Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
142f6328
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
142f6328
编写于
1月 22, 2018
作者:
W
wanghaox
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update code
上级
f020f4b5
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
57 addition
and
74 deletion
+57
-74
paddle/operators/prior_box_op.cc
paddle/operators/prior_box_op.cc
+16
-21
paddle/operators/prior_box_op.h
paddle/operators/prior_box_op.h
+9
-9
python/paddle/v2/fluid/tests/test_prior_box_op.py
python/paddle/v2/fluid/tests/test_prior_box_op.py
+32
-44
未找到文件。
paddle/operators/prior_box_op.cc
浏览文件 @
142f6328
...
...
@@ -23,14 +23,14 @@ class PriorBoxOp : public framework::OperatorWithKernel {
void
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
override
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Input"
),
"Input(
X
) of PriorBoxOp should not be null."
);
"Input(
Input
) of PriorBoxOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Image"
),
"Input(
Offset
) of PriorBoxOp should not be null."
);
"Input(
Image
) of PriorBoxOp should not be null."
);
auto
image_dims
=
ctx
->
GetInputDim
(
"Image"
);
auto
input_dims
=
ctx
->
GetInputDim
(
"Input"
);
PADDLE_ENFORCE
(
image_dims
.
size
()
==
4
,
"The
forma
t of image is NCHW."
);
PADDLE_ENFORCE
(
input_dims
.
size
()
==
4
,
"The
forma
t of input is NCHW."
);
PADDLE_ENFORCE
(
image_dims
.
size
()
==
4
,
"The
layou
t of image is NCHW."
);
PADDLE_ENFORCE
(
input_dims
.
size
()
==
4
,
"The
layou
t of input is NCHW."
);
PADDLE_ENFORCE_LT
(
input_dims
[
2
],
image_dims
[
2
],
"The height of input must smaller than image."
);
...
...
@@ -45,7 +45,7 @@ class PriorBoxOp : public framework::OperatorWithKernel {
bool
flip
=
ctx
->
Attrs
().
Get
<
bool
>
(
"flip"
);
PADDLE_ENFORCE_GT
(
min_sizes
.
size
(),
0
,
"Size of min_size must be at least 1."
);
"Size of min_size
s
must be at least 1."
);
for
(
size_t
i
=
0
;
i
<
min_sizes
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
min_sizes
[
i
],
0
,
"min_sizes[%d] must be positive."
,
i
);
}
...
...
@@ -56,7 +56,7 @@ class PriorBoxOp : public framework::OperatorWithKernel {
int
num_priors
=
aspect_ratios_vec
.
size
()
*
min_sizes
.
size
();
if
(
max_sizes
.
size
()
>
0
)
{
PADDLE_ENFORCE_EQ
(
max_sizes
.
size
(),
min_sizes
.
size
(),
"The
length
of min_size and max_size must be equal."
);
"The
number
of min_size and max_size must be equal."
);
for
(
size_t
i
=
0
;
i
<
min_sizes
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
max_sizes
[
i
],
min_sizes
[
i
],
"max_size[%d] must be greater than min_size[%d]."
,
i
,
...
...
@@ -65,14 +65,11 @@ class PriorBoxOp : public framework::OperatorWithKernel {
}
}
if
(
variances
.
size
()
>
1
)
{
PADDLE_ENFORCE_EQ
(
variances
.
size
(),
4
,
"Must and only provide 4 variance."
);
PADDLE_ENFORCE_EQ
(
variances
.
size
(),
4
,
"Must and only provide 4 variance."
);
for
(
size_t
i
=
0
;
i
<
variances
.
size
();
++
i
)
{
PADDLE_ENFORCE_GT
(
variances
[
i
],
0.0
,
"variance[%d] must be greater than 0."
,
i
);
}
}
const
float
step_h
=
ctx
->
Attrs
().
Get
<
float
>
(
"step_h"
);
PADDLE_ENFORCE_GT
(
step_h
,
0.0
,
"step_h should be larger than 0."
);
...
...
@@ -95,19 +92,19 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
:
OpProtoAndCheckerMaker
(
proto
,
op_checker
)
{
AddInput
(
"Input"
,
"(Tensor, default Tensor<float>), "
"the input feature data of PriorBoxOp, The
forma
t is NCHW."
);
"the input feature data of PriorBoxOp, The
layou
t is NCHW."
);
AddInput
(
"Image"
,
"(Tensor, default Tensor<float>), "
"the input image data of PriorBoxOp, The
forma
t is NCHW."
);
"the input image data of PriorBoxOp, The
layou
t is NCHW."
);
AddOutput
(
"Boxes"
,
"(Tensor, default Tensor<float>), the output prior boxes of "
"PriorBoxOp. The
forma
t is [layer_height, layer_width, "
"PriorBoxOp. The
layou
t is [layer_height, layer_width, "
"num_priors, 4]. layer_height is the height of input, "
"layer_width is the width of input, num_priors is the box "
"count of each position."
);
AddOutput
(
"Variances"
,
"(Tensor, default Tensor<float>), the expanded variances of "
"PriorBoxOp. The
forma
t is [layer_height, layer_width, "
"PriorBoxOp. The
layou
t is [layer_height, layer_width, "
"num_priors, 4]. layer_height is the height of input, "
"layer_width is the width of input, num_priors is the box "
"count of each position."
);
...
...
@@ -117,12 +114,10 @@ class PriorBoxOpMaker : public framework::OpProtoAndCheckerMaker {
"List of max sizes of generated prior boxes."
);
AddAttr
<
std
::
vector
<
float
>>
(
"aspect_ratios"
,
"(vector<float>) "
,
"List of aspect ratios of generated prior boxes."
)
.
SetDefault
({});
"List of aspect ratios of generated prior boxes."
);
AddAttr
<
std
::
vector
<
float
>>
(
"variances"
,
"(vector<float>) "
,
"List of variances to be encoded in prior boxes."
)
.
SetDefault
({
0.1
});
"List of variances to be encoded in prior boxes."
);
AddAttr
<
bool
>
(
"flip"
,
"(bool) "
,
"Whether to flip aspect ratios."
)
.
SetDefault
(
true
);
AddAttr
<
bool
>
(
"clip"
,
"(bool) "
,
"Whether to clip out-of-boundary boxes."
)
...
...
paddle/operators/prior_box_op.h
浏览文件 @
142f6328
...
...
@@ -70,9 +70,9 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
std
::
vector
<
float
>
aspect_ratios
;
ExpandAspectRatios
(
input_aspect_ratio
,
flip
,
aspect_ratios
);
auto
step_w
=
ctx
.
Attr
<
float
>
(
"step_w"
);
auto
step_h
=
ctx
.
Attr
<
float
>
(
"step_h"
);
auto
offset
=
ctx
.
Attr
<
float
>
(
"offset"
);
T
step_w
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"step_w"
)
);
T
step_h
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"step_h"
)
);
T
offset
=
static_cast
<
T
>
(
ctx
.
Attr
<
float
>
(
"offset"
)
);
auto
img_width
=
image
->
dims
()[
3
];
auto
img_height
=
image
->
dims
()[
2
];
...
...
@@ -80,10 +80,10 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
auto
layer_width
=
input
->
dims
()[
3
];
auto
layer_height
=
input
->
dims
()[
2
];
float
step_width
,
step_height
;
T
step_width
,
step_height
;
if
(
step_w
==
0
||
step_h
==
0
)
{
step_width
=
static_cast
<
float
>
(
img_width
)
/
layer_width
;
step_height
=
static_cast
<
float
>
(
img_height
)
/
layer_height
;
step_width
=
static_cast
<
T
>
(
img_width
)
/
layer_width
;
step_height
=
static_cast
<
T
>
(
img_height
)
/
layer_height
;
}
else
{
step_width
=
step_w
;
step_height
=
step_h
;
...
...
@@ -100,9 +100,9 @@ class PriorBoxOpKernel : public framework::OpKernel<T> {
auto
e_boxes
=
framework
::
EigenTensor
<
T
,
4
>::
From
(
*
boxes
);
for
(
int
h
=
0
;
h
<
layer_height
;
++
h
)
{
for
(
int
w
=
0
;
w
<
layer_width
;
++
w
)
{
float
center_x
=
(
w
+
offset
)
*
step_width
;
float
center_y
=
(
h
+
offset
)
*
step_height
;
float
box_width
,
box_height
;
T
center_x
=
(
w
+
offset
)
*
step_width
;
T
center_y
=
(
h
+
offset
)
*
step_height
;
T
box_width
,
box_height
;
int
idx
=
0
;
for
(
size_t
s
=
0
;
s
<
min_sizes
.
size
();
++
s
)
{
int
min_size
=
min_sizes
[
s
];
...
...
python/paddle/v2/fluid/tests/test_prior_box_op.py
浏览文件 @
142f6328
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
numpy
as
np
import
sys
...
...
@@ -86,44 +100,26 @@ class TestPriorBoxOp(OpTest):
idx
=
0
for
h
in
range
(
self
.
layer_h
):
for
w
in
range
(
self
.
layer_w
):
c
enter
_x
=
(
w
+
self
.
offset
)
*
self
.
step_w
c
enter
_y
=
(
h
+
self
.
offset
)
*
self
.
step_h
c_x
=
(
w
+
self
.
offset
)
*
self
.
step_w
c_y
=
(
h
+
self
.
offset
)
*
self
.
step_h
idx
=
0
for
s
in
range
(
len
(
self
.
min_sizes
)):
min_size
=
self
.
min_sizes
[
s
]
# first prior: aspect_ratio = 1, size = min_size
box_width
=
box_height
=
min_size
# xmin
out_boxes
[
h
,
w
,
idx
,
0
]
=
(
center_x
-
box_width
/
2.
)
/
self
.
image_w
# ymin
out_boxes
[
h
,
w
,
idx
,
1
]
=
(
center_y
-
box_height
/
2.
)
/
self
.
image_h
# xmax
out_boxes
[
h
,
w
,
idx
,
2
]
=
(
center_x
+
box_width
/
2.
)
/
self
.
image_w
# ymax
out_boxes
[
h
,
w
,
idx
,
3
]
=
(
center_y
+
box_height
/
2.
)
/
self
.
image_h
c_w
=
c_h
=
min_size
/
2.
out_boxes
[
h
,
w
,
idx
,
:]
=
[
(
c_x
-
c_w
)
/
self
.
image_w
,
(
c_y
-
c_h
)
/
self
.
image_h
,
(
c_x
+
c_w
)
/
self
.
image_w
,
(
c_y
+
c_h
)
/
self
.
image_h
]
idx
+=
1
if
len
(
self
.
max_sizes
)
>
0
:
max_size
=
self
.
max_sizes
[
s
]
# second prior: aspect_ratio = 1,
# size = sqrt(min_size * max_size)
box_width
=
box_height
=
math
.
sqrt
(
min_size
*
max_size
)
# xmin
out_boxes
[
h
,
w
,
idx
,
0
]
=
(
center_x
-
box_width
/
2.
)
/
self
.
image_w
# ymin
out_boxes
[
h
,
w
,
idx
,
1
]
=
(
center_y
-
box_height
/
2.
)
/
self
.
image_h
# xmax
out_boxes
[
h
,
w
,
idx
,
2
]
=
(
center_x
+
box_width
/
2.
)
/
self
.
image_w
# ymax
out_boxes
[
h
,
w
,
idx
,
3
]
=
(
center_y
+
box_height
/
2.
)
/
self
.
image_h
c_w
=
c_h
=
math
.
sqrt
(
min_size
*
max_size
)
/
2
out_boxes
[
h
,
w
,
idx
,
:]
=
[(
c_x
-
c_w
)
/
self
.
image_w
,
(
c_y
-
c_h
)
/
self
.
image_h
,
(
c_x
+
c_w
)
/
self
.
image_w
,
(
c_y
+
c_h
)
/
self
.
image_h
]
idx
+=
1
# rest of priors
...
...
@@ -131,20 +127,12 @@ class TestPriorBoxOp(OpTest):
ar
=
self
.
real_aspect_ratios
[
r
]
if
math
.
fabs
(
ar
-
1.
)
<
1e-6
:
continue
box_width
=
min_size
*
math
.
sqrt
(
ar
)
box_height
=
min_size
/
math
.
sqrt
(
ar
)
# xmin
out_boxes
[
h
,
w
,
idx
,
0
]
=
(
center_x
-
box_width
/
2.
)
/
self
.
image_w
# ymin
out_boxes
[
h
,
w
,
idx
,
1
]
=
(
center_y
-
box_height
/
2.
)
/
self
.
image_h
# xmax
out_boxes
[
h
,
w
,
idx
,
2
]
=
(
center_x
+
box_width
/
2.
)
/
self
.
image_w
# ymax
out_boxes
[
h
,
w
,
idx
,
3
]
=
(
center_y
+
box_height
/
2.
)
/
self
.
image_h
c_w
=
min_size
*
math
.
sqrt
(
ar
)
/
2
c_h
=
(
min_size
/
math
.
sqrt
(
ar
))
/
2
out_boxes
[
h
,
w
,
idx
,
:]
=
[(
c_x
-
c_w
)
/
self
.
image_w
,
(
c_y
-
c_h
)
/
self
.
image_h
,
(
c_x
+
c_w
)
/
self
.
image_w
,
(
c_y
+
c_h
)
/
self
.
image_h
]
idx
+=
1
# clip the prior's coordidate such that it is within[0, 1]
if
self
.
clip
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录