Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
133375eb
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
未验证
提交
133375eb
编写于
4月 15, 2021
作者:
G
Guanghua Yu
提交者:
GitHub
4月 15, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
supplement trt_int8 function (#2619)
上级
a718694c
变更
14
显示空白变更内容
内联
并排
Showing
14 changed file
with
21 addition
and
329 deletion
+21
-329
deploy/cpp/docs/Jetson_build.md
deploy/cpp/docs/Jetson_build.md
+1
-1
deploy/cpp/docs/linux_build.md
deploy/cpp/docs/linux_build.md
+1
-1
deploy/cpp/docs/windows_vs2019_build.md
deploy/cpp/docs/windows_vs2019_build.md
+1
-1
deploy/cpp/src/main.cc
deploy/cpp/src/main.cc
+1
-1
deploy/python/README.md
deploy/python/README.md
+1
-1
deploy/python/infer.py
deploy/python/infer.py
+2
-7
deploy/python/trt_int8_calib.py
deploy/python/trt_int8_calib.py
+0
-300
static/deploy/cpp/docs/Jetson_build.md
static/deploy/cpp/docs/Jetson_build.md
+1
-1
static/deploy/cpp/docs/linux_build.md
static/deploy/cpp/docs/linux_build.md
+1
-1
static/deploy/cpp/docs/windows_vs2019_build.md
static/deploy/cpp/docs/windows_vs2019_build.md
+1
-1
static/deploy/cpp/src/main.cc
static/deploy/cpp/src/main.cc
+2
-2
static/deploy/cpp/src/object_detector.cc
static/deploy/cpp/src/object_detector.cc
+5
-6
static/deploy/python/README.md
static/deploy/python/README.md
+1
-1
static/deploy/python/infer.py
static/deploy/python/infer.py
+3
-5
未找到文件。
deploy/cpp/docs/Jetson_build.md
浏览文件 @
133375eb
...
...
@@ -158,7 +158,7 @@ CUDNN_LIB=/usr/lib/aarch64-linux-gnu/
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测)|
| --use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| --gpu_id | 指定进行推理的GPU device id(默认值为0)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16
/trt_int8
)|
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
...
...
deploy/cpp/docs/linux_build.md
浏览文件 @
133375eb
...
...
@@ -102,7 +102,7 @@ make
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测)|
| --use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| --gpu_id | 指定进行推理的GPU device id(默认值为0)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16
/trt_int8
)|
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
...
...
deploy/cpp/docs/windows_vs2019_build.md
浏览文件 @
133375eb
...
...
@@ -97,7 +97,7 @@ cd D:\projects\PaddleDetection\deploy\cpp\out\build\x64-Release
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测)|
| --use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| --gpu_id | 指定进行推理的GPU device id(默认值为0)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16
/trt_int8
)|
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
...
...
deploy/cpp/src/main.cc
浏览文件 @
133375eb
...
...
@@ -37,7 +37,7 @@ DEFINE_string(image_path, "", "Path of input image");
DEFINE_string
(
video_path
,
""
,
"Path of input video"
);
DEFINE_bool
(
use_gpu
,
false
,
"Infering with GPU or CPU"
);
DEFINE_bool
(
use_camera
,
false
,
"Use camera or not"
);
DEFINE_string
(
run_mode
,
"fluid"
,
"Mode of running(fluid/trt_fp32/trt_fp16)"
);
DEFINE_string
(
run_mode
,
"fluid"
,
"Mode of running(fluid/trt_fp32/trt_fp16
/trt_int8
)"
);
DEFINE_int32
(
gpu_id
,
0
,
"Device id of GPU to execute"
);
DEFINE_int32
(
camera_id
,
-
1
,
"Device id of camera to predict"
);
DEFINE_bool
(
run_benchmark
,
false
,
"Whether to predict a image_file repeatedly for benchmark"
);
...
...
deploy/python/README.md
浏览文件 @
133375eb
...
...
@@ -43,7 +43,7 @@ python deploy/python/infer.py --model_dir=/path/to/models --image_file=/path/to/
| --video_file | Option |需要预测的视频 |
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测,可设置为:0 - (摄像头数目-1) ),预测过程中在可视化界面按
`q`
退出输出预测结果到:output/output.mp4|
| --use_gpu |No|是否GPU,默认为False|
| --run_mode |No|使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)|
| --run_mode |No|使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16
/trt_int8
)|
| --threshold |No|预测得分的阈值,默认为0.5|
| --output_dir |No|可视化结果保存的根目录,默认为output/|
| --run_benchmark |No|是否运行benchmark,同时需指定--image_file|
...
...
deploy/python/infer.py
浏览文件 @
133375eb
...
...
@@ -321,7 +321,7 @@ def load_predictor(model_dir,
Args:
model_dir (str): root path of __model__ and __params__
use_gpu (bool): whether use gpu
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16)
run_mode (str): mode of running(fluid/trt_fp32/trt_fp16
/trt_int8
)
use_dynamic_shape (bool): use dynamic shape or not
trt_min_shape (int): min shape for dynamic shape in trt
trt_max_shape (int): max shape for dynamic shape in trt
...
...
@@ -335,11 +335,6 @@ def load_predictor(model_dir,
raise
ValueError
(
"Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
.
format
(
run_mode
,
use_gpu
))
if
run_mode
==
'trt_int8'
and
not
os
.
path
.
exists
(
os
.
path
.
join
(
model_dir
,
'_opt_cache'
)):
raise
ValueError
(
"TensorRT int8 must calibration first, and model_dir must has _opt_cache dir"
)
use_calib_mode
=
True
if
run_mode
==
'trt_int8'
else
False
config
=
Config
(
os
.
path
.
join
(
model_dir
,
'model.pdmodel'
),
...
...
@@ -512,7 +507,7 @@ if __name__ == '__main__':
"--run_mode"
,
type
=
str
,
default
=
'fluid'
,
help
=
"mode of running(fluid/trt_fp32/trt_fp16)"
)
help
=
"mode of running(fluid/trt_fp32/trt_fp16
/trt_int8
)"
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
ast
.
literal_eval
,
...
...
deploy/python/trt_int8_calib.py
已删除
100644 → 0
浏览文件 @
a718694c
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
argparse
import
time
import
yaml
import
ast
from
functools
import
reduce
from
PIL
import
Image
import
cv2
import
numpy
as
np
import
glob
import
paddle
from
preprocess
import
preprocess
,
Resize
,
NormalizeImage
,
Permute
,
PadStride
from
visualize
import
visualize_box_mask
from
paddle.inference
import
Config
from
paddle.inference
import
create_predictor
# Global dictionary
SUPPORT_MODELS
=
{
'YOLO'
,
'RCNN'
,
'SSD'
,
'FCOS'
,
'SOLOv2'
,
'TTFNet'
,
}
class
Detector
(
object
):
"""
Args:
config (object): config of model, defined by `Config(model_dir)`
model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
use_gpu (bool): whether use gpu
"""
def
__init__
(
self
,
pred_config
,
model_dir
,
use_gpu
=
False
):
self
.
pred_config
=
pred_config
self
.
predictor
=
load_predictor
(
model_dir
,
min_subgraph_size
=
self
.
pred_config
.
min_subgraph_size
,
use_gpu
=
use_gpu
)
def
preprocess
(
self
,
im
):
preprocess_ops
=
[]
for
op_info
in
self
.
pred_config
.
preprocess_infos
:
new_op_info
=
op_info
.
copy
()
op_type
=
new_op_info
.
pop
(
'type'
)
preprocess_ops
.
append
(
eval
(
op_type
)(
**
new_op_info
))
im
,
im_info
=
preprocess
(
im
,
preprocess_ops
,
self
.
pred_config
.
input_shape
)
inputs
=
create_inputs
(
im
,
im_info
)
return
inputs
def
postprocess
(
self
,
np_boxes
,
np_masks
,
inputs
,
threshold
=
0.5
):
# postprocess output of predictor
results
=
{}
if
self
.
pred_config
.
arch
in
[
'Face'
]:
h
,
w
=
inputs
[
'im_shape'
]
scale_y
,
scale_x
=
inputs
[
'scale_factor'
]
w
,
h
=
float
(
h
)
/
scale_y
,
float
(
w
)
/
scale_x
np_boxes
[:,
2
]
*=
h
np_boxes
[:,
3
]
*=
w
np_boxes
[:,
4
]
*=
h
np_boxes
[:,
5
]
*=
w
results
[
'boxes'
]
=
np_boxes
if
np_masks
is
not
None
:
results
[
'masks'
]
=
np_masks
return
results
def
predict
(
self
,
image
,
threshold
=
0.5
,
warmup
=
0
,
repeats
=
1
,
run_benchmark
=
False
):
'''
Args:
image (str/np.ndarray): path of image/ np.ndarray read by cv2
threshold (float): threshold of predicted box' score
Returns:
results (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
matix element:[class, score, x_min, y_min, x_max, y_max]
MaskRCNN's results include 'masks': np.ndarray:
shape: [N, im_h, im_w]
'''
inputs
=
self
.
preprocess
(
image
)
np_boxes
,
np_masks
=
None
,
None
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
input_names
[
i
]])
for
i
in
range
(
warmup
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
pred_config
.
mask
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
t1
=
time
.
time
()
for
i
in
range
(
repeats
):
self
.
predictor
.
run
()
output_names
=
self
.
predictor
.
get_output_names
()
boxes_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
0
])
np_boxes
=
boxes_tensor
.
copy_to_cpu
()
if
self
.
pred_config
.
mask
:
masks_tensor
=
self
.
predictor
.
get_output_handle
(
output_names
[
2
])
np_masks
=
masks_tensor
.
copy_to_cpu
()
t2
=
time
.
time
()
ms
=
(
t2
-
t1
)
*
1000.0
/
repeats
print
(
"Inference: {} ms per batch image"
.
format
(
ms
))
# do not perform postprocess in benchmark mode
results
=
[]
if
not
run_benchmark
:
if
reduce
(
lambda
x
,
y
:
x
*
y
,
np_boxes
.
shape
)
<
6
:
print
(
'[WARNNING] No object detected.'
)
results
=
{
'boxes'
:
np
.
array
([])}
else
:
results
=
self
.
postprocess
(
np_boxes
,
np_masks
,
inputs
,
threshold
=
threshold
)
return
results
def
create_inputs
(
im
,
im_info
):
"""generate input for different model type
Args:
im (np.ndarray): image (np.ndarray)
im_info (dict): info of image
model_arch (str): model type
Returns:
inputs (dict): input of model
"""
inputs
=
{}
inputs
[
'image'
]
=
np
.
array
((
im
,
)).
astype
(
'float32'
)
inputs
[
'im_shape'
]
=
np
.
array
((
im_info
[
'im_shape'
],
)).
astype
(
'float32'
)
inputs
[
'scale_factor'
]
=
np
.
array
(
(
im_info
[
'scale_factor'
],
)).
astype
(
'float32'
)
return
inputs
class
PredictConfig
():
"""set config of preprocess, postprocess and visualize
Args:
model_dir (str): root path of model.yml
"""
def
__init__
(
self
,
model_dir
):
# parsing Yaml config for Preprocess
deploy_file
=
os
.
path
.
join
(
model_dir
,
'infer_cfg.yml'
)
with
open
(
deploy_file
)
as
f
:
yml_conf
=
yaml
.
safe_load
(
f
)
self
.
check_model
(
yml_conf
)
self
.
arch
=
yml_conf
[
'arch'
]
self
.
preprocess_infos
=
yml_conf
[
'Preprocess'
]
self
.
min_subgraph_size
=
yml_conf
[
'min_subgraph_size'
]
self
.
labels
=
yml_conf
[
'label_list'
]
self
.
mask
=
False
if
'mask'
in
yml_conf
:
self
.
mask
=
yml_conf
[
'mask'
]
self
.
input_shape
=
yml_conf
[
'image_shape'
]
self
.
print_config
()
def
check_model
(
self
,
yml_conf
):
"""
Raises:
ValueError: loaded model not in supported model type
"""
for
support_model
in
SUPPORT_MODELS
:
if
support_model
in
yml_conf
[
'arch'
]:
return
True
raise
ValueError
(
"Unsupported arch: {}, expect {}"
.
format
(
yml_conf
[
'arch'
],
SUPPORT_MODELS
))
def
print_config
(
self
):
print
(
'----------- Model Configuration -----------'
)
print
(
'%s: %s'
%
(
'Model Arch'
,
self
.
arch
))
print
(
'%s: '
%
(
'Transform Order'
))
for
op_info
in
self
.
preprocess_infos
:
print
(
'--%s: %s'
%
(
'transform op'
,
op_info
[
'type'
]))
print
(
'--------------------------------------------'
)
def
load_predictor
(
model_dir
,
batch_size
=
1
,
use_gpu
=
False
,
min_subgraph_size
=
3
):
"""set AnalysisConfig, generate AnalysisPredictor
Args:
model_dir (str): root path of __model__ and __params__
use_gpu (bool): whether use gpu
Returns:
predictor (PaddlePredictor): AnalysisPredictor
Raises:
ValueError: predict by TensorRT need use_gpu == True.
"""
run_mode
=
'trt_int8'
if
not
use_gpu
and
not
run_mode
==
'fluid'
:
raise
ValueError
(
"Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
.
format
(
run_mode
,
use_gpu
))
config
=
Config
(
os
.
path
.
join
(
model_dir
,
'model.pdmodel'
),
os
.
path
.
join
(
model_dir
,
'model.pdiparams'
))
precision_map
=
{
'trt_int8'
:
Config
.
Precision
.
Int8
,
'trt_fp32'
:
Config
.
Precision
.
Float32
,
'trt_fp16'
:
Config
.
Precision
.
Half
}
if
use_gpu
:
# initial GPU memory(M), device ID
config
.
enable_use_gpu
(
200
,
0
)
# optimize graph and fuse op
config
.
switch_ir_optim
(
True
)
else
:
config
.
disable_gpu
()
if
run_mode
in
precision_map
.
keys
():
config
.
enable_tensorrt_engine
(
workspace_size
=
1
<<
10
,
max_batch_size
=
batch_size
,
min_subgraph_size
=
min_subgraph_size
,
precision_mode
=
precision_map
[
run_mode
],
use_static
=
False
,
use_calib_mode
=
True
)
# disable print log when predict
config
.
disable_glog_info
()
# enable shared memory
config
.
enable_memory_optim
()
# disable feed, fetch OP, needed by zero_copy_run
config
.
switch_use_feed_fetch_ops
(
False
)
predictor
=
create_predictor
(
config
)
return
predictor
def
print_arguments
(
args
):
print
(
'----------- Running Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
items
()):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------'
)
def
predict_image_dir
(
detector
):
for
image_file
in
glob
.
glob
(
FLAGS
.
image_dir
+
'/*.jpg'
):
print
(
'image_file is'
,
image_file
)
results
=
detector
.
predict
(
image_file
,
threshold
=
0.5
)
def
main
():
pred_config
=
PredictConfig
(
FLAGS
.
model_dir
)
detector
=
Detector
(
pred_config
,
FLAGS
.
model_dir
,
use_gpu
=
FLAGS
.
use_gpu
)
# predict from image
if
FLAGS
.
image_dir
!=
''
:
predict_image_dir
(
detector
)
if
__name__
==
'__main__'
:
paddle
.
enable_static
()
parser
=
argparse
.
ArgumentParser
(
description
=
__doc__
)
parser
.
add_argument
(
"--model_dir"
,
type
=
str
,
default
=
None
,
help
=
(
"Directory include:'model.pdiparams', 'model.pdmodel', "
"'infer_cfg.yml', created by tools/export_model.py."
),
required
=
True
)
parser
.
add_argument
(
"--image_dir"
,
type
=
str
,
default
=
''
,
help
=
"Directory of image file."
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
ast
.
literal_eval
,
default
=
False
,
help
=
"Whether to predict with GPU."
)
print
(
'err?'
)
parser
.
add_argument
(
"--output_dir"
,
type
=
str
,
default
=
"output"
,
help
=
"Directory of output visualization files."
)
FLAGS
=
parser
.
parse_args
()
print_arguments
(
FLAGS
)
main
()
static/deploy/cpp/docs/Jetson_build.md
浏览文件 @
133375eb
...
...
@@ -155,7 +155,7 @@ CUDNN_LIB=/usr/lib/aarch64-linux-gnu/
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测)|
| --use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| --gpu_id | 指定进行推理的GPU device id(默认值为0)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16
/trt_int8
)|
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
...
...
static/deploy/cpp/docs/linux_build.md
浏览文件 @
133375eb
...
...
@@ -102,7 +102,7 @@ make
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测)|
| --use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| --gpu_id | 指定进行推理的GPU device id(默认值为0)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16
/trt_int8
)|
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
...
...
static/deploy/cpp/docs/windows_vs2019_build.md
浏览文件 @
133375eb
...
...
@@ -97,7 +97,7 @@ cd D:\projects\PaddleDetection\deploy\cpp\out\build\x64-Release
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测)|
| --use_gpu | 是否使用 GPU 预测, 支持值为0或1(默认值为0)|
| --gpu_id | 指定进行推理的GPU device id(默认值为0)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)|
| --run_mode | 使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16
/trt_int8
)|
| --run_benchmark | 是否重复预测来进行benchmark测速 |
| --output_dir | 输出图片所在的文件夹, 默认为output |
...
...
static/deploy/cpp/src/main.cc
浏览文件 @
133375eb
...
...
@@ -199,8 +199,8 @@ int main(int argc, char** argv) {
return
-
1
;
}
if
(
!
(
FLAGS_run_mode
==
"fluid"
||
FLAGS_run_mode
==
"trt_fp32"
||
FLAGS_run_mode
==
"trt_fp16"
))
{
std
::
cout
<<
"run_mode should be 'fluid', 'trt_fp32'
or 'trt_fp16
'."
;
||
FLAGS_run_mode
==
"trt_fp16"
||
FLAGS_run_mode
==
"trt_int8"
))
{
std
::
cout
<<
"run_mode should be 'fluid', 'trt_fp32'
, 'trt_fp16' or 'trt_int8
'."
;
return
-
1
;
}
...
...
static/deploy/cpp/src/object_detector.cc
浏览文件 @
133375eb
...
...
@@ -32,17 +32,16 @@ void ObjectDetector::LoadModel(const std::string& model_dir,
config
.
SetModel
(
prog_file
,
params_file
);
if
(
use_gpu
)
{
config
.
EnableUseGpu
(
100
,
gpu_id
);
config
.
SwitchIrOptim
(
true
);
if
(
run_mode
!=
"fluid"
)
{
auto
precision
=
paddle
::
AnalysisConfig
::
Precision
::
kFloat32
;
if
(
run_mode
==
"trt_fp16"
)
{
precision
=
paddle
::
AnalysisConfig
::
Precision
::
kHalf
;
}
else
if
(
run_mode
==
"trt_int8"
)
{
pr
intf
(
"TensorRT int8 mode is not supported now, "
"please use 'trt_fp32' or 'trt_fp16' instead"
)
;
pr
ecision
=
paddle
::
AnalysisConfig
::
Precision
::
kInt8
;
use_calib_mode
=
true
;
}
else
{
if
(
run_mode
!=
"trt_fp32"
)
{
printf
(
"run_mode should be 'fluid', 'trt_fp32' or 'trt_fp16'"
);
}
printf
(
"run_mode should be 'fluid', 'trt_fp32', 'trt_fp16' or 'trt_int8'"
);
}
config
.
EnableTensorRtEngine
(
1
<<
10
,
...
...
@@ -50,7 +49,7 @@ void ObjectDetector::LoadModel(const std::string& model_dir,
min_subgraph_size
,
precision
,
false
,
fals
e
);
use_calib_mod
e
);
}
}
else
{
config
.
DisableGpu
();
...
...
static/deploy/python/README.md
浏览文件 @
133375eb
...
...
@@ -46,7 +46,7 @@ python deploy/python/infer.py --model_dir=/path/to/models --image_file=/path/to/
| --video_file | Option |需要预测的视频 |
| --camera_id | Option | 用来预测的摄像头ID,默认为-1(表示不使用摄像头预测,可设置为:0 - (摄像头数目-1) ),预测过程中在可视化界面按
`q`
退出输出预测结果到:output/output.mp4|
| --use_gpu |No|是否GPU,默认为False|
| --run_mode |No|使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16)|
| --run_mode |No|使用GPU时,默认为fluid, 可选(fluid/trt_fp32/trt_fp16
/trt_int8
)|
| --threshold |No|预测得分的阈值,默认为0.5|
| --output_dir |No|可视化结果保存的根目录,默认为output/|
| --run_benchmark |No|是否运行benchmark,同时需指定--image_file|
...
...
static/deploy/python/infer.py
浏览文件 @
133375eb
...
...
@@ -393,9 +393,7 @@ def load_predictor(model_dir,
raise
ValueError
(
"Predict by TensorRT mode: {}, expect use_gpu==True, but use_gpu == {}"
.
format
(
run_mode
,
use_gpu
))
if
run_mode
==
'trt_int8'
:
raise
ValueError
(
"TensorRT int8 mode is not supported now, "
"please use trt_fp32 or trt_fp16 instead."
)
use_calib_mode
=
True
if
run_mode
==
'trt_int8'
else
False
precision_map
=
{
'trt_int8'
:
fluid
.
core
.
AnalysisConfig
.
Precision
.
Int8
,
'trt_fp32'
:
fluid
.
core
.
AnalysisConfig
.
Precision
.
Float32
,
...
...
@@ -419,7 +417,7 @@ def load_predictor(model_dir,
min_subgraph_size
=
min_subgraph_size
,
precision_mode
=
precision_map
[
run_mode
],
use_static
=
False
,
use_calib_mode
=
Fals
e
)
use_calib_mode
=
use_calib_mod
e
)
# disable print log when predict
config
.
disable_glog_info
()
...
...
@@ -574,7 +572,7 @@ if __name__ == '__main__':
"--run_mode"
,
type
=
str
,
default
=
'fluid'
,
help
=
"mode of running(fluid/trt_fp32/trt_fp16)"
)
help
=
"mode of running(fluid/trt_fp32/trt_fp16
/trt_int8
)"
)
parser
.
add_argument
(
"--use_gpu"
,
type
=
ast
.
literal_eval
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录