. "
"The format of output tensor is also NCHW."
);
AddInput
(
"ResidualData"
,
"(Tensor) Tensor with residual data "
"to which convolution output will be added."
"Used with fuse_residual_connection fusion."
)
.
AsDispensable
();
AddOutput
(
"Output"
,
"(Tensor) The output tensor of convolution operator. "
"The format of output tensor is also NCHW."
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int> default:{1, 1}), the "
"strides(h_stride, w_stride) of "
...
...
@@ -251,14 +251,14 @@ void Conv3DOpMaker::Make() {
"is the width of the filter."
"If the groups attribute is greater than 1, C equals the number of "
"input image channels divided by the groups."
);
AddOutput
(
"Output"
,
"(Tensor) The output tensor of convolution operator."
"The format of output tensor is also NCDHW."
);
AddInput
(
"ResidualData"
,
"(Tensor) Tensor with residual data "
"to which convolution output will be added."
"Used with fuse_residual_connection fusion."
)
.
AsDispensable
();
AddOutput
(
"Output"
,
"(Tensor) The output tensor of convolution operator."
"The format of output tensor is also NCDHW."
);
AddAttr
<
std
::
vector
<
int
>>
(
"strides"
,
"(vector<int>, default:{1, 1, 1}), the "
"strides(d_stride, h_stride, w_stride) of "
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录